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Abstract

This paper develops a theoretical framework for studying contract and en-
forcement in settings of complete but unverifiable information and nondurable
trading opportunities. The main point of the paper is that the consideration
of renegotiation necessitates formal examination of other technological con-
straints, especially those having to do with the timing and nature of inalienable
productive actions. The sets of implementable state-contingent payoffs, under
various assumptions about renegotiation opportunities, are characterized and
compared. The analysis refutes the validity of the “mechanism design with ex
post renegotiation” program in a wide range of contracting environments and
it highlights the need for a more structured game-theoretic framework. JEL
Classification: C70, D74, K10.

Economic models of contract have yielded important insights regarding the nature
and impact of contractual imperfections and optimal contractual form. Many of the
insights derive from mechanism-design analysis–a methodology whose elegance relies
on stripping away institutional detail and focusing on a few fundamental strategic
ingredients. To the extent that institutional constraints plays a critical role in the
formation and performance of contracts, however, it is important to develop ways of
incorporating these constraints into models.
One issue that has received a great deal of attention is the possibility that parties

can renegotiate in the midst of a contractual relationship. Hart and Moore’s (1988)
seminal article shows how renegotiation following specific investments can inhibit the
parties’ ability to induce optimal investment. To incorporate renegotiation into a
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standard mechanism-design model, Maskin and Moore (1999) developed the mecha-
nism design with ex post renegotiation (MDER) program, which assumes that parties
can renegotiate the contractually-specified outcome after sending messages to an ex-
ternal enforcer. Maskin and Moore’s methodology and characterization results have
been widely accepted and employed.1

In this paper, I study how renegotiation opportunities interact with the technol-
ogy of trade in contractual relationships. I show that, in order to adequately address
renegotiation, our models must accurately represent the nature of the parties’ trade
actions (such as “the number of units delivered by the seller” or “whether the buyer
accepts delivery”). The key issue is whether these actions are modeled as individual
or as public actions. An individual action is one assumed to be taken directly by
one of the contracting parties, whereas a public action is one taken directly by an
external enforcement authority. In most real settings, trade actions are individual
and inalienably so, whereas the MDER and other mechanism-design programs typ-
ically treat them as public. I demonstrate that treating as public an action that is
actually individual can artificially distort the scope for contracting in the presence of
renegotiation.
I present a structured, game-theoretic model that explicitly accounts for the fol-

lowing essential elements: (a) the timing and nature of individual, inalienable actions;
(b) the manner in which an external enforcer compels behavior; and (c) at what times
the parties have the opportunity to renegotiate their contract.2 I focus on settings
with complete but unverifiable information, verifiable trade actions, and nondurable
trading opportunities (where there is a fixed date at which irreversible trade actions
must be made). I characterize the sets of implementable outcomes under a variety
of assumptions about when renegotiation can take place, and I compare these to the
set identified by the standard MDER program. I find that the MDER program fails
to accurately describe the implementable set in a wide range of environments.
To see why the modeling of trade actions matters, assume that at Date 6 (as in the

model presented here) an irreversible trade action must be taken. Also suppose that
the parties can renegotiate their contract at Date 5. If the trade action is modeled as
public then it is assumed to be chosen by some external enforcer who simply executes
the terms of a contract in force at Date 6. In this setting, the contracting parties
direct the trade action through their contract and through messages they send to the

1The MDER program builds from Maskin’s (1999) work on Nash implementation (without rene-
gotiation). The literature contains numerous, high-profile papers that adopt the MDER program,
including the recent work of Che and Hausch (1999), Edlin and Reichelstein (1996), Segal (1999),
and Segal and Whinston (2002).

2My approach is allied with that of Hart and Moore (1988), MacLeod and Malcomson (1993),
and Nöldeke and Schmidt (1995), who model individual trade actions. Also relevant is the work
of Myerson (1982,1991), whose mechanism design analysis nicely distinguishes between inalienable
private and public actions.
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external enforcer prior to Date 5. Then, at Date 5, the parties will know whether the
action to be taken by the enforcer is efficient in the current state of the world. If it is
not efficient, the parties will renegotiate the contract to achieve an efficient outcome.
Importantly, an efficient outcome is realized regardless of the parties’ behavior at
earlier dates (in or out of equilibrium).
Alternatively, suppose that the trade action is modeled as an individual action

taken by one of the parties. In this case, the contract specifies monetary transfers
between the parties as a function of the trade action and the messages sent earlier. By
using “forcing contracts,” it is possible to duplicate the results of treating the trade
action as public, because the contract can specify transfers that induce any particular
action regardless of the state of the world. However, other contracts may implement
outcomes that would not be implementable in the model with the public trade action.
The reason is that renegotiation at Date 5 concerns only the equilibrium trade action
at Date 6; there is no requirement that every selection that could be made at Date 6
must result in an efficient outcome (because there is no “time left” to renegotiate an
inefficient trade action chosen at Date 6).
Option contracts provide a practical illustration. Observe that there are two ways

of designing an option contract. In one form, the option entails a message that one
of the parties sends at, say, Date 4; this message triggers a response by the exter-
nal enforcer that forces the players to choose a particular trade action. In the other
form, the trade action itself serves as an option, with the external enforcer simply
compelling transfers as a function of the individual trade action.3 The latter option
form is not available when trade actions are treated as public and this makes a differ-
ence when renegotiation is possible at Date 5. Thus, in settings with renegotiation,
treating individual trade actions as public entails an artificial restriction on the set
of contracts. Hence, the MDER approach may fail to describe what can be achieved
through contracting in the presence of ex-post renegotiation.
The general modeling framework is described in the next section. Section 2 con-

tains definitions and analysis that are useful for representing the parties’ contracting
problem as a mechanism-design problem. Section 3 defines and partially characterizes
implementation for various settings (differentiated by if and when renegotiation can
take place). In Section 4, I present the analysis of the specific example introduced in
Section 1. This example illustrates, and supplies intuition for, my general results.
In Section 5, I prove a theorem that ranks by inclusion the sets of implementable

state-contingent payoffs under various assumptions about renegotiation. I also pro-

3Most mechanism-design models study options of the first type; more structured models, such as
Nöldeke and Schmidt’s (1995), focus on the second type. The law treats option generally, as a limit
on a parties “power to revoke an offer” (Section 25, Restatement (Second) of Contracts; see Barnett
1999). In addition to more conventional forms, options are implicitly created by liquidated damage
provisions and standard breach remedies. (A party has the option of breaching and then paying the
damage amount.)
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vide theorems that give conditions under which the inclusion relations are strict;
under these conditions, the MDER program fails to identify the implementable set in
the presence of ex post renegotiation. Furthermore, I prove that the conditions are
satisfied in the wide range of settings delineated by a specific group of assumptions
on the technology of trade. Section 6 comprises two examples that further clarify
the shortcomings of the MDER program while confirming, with qualifications, that
hold-up is indeed a problem in some contractual relationships. Section 7 contains
concluding remarks. Proofs of the lemmas and Theorem 4 are contained in the ap-
pendices.
My results do not challenge the legitimacy of mechanism design theory for the

study of contract. However, the modeling exercise reveals that the application of
mechanism design theory can be seriously flawed if one does not incorporate the
proper technological constraints. Overall, the research clarifies the meaning and im-
plication of “ex post renegotiation.”
Numerous authors have argued for the kind of research reported herein. Hurwicz

(1994) speaks of the importance of incorporating institutional constraints into de-
sign problems–a step that, for the most part, has yet to be taken in any general,
compelling way. He suggests that institutional constraints should be represented as
limiting design to a class of game forms, whereby the “‘desired’ game form [is em-
bedded in what he calls] the ‘natural’ game form” (p.12). My framework may be
interpreted as this natural game form. Anderlini, Felli, and Postlewaite (2001), Segal
and Whinston (2002), and others recognize the need to study technological and insti-
tutional constraints in contracting environments. Furthermore, the contract theory
literature has seen several debates regarding renegotiation and its relation to mes-
sages and productive actions.4 Against this backdrop, my message should be clearly
understood: To make sense of modeling choices and to have an instructive debate, we
must use a theoretical framework that explicitly accounts for the technology of trade
and enforcement.

4For example, Nöldeke and Schmidt (1995) point out that Hart and Moore’s (1988) under-
investment problem disappears if the parties’ individual trade actions are verifiable, rather than just
partially verifiable. Edlin and Hermalin (2000) argue that Nöldeke and Schmidt (1998) and Bernheim
and Whinston (1998) incorrectly model the timing of options, investment, and renegotiation–that,
because of ex post renegotiation following opportunities to exercise an option, hold-up is a severe
problem. I comment on this in the Conclusion. In work that criticizes Hart and Moore’s analysis
of incomplete contracts, Lyon and Rasmusen (2001) argue that parties should, in reality, be able to
rescind and change option orders after an opportunity for renegotiation expires. See also MacLeod
(2001) on renegotiation and the timing of the resolution of uncertainty.
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1 The Theoretical Framework

Two contracting parties, whom I call “players 1 and 2,” engage in a contractual
relationship with external enforcement. Their relationship has the following payoff-
relevant components, occurring in the order shown:

The state of the relationship θ. The state represents unverifiable events that are
assumed to happen early in the relationship. The state may be determined by
individual investment decisions and/or by random occurrences, depending on
the setting. When the state is realized, it becomes commonly known by the
players; however, it cannot be verified to the external enforcer. Let Θ denote
the set of possible states.

The trade actions (or “decisions”) a = (a1, a2). This is a profile of individual,
inalienable actions that the players choose, determining whether and how the
relationship is consummated. The trade actions are commonly observed by
the players and are verifiable to the external enforcer. I assume that a is an
element of the product set A ≡ A1 ×A2, where A1 is the feasible set of actions
for player 1 and A2 is the feasible set of actions for player 2. I assume that the
players select their trade actions simultaneously and independently.

The monetary transfers t = (t1, t2). Here ti denotes the amount given to player i,
for i = 1, 2, where a negative value represents an amount taken from this player.
These transfers are compelled by the external enforcer, who is not a strategic
player but, rather, who behaves as directed by the contract of players 1 and 2.
I limit attention to “balanced transfers” by assuming that t ∈ R2

0, where

R2
0 ≡ {t ∈ R2 | t1 + t2 = 0}.

This rules out transfers to third parties or money burning by the external en-
forcer.5

I assume that the players’ payoffs are additive in money and are thus defined by a
function u :A × Θ → R2. In state θ, with trade action a and transfer t, the payoff
vector is u(a, θ) + t. I assume that u is bounded and that the maximal joint payoff,
maxa∈A[u1(a, θ) + u2(a, θ)], exists for every θ. It will not be necessary to put any
restrictions on the sets A and Θ.
In addition to the payoff-relevant components of their relationship, I assume that

the players can communicate with the external enforcer using public, verifiable mes-
sages. Let m = (m1,m2) denote the profile of messages that the players send and let

5This assumption, which is common in the related literature, is justified by a renegotiation
opportunity (the contracting parties would rewrite their contractual instructions just before the
court acts).
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Players establish a contract.

Unverifiable events determine the state, .θ
[Possible renegotiation of the contract.]

Players send verifiable messages, m.

[Possible renegotiation of the contract.]

External enforcer compels a transfer, .t

Date 1

2

3

4

5
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7

Players make verifiable trade decisions, .a

8

[Possible renegotiation of the contract.]
Trade and

enforcement
phase

Figure 1: The contractual relationship.

M1 and M2 be the sets of feasible messages. The sets M1 and M2 will be endogenous
in the sense that they are specified by the players in their contract.
I focus on nondurable trading opportunities, meaning that there is a fixed date

at which the trade decisions are made. This date is designated as “Date 6” in Fig-
ure 1, which shows the time line of the contractual relationship. At even-numbered
dates through Date 6, the players make joint observations and they make individ-
ual decisions–jointly observing the state at Date 2, sending verifiable messages at
Date 4, and selecting the trade actions at Date 6. At Date 8, the external enforcer
compels transfers.
At odd-numbered dates, the players make joint contracting decisions–establishing

a contract at Date 1 and possibly renegotiating it later. The contract has an externally-
enforced component consisting of (i) feasible message spaces M1 and M2 and (ii) a
function y : M × A → R2 specifying the transfer t as a function of the verifiable
items m and a. That is, having seen m and a, the external enforcer compels transfer
t = y(m, a). I call y the transfer function. The contract also has a self-enforced
component, which specifies how the players coordinate their behavior for the times
at which they make individual decisions. Renegotiation of the contract amounts to
replacing the original transfer function y with some new function yI, in which case yI

is the one submitted to the external enforcer at Date 8.
I model rational behavior in the contractual relationship as follows. The players’

individual decisions at Dates 4 and 6 are assumed to be consistent with sequential
rationality; that is, each player maximizes his expected payoff, conditional on what
occurred earlier and on what the other player does, and anticipating rational be-
havior in the future. The joint decisions (initial contracting and renegotiation at
odd-numbered periods) are assumed to be consistent with a “black-box” cooperative
bargaining solution in which the players divide surplus according to fixed bargain-
ing weights π1 and π2 for players 1 and 2, respectively. The bargaining weights are
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nonnegative and sum to one. I write π = (π1, π2). Surplus is defined relative to a
disagreement point. More details are given later in this section.6

I shall, from this point, ignore the possibility of renegotiation at Date 7. The
justification for this is that it has already been incorporated into the analysis by
limiting attention to balanced transfers (recall footnote 5).
A (state-contingent) value function is a function v :Θ → R2 that gives the play-

ers’ expected payoff vector from the start of Date 3, as a function of the state. An
implementable value function is that which results from rational behavior for some
contract selected at Date 1. (Formal definitions are in Section 3.) The main theoreti-
cal exercise is to determine the set of implementable value functions; this set depends
on whether renegotiation is possible at Dates 3 or 5. Calculating the set of value
functions is important because the players and society have preferences over them.
In some settings, this relates to whether players are given the incentives to make ex
ante investments, as is the case in the following example.

Example 1

Here is a simple numerical example that illustrates the model’s components. The
example is analyzed in detail in Section 4. Player 1 is the buyer of an intermediate
good, player 2 is the seller, and the external enforcer is the court. To be concrete,
imagine that the buyer is a masonry supply company that hopes to gain new cus-
tomers at a regional trade show. The seller is an advertisement agency. The buyer
wishes to hire the seller to develop an advertisement package for the trade show.
The set of states is {H,L}, where H indicates the “high” state in which the

advertisement package will be successful and L denotes the “low” state in which the
advertisement will not be successful. The state is determined by an investment that
one of the players makes at Date 2. I will consider two versions of the example.
In the first version, it is the buyer who makes this investment; think of it as effort
that player 1 exerts to evaluate his downstream market and to provide information

6Fixed bargaining weights capture the idea that renegotiation activity is non-contractible, so
that the parties can exercise bargaining power and hold each other up during the relationship.
This assumption is realistic for many applied settings and it is a key ingredient of most recent
contract models in the literature. It is standard in the literature to model renegotiation using a
cooperative game solution, although in some papers, such as Hart and Moore (1988) and MacLeod
and Malcomson (1993), theorists analyze a non-cooperative model of bargaining. In my model,
because the players are risk neutral in money, the cooperative solution yields the same expected
payoffs as does the following non-cooperative specification of negotiation: Nature selects one of the
players to make an ultimatum offer to the other, who either accepts or rejects it; Nature selects
player i with probability πi; and we assume that, if the offer is rejected, then the equilibrium in
the continuation of the game does not depend on the identity of the offerer or on the nature of
the offer. Technically, the behavioral assumptions made here define a “negotiation equilibrium” in
the terminology of Watson (2002a). For more on the relation between non-cooperative bargaining
models and cooperative solutions, see Binmore, Rubinstein, and Wolinsky (1986).
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to player 2. In the second version of the example, the seller makes the investment;
imagine it as player 2’s effort to learn about player 1’s business and downstream
market. I assume that the effort decision is binary (either “exert” effort or “not”),
that “exert” entails an immediate cost of c in monetary units, and that the high state
is realized if and only if “exert” is chosen.
Suppose that the trade action is the buyer’s choice of whether to adopt the ad-

vertisement package. Specifically, let A1 = {1, 0} and A2 = ∅, where a = 1 indicates
that the buyer adopts the advertisement and a = 0 indicates that he does not adopt
it. The buyer’s decision to adopt the advertisement can also be described as “the
buyer consummates the trade” or “the buyer accepts delivery.” The trading oppor-
tunity is nondurable; in other words, the buyer’s decision of whether to adopt the
advertisement cannot be reversed or delayed.7

Above any effort costs, the payoffs are defined as follows. In state H, if the buyer
adopts the advertisement package and is forced to make a monetary transfer p to the
seller, then the buyer gets 5 − p and the seller gets 3 + p. The buyer’s value of 5 is
the profit generated by a successful advertisement. The seller’s value of 3 reflects the
extra profit the advertising agency will receive from future clients due to its public
success with the masonry firm. In state H, if the buyer decides not to adopt the
advertisement package yet transfers p to the seller, then the buyer gets −p and the
seller gets p. In state L, the advertisement package is worthless to both the buyer
and the seller; in this case, regardless of whether the buyer adopts the advertisement,
the payoffs are simply the players’ monetary transfers. In the notation of the general
model, we thus have u(1,H) = (5, 3) and u(0,H) = u(1,L) = u(0,L) = (0, 0). Note
that the effort cost c is not included in these expressions.
For this example, I assume that the bargaining weights are π1 = π2 = 1/2, so

the players share equally any gains from renegotiation. Assume that c ∈ (0, 8),
which implies that “exert” is the efficient effort decision at Date 2 (leading to the
high state in which the players obtain a joint value of 8 when the buyer accepts
delivery). To have a successful relationship, the parties must design a contract at
Date 1 that will align their incentives to invest at Date 2. This critically depends
on the set of implementable value functions. In the case in which the buyer makes
the effort decision at Date 2, he will exert effort only if the value function satisfies
v1(H)− c ≥ v1(L). This requires v1(H)− v1(L) to be as large as 8, depending on c. In
the other case, where the seller makes the effort decision, the seller has the incentive
to exert effort only if v2(H)− c ≥ v2(L), requiring v2(H)− v2(L) to be as large as 8.

7The buyer must choose his trade action just before the trade show begins, at Date 6. After the
trade show, there is no use for the advertisement and there is no way to undo the advertisement if
it was adopted.
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2 Preliminaries for Mechanism-Design Analysis

This section describes how the contractual relationship can be represented in terms of
a standard mechanism-design problem. The form of the mechanism-design problem
depends on when renegotiation can occur and on whether one treats trade actions
as public actions. I first express outcomes of rational behavior from Date 6 as state-
contingent payoffs and I use these to write the players’ contracting problem. I then
discuss the notion of a “forcing contract” and its relation to the common treatment of
trade actions as alienable. Finally, I define some notation for describing renegotiation.

Outcomes of the Trade and Enforcement Phase

It is useful to consider the state-contingent payoff vectors that can be achieved
from the beginning of Date 6 (the “trade and enforcement phase” shown in Figure 1),
for a fixed message profile m. The set of achievable state-contingent payoff vectors is
clearly independent of m, because the message is not payoff-relevant. Thus, for the
sake of calculating feasible state-contingent payoffs from Date 6, I can ignore m and
write the externally enforced transfer function as ŷ :A→ R2, where ŷ ≡ y(m, ·).
Given the state θ, ŷ defines a trading game, where the space of action profiles is

A and the payoffs are given by u(·, θ) + ŷ(·). I focus on pure-strategy Nash equilibria
of the trading game. Let â(θ) denote the equilibrium action profile that is chosen by
the players in state θ. The state-contingent payoff vector from Date 6 is thus given
by the function w :Θ→ R2 defined by

w(θ) ≡ u(â(θ), θ) + ŷ(â(θ)). (1)

I use the term outcome for any such function from Θ to R2. Think of an outcome,
therefore, as a state-contingent payoff that results from interaction in the trade and
enforcement phase.8 The set of outcomes is:

W ≡ w :Θ→ R2 functions ŷ and â exist such that, for every θ ∈ Θ, Equation 1

holds and â(θ) is an equilibrium of the game �A, u(·, θ) + ŷ(·)X . (2)

8This should be differentiated from the “trade outcome,” which describes the physical trade
action and monetary transfer.
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Forcing Contracts and the Alienability Issue

Because trade actions are verifiable, the external enforcer can effectively force
the players to choose any particular trade action independent of the state. This can
be done using a forcing contract, which specifies (i) a large transfer from player 1
to player 2 in the event that player 1 does not take his contractually-specified ac-
tion, and (ii) a large transfer in the other direction if player 2 does not take her
contractually-specified action. For instance, in Example 1, the buyer can be forced
to adopt the advertisement by a contract that specifies the transfer vector (−p, p)
if the buyer adopts and (−p − 6, p + 6) if the buyer does not adopt, for any given
number p. Regardless of the state, the buyer then has a strict incentive to adopt the
advertisement. With this contract for a given message profile, the physical outcome
from Date 6 will be adoption of the advertisement and a transfer of p from the buyer
to the seller.
In general, suppose the players want to force themselves to play action profile a∗

and have transfer t∗, regardless of the state.9 This can be accomplished by specifying
ŷ as follows. Let L be such that

L > sup
a,θ
ui(a, θ)− inf

a,θ
ui(a, θ)

for i = 1, 2. To induce a∗, one can define ŷ so that: (i) For every a = (ai, a
∗
j) for

which ai W= a∗i , set ŷi(a) ≡ t∗i − L and ŷj(a) ≡ t∗j + L; and (ii) for every other profile
a, set ŷ(a) ≡ t∗. Then a∗ is the only Nash equilibrium of the trading game in every
state.

Definition 1: The transfer function ŷ is called forcing if there is a unique Nash
equilibrium of the trading game �A,u(·, θ) + ŷ(·)X and this equilibrium is independent
of the state.

Let WF be the subset of outcomes that can be supported using forcing contracts;
that is, WF is defined by Expression 2 with the qualifier that ŷ is a forcing contract.
Forcing contracts lie implicitly behind the treatment of verifiable actions as pub-

lic in much of the related literature. The traditional view is that, because the trade
actions are verifiable and can therefore be forced, we might as well assume–for mod-
eling simplicity and elegance–that these actions can be taken out of the players’
hands (they are alienable). In models that take this approach, both a and t are cho-
sen directly by the external enforcer and, thus, the contracted (physical) outcomes

9To achieve public randomization over trade actions using forcing contracts, a public randomiza-
tion device must be included in the model. This is done in the working paper Watson (2002b). In
fact, allowing such randomization does not expand the set of implementable value functions here,
except in the case of no renegotiation. We could also assume A is a mixture space, but this implies
that the external enforcer can observe how the players randomize.
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simply are elements of A×R2
0. Researchers then perform standard mechanism-design

analysis, presuming that the full scope of implementable values can be achieved by
conditioning the outcome on the Date 4 messages.10 Treating trade actions as public
is, in the notation of my model, equivalent to restricting attention to the outcome set
WF rather than looking at the actual outcome set W .
The following lemma identifies a useful property of the sets W and WF.

Lemma 1: W and WF are closed under constant transfers. For example, if w ∈ W
and t ∈ R2

0, then w + t ∈W as well.

Contracted Mechanisms

Holding aside the issue of renegotiation for now, the players’ contracting problem
can be easily stated as a standard mechanism-design problem. The players’ contract
specifies a mechanism, which maps messages sent at Date 4 to outcomes induced in
the trade and enforcement phase. The revelation principle applies in the following
sense. We can restrict attention to direct-revelation mechanisms, each of which is
defined by a message space M ≡ Θ2 and a function f : M → W . With such a
mechanism, at Date 4 the parties simultaneously and independently report the state.
For any report profile m, the mechanism specifies an element f(m) ∈ W , which then
determines the payoffs conditional on the state. We can concentrate on equilibria of
the mechanism in which the parties report truthfully. If we wish to treat trade actions
as public, and so focus on forcing contracts, we constrain attention to the subset of
mechanisms in which f maps M to WF.
Any mechanism (Θ2, f) can be translated back into the notation of contract in

the basic model, with y specified appropriately. For each message profile m, we define
y(m, ·) ≡ ŷ(·), where ŷ is a transfer function that supports w = f(m) in Expression 2.

Renegotiation

Contract renegotiation at Dates 3 and 5 can be viewed as an opportunity for the
players to discard their originally specified f mapping and replace it with another
mapping f I. I assume the players divide the renegotiation surplus according to fixed
bargaining weights π1 and π2. The generalized Nash bargaining solution and several
other common bargaining solutions have this representation.
To state the bargaining solution more precisely, I let γ(θ) denote the maximal

joint payoff that can be obtained in state θ:

γ(θ) ≡ max
a∈A

[u1(a, θ) + u2(a, θ)]. (3)

10Most models in the mechanism design and contract theory literature implicitly associate verifi-
ability with forcing contracts. Some game theory models, such as that of Bernheim and Whinston
(1998), also take this view.
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Clearly, we have
γ(θ) = max

w∈WF
[w1(θ) + w2(θ)] (4)

because the trade action that solves the maximization problem in Equation 3 can
be specified in a forcing contract to yield the outcome that solves the problem in
Equation 4. An outcome w is called efficient in state θ if w1(θ) + w2(θ) = γ(θ).
Suppose the original mechanism (M,f) would lead to outcome w in state θ. If

w is inefficient in state θ, then the players have a joint incentive to renegotiate the
mechanism. The renegotiation surplus is

r(w, θ) ≡ γ(θ)− w1(θ)− w2(θ).

The players will select a new mapping f I that induces an efficient outcome. Further,
the surplus will be divided according to the players’ bargaining weights, so that
player i obtains wi(θ) + πir(w, θ). In practical terms, when the players renegotiate
in state θ, they replace the transfer function with one that achieves an outcome wI

satisfying wI(θ) = w(θ) + πr(w, θ). Equation 4 and Lemma 1 imply that such an
outcome wI exists and is supported by a forcing contract.

3 Implementation Conditions

In this section, I define and characterize the set of implementable value functions.11

I group the analysis into three categories, distinguished by whether the players have
the opportunity to renegotiate at Dates 3 and 5. The characterization lemmas in this
section are all straightforward variations of well-known theorems from the contract
theory literature–in particular, due to Maskin (1999), Maskin and Moore (1999),
and Moore and Repullo (1988).

No Renegotiation

First consider the setting in which the players cannot renegotiate. A mechanism
(M, f) implies, for each state θ, a message game in which the players engage at Date 4.
The message game has action profiles given by M and payoffs specified by f(·)(θ).
For this setting, implementability is defined as follows.

Definition 2: A mechanism (M, f) is said to implement value function v if f :
M → W and, for each state θ, there is an equilibrium of the message game that leads

11I focus on “implementation” in the weak sense of not requiring uniqueness of equilibrium in each
state. I find this a reasonable notion for contractual settings. Regardless of your view about this,
however, much of my analysis concerns settings with “ex post renegotiation,” in which multiplicity is
not a problem. Furthermore the multiplicity issue should be tackled with a theory of the self-enforced
component of contract.
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to the payoff vector v(θ). Value function v is said to be implementable if there is a
mechanism that implements it.

Let V N be the set of implementable value functions for the setting in which the players
cannot renegotiate.
To characterize the set V N, we invoke the revelation principle to focus on truthful

reporting in direct-revelation mechanisms so that, in states θ and θI, the players will
send message profiles (θ, θ) and (θI, θI), respectively, in equilibrium. It is essential
that the outcome specified for message profile (θI, θ) be sufficient to simultaneously
(i) dissuade player 1 from declaring the state to be θI when the state is actually θ and
(ii) discourage player 2 from declaring “θ” in state θI. Thus, letting w and wI denote
the outcomes specified for messages (θ, θ) and (θI, θI), respectively, implementation
relies on the existence of an outcome ŵ satisfying w1(θ) ≥ ŵ1(θ) and w2(θI) ≥ ŵ2(θI).
Combining this with Lemma 1 yields the following characterization.

Lemma 2: Value function v is an element of V N if and only if (i) for every θ ∈ Θ,
there is an outcome w ∈ W such that w(θ) = v(θ); and (ii) for every pair of states
θ, θI ∈ Θ, there is an outcome ŵ ∈W such that v1(θ)+ v2(θ

I) ≥ ŵ1(θ)+ ŵ2(θI). Also,
the set V N is closed under constant transfers.

When players cannot renegotiate, there is no loss of generality in modeling trade
actions as public, as the next lemma confirms.

Lemma 3: If value function v is implementable, then there is a mechanism (M, f)
that implements v and has the property that f(m) ∈WF for every m ∈M .
The intuition behind this lemma is standard. Any strategic elements in the actual

trading game can be mimicked through the use of messages. The mechanism can be
designed so that the players announce what trade actions they want to select and
then the external enforcer forces them to take these actions.

Interim Renegotiation

Next consider the setting in which renegotiation is possible at Date 3 but not
at Date 5. In other words, the players can renegotiate between the time that they
jointly learn the state and when the message game is played. I call this the interim
renegotiation setting. The players will renegotiate if, in the realized state, their
anticipated equilibrium of the message game would yield an inefficient outcome. Thus,
if the players’ original contract would implement vI without renegotiation, then it
leads to payoff vector vI(θ) + πr(vI, θ) in state θ with interim renegotiation.

Definition 3: Value function v is implementable with interim renegotiation
if there is a value function vI ∈ V N such that v(θ) = vI(θ) + πr(vI, θ) for every state
θ.
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Let V I denote the set of implementable value functions when there is interim renego-
tiation.

Lemma 4: v ∈ V I if and only if v ∈ V N and v1(θ) + v2(θ) = γ(θ) for every θ ∈ Θ.
Also, V I is closed under constant transfers.

The “mechanism design with interim renegotiation” (MDIR) program studies the
set V I. In this program, as with the case of no renegotiation, there is no loss of
generality in modeling trade actions as public because Lemma 3 applies to V I.

Ex Post Renegotiation

Finally, consider the case in which renegotiation is possible at Date 5–between
the time the players send messages and the beginning of the trade and enforcement
phase. The idea is that the players interact in the contracted mechanism, which
leads to an outcome w. But then, just before the outcome would be induced, the
players can renegotiate to obtain a different outcome. This is the setting of ex post
renegotiation. Here, renegotiation implies efficient outcomes in every state and after
every message profile in the mechanism. Incidentally, with renegotiation possible at
Date 5, implementability is not affected by whether renegotiation can also occur at
Date 3.12

To characterize implementability for this setting, we must incorporate renegotia-
tion into the definition of an outcome. The set of ex post renegotiation outcomes is
defined as

Z ≡ z :Θ→ R2 There is an outcome w ∈W such

that z(θ) = w(θ) + πr(w, θ) for every θ ∈ Θ .

An ex post renegotiation outcome is a state-contingent payoff vector that results
when, in every state, the players renegotiate from an outcome in W . Note that all
elements of Z are efficient in every state. One can analyze mechanism design in the
setting of ex post renegotiation by simply replacing W with Z in definition 2.

Definition 4: Value function v is implementable with ex post renegotiation
if it is implemented by a mechanism (M,f) with f :M → Z.

Letting V EP denote the set of implementable value functions when there is ex post
renegotiation, we have:

12Renegotiation at Date 5 implies ex post efficiency in both states, which means there is no surplus
to be obtained from earlier renegotiation.
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Lemma 5: v ∈ V EP if and only if (i) v1(θ) + v2(θ) = γ(θ) for every θ ∈ Θ; and (ii)
for every pair of states θ, θI ∈ Θ, there is an outcome ẑ ∈ Z such that v1(θ)+v2(θI) ≥
ẑ1(θ) + ẑ2(θ

I). Also, V EP is closed under constant transfers.

In the popular “mechanism design with ex post renegotiation” (MDER) program,
trade actions are treated as public. Thus, the MDER program limits attention to
forcing contracts, where the set of ex post renegotiation outcomes is calculated as

ZF ≡ z :Θ→ R2 There is an outcome w ∈WF such

that z(θ) = w(θ) + πr(w, θ) for every θ ∈ Θ .

Definition 5: Value function v is implementable with ex post renegotiation
and a forcing contract if it is implemented by a mechanism (M, f) with f :M →
ZF.

Let V EPF be the value functions that are implementable with ex post renegotiation
and forcing contracts. The MDER program studies precisely the set V EPF.

Lemma 6: v ∈ V EPF if and only if (i) v1(θ) + v2(θ) = γ(θ) for every θ ∈ Θ;
and (ii) for every pair of states θ, θI ∈ Θ, there is an outcome ẑ ∈ ZF such that
v1(θ) + v2(θ

I) ≥ ẑ1(θ) + ẑ2(θI). Also, V EPF is closed under constant transfers.

4 The Main Point Via Example 1

Example 1 demonstrates the importance of accounting for the technology of trade.
In this section, I calculate the sets V I, V EP, and V EPF for the example. I show that
the MDER program does not accurately describe the scope of contracting with ex
post renegotiation.

MDIR Program

I first perform the analysis of the example for the setting of interim renegotia-
tion. Without loss, I constrain attention to direct-revelation mechanisms and truth-
ful reporting in equilibrium (by the revelation principle) and forcing contracts (by
Lemma 3). The calculations are a simple application of Lemmas 2 and 4. Note that,
because renegotiation only occurs before the message phase, the contracted mech-
anism may lead to an ex post inefficient outcome in some state, for some message
profiles. However, an ex post efficient outcome occurs in equilibrium. Thus, to in-
corporate renegotiation, we must specify “adoption of the advertisement package”
when (H,H) is the message profile. We can further limit attention to mechanisms
that specify no adoption when message profiles (H,L) and (L,H) are sent, because
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this makes for the most relaxed incentive constraints. Let pθθ denote the monetary
transfer from player 1 to player 2 that is specified by the mechanism for message
profile (θ, θI), for θ, θI ∈ Θ.
The game form implies a message game for each state, as pictured below.

– ,  p pHH HH – ,  p pHL HL

– ,  p pLH LH – ,  p pLL LL

5 – ,  3 + p pHH HH – ,  p pHL HL

– ,  p pLH LH 5 – ,  3 + p pLL LL

H

L

H L H L

H

L

B
S

B
S

Message game in state L Message game in state H

We look for equilibria with truthful reporting. For truthful reporting to be a Nash
equilibrium in each state, it must be that pLH ≤ pLL ≤ pHL, 5 − pHH ≥ −pLH , and
3 + pHH ≥ pHL. Combining these inequalities yields

pLL + 5 ≥ pHH ≥ pLL − 3,
which implies that the set of implementable value functions in the MDIR setting is:

V I = v :{H,L}→ R2 v(L) = (α,−α), v(H) = (5 + α− β, 3− α+ β),

for any α ∈ R and β ∈ [−3, 5] . (5)

Recall that, in this example, the effort cost c is not included in the value function.
The maximal difference v1(H) − v1(L) is 8, which is sufficient to give the buyer the
incentive to exert effort in the version of the example in which he makes the effort
decision. Likewise, the maximal difference v2(H) − v2(L) is also 8, which means the
seller can be motivated to exert effort in the version in which she makes the effort
decision.

MDER Program

I next turn to the setting of ex post renegotiation and forcing contracts. This
is the standard program of mechanism design with ex post renegotiation. We can
assume that the mechanism specifies “adoption of the advertisement package” when
the report profile is (H,H) and when it is (L,L).13 Furthermore, it is easy to verify
13Any incentive-compatible mechanism that specifies “no adoption” when the report profile is

(H,H) will be renegotiated in the H state. One can alter the mechanism so that the renegotiated
outcome is specified for (H,H), without affecting the incentive conditions. This is the “renegotiation-
proofness principle” (Dewatripont 1989, Hart and Tirole 1988, Laffont and Tirole 1990, Brennan
and Watson 2001) in action.
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that the incentive constraints are most relaxed if “no adoption” is specified for report
profile (L,H) and “adoption” is specified for profile (H,L). Note that the mechanism
would be renegotiated in state H in the off-equilibrium case in which the buyer reports
L while the seller reports H. Incorporating the renegotiation activity, a game form
implies the following message games in the two states.

– ,  p pHH HH – ,  p pHL HL

– ,  p pLH LH – ,  p pLL LL

5 – ,  3 + p pHH HH 5 – ,  3 + p pHL HL

4 – ,  4 + p pLH LH 5 – ,  3 + p pLL LL

H

L

H L H L

H

L

B
S

B
S

Message game in state L Message game in state H

As in the previous subsection, pθθ denotes the transfer from the buyer to the seller
that is specified for message profile (θ, θI).
For truthful reporting to be a Nash equilibrium in each state, it must be that

pLH ≤ pLL ≤ pHL, 5 − pHH ≥ 4 − pLH , and 3 + pHH ≥ 3 + pHL. Combining these
inequalities yields

pLL + 1 ≥ pHH ≥ pLL.
The set of implementable value functions for the MDER program is thus:

V EPF = v :{H,L}→ R2 v(L) = (α,−α), v(H) = (5 + α− β, 3− α+ β),

for any α ∈ R and β ∈ [0, 1] . (6)

Note that the opportunity to renegotiate at Date 5, specifically following out-of-
equilibrium message profiles, causes a refinement in the set of implementable values
relative to the case of interim renegotiation. In both the seller-effort and buyer-effort
versions of the example, there are values of c for which efficiency requires that effort
be exerted yet there is no mechanism that induces this goal.

Trade Actions as Options

I next show that, with ex post renegotiation, the set of implementable value func-
tions significantly expands when parties depart from forcing contracts and, instead,
use trade actions as options. Suppose that at Date 1 the parties write the following
contract: If the buyer adopts the advertisement, then he must pay pI + β to the
seller; if the buyer does not adopt, then he pays pI; further, the external enforcer is
instructed to ignore messages sent at Date 4. For β ∈ (0, 5), this is not a forcing
contract–that is, it neither compels the buyer to adopt the advertisement in both
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states, nor compels the buyer to not adopt the advertisement in both states. Instead,
this is an option contract, but one that uses the buyer’s trade decision, rather than
the buyer’s message, as the way to exercise the option. With β ∈ [0, 5], the buyer has
the incentive to adopt the advertisement in state H and not to adopt in state L.
From Date 6, this contract yields a payoff vector of (5− pI−β, 3+ pI+β) in state

H and (−pI, pI) in state L. Because the contract leads to the efficient trade action
in each state, it would not be renegotiated at either Date 5 or Date 3. The contract
thus implements value (5− pI − β, 3 + pI + β) in state H and (−pI, pI) in state L.
Clearly, by using the trade decision as an option, the parties are able to reduce

the detrimental effect of renegotiation at Date 5. Because the trading opportunity is
nondurable, there is no way for the parties to reverse it through renegotiation after
Date 6. The parties could use a more complicated contract that involves transfers
contingent on both trade actions and messages. However, in this example, more com-
plicated contracts cannot improve on the scope of the simple option scheme described
in the preceding paragraph.14 Thus, the set of implementable value functions in the
case of ex post renegotiation is:

V EP = v :{H,L}→ R2 v(L) = (α,−α), v(H) = (5 + α− β, 3− α+ β),

for any α ∈ R and β ∈ [0, 5] . (7)

With ex post renegotiation, the supported range of β is sufficient to give the seller
the incentive to exert effort when it is efficient to do so. To see this, note that
v2(H) − v2(L) = 8 when one selects β = 5. On the other hand, in the version of
the model in which the buyer makes the investment, there are still values of c under
which the buyer cannot be given the incentive to exert effort.

Insights from the Example

Note that, in the case of ex post renegotiation, there is a discrepancy between
the set of implementable value functions and the strictly smaller set identified by
the MDER program. The MDER program misses how trade decisions can be used
as options, precisely because the MDER program treats trade actions as part of the
abstract, public “outcome.” For this reason, we should reject the MDER program
as incorporating implicit assumptions about contractual incompleteness. We should
instead focus on structured models that incorporate the technology of trade and
enforcement, and, where appropriate, on the MDIR program.
In response to my point, a mechanism design theorist might be inclined to conclude

that I am mis-applying the MDER program. The theorist would argue that, if we

14One can easily verify this by considering message games as in the previous subsections and
examining non-forcing transfer functions for message profiles (H,L) and/or (L,H).
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think the trading opportunity is nondurable (and so trade decisions can be used
as options without being reversed by renegotiation), then the set of implementable
values is actually characterized by the MDIR program. Segal and Whinston (2002)
and others take this position. However, the argument is flawed because, clearly,
the MDIR program actually does not characterize the set of implementable value
functions in the setting of ex post renegotiation (compare Expressions 5 and 7).
The key issue is that, in designing option contracts, the fixed technology of trade

is not as flexible as are messages. Thus, neither the MDER nor the MDIR programs
accurately model Example 1 in the setting of ex post renegotiation. The renegotiation
opportunity, in a sense, occurs “in the middle of the mechanism.” To analyze this
renegotiation opportunity, one must examine the structured model that explicitly
accounts for the technology of trade and external enforcement. In fact, mechanism
design methodology is applicable, but it relies on precise modeling of the technology
of trade. In particular, one cannot view the “outcome” as merely a specification of the
transfer and the trade action. Rather, an “outcome” must indicate the equilibrium
trade actions and transfers that result in the different states, given the technology of
trade and the instructions for the external enforcer.
Some researchers may claim that the MDER program accurately describes the

scope of contracting in settings with renegotiation and durable trading opportunities,
where parties always have the opportunity to reverse a trade decision. The analysis in
Watson (2003) shows that this, too, is an erroneous line of thinking. Watson (2003)
studies an infinite-period version of the model herein, where trade actions chosen
in one period can be reversed in future periods. With durability and reversibility,
stationary contracts are shown to be optimal. An implication is that, when forcing
contracts are used, the problem of contracting in an infinite-period relationship is
equivalent to the problem studied here. To justify use of the MDER program, one
must assume that long-term contracts cannot be written.

5 General Inclusion Results

The following result generalizes the weak inclusion relations that Example 1 exhibits.

Theorem 1: V EPF ⊂ V EP ⊂ V I ⊂ V N.
Proof: The relation V EPF ⊂ V EP follows from Lemmas 5 and 6. By the definition

of Z, we see that Z ⊂ W , so condition (ii) in Lemma 5 implies condition (ii) in
Lemma 2. Further, condition (i) in Lemma 5 implies condition (i) in Lemma 2,
because the maximum joint value exists in every state. Thus, the conditions of
Lemma 5 imply those of Lemma 4 and, as a result, V EP ⊂ V I. Finally, V I ⊂ V N is
clear from Lemma 4. Q.E.D.
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I next address the question of under what conditions the inclusion relations are
strict. First consider the issue of whether it is appropriate to focus on forcing contracts
in settings with ex post renegotiation. There is no loss in limiting attention to forcing
contracts if and only if V EPF = V EP, in which case I call the MDER program justified.

Theorem 2: V EPF = V EP if and only if, for every pair of states θ, θI ∈ Θ and every
ẑ ∈ Z, there is an ex post renegotiation outcome z̃ ∈ ZF such that z̃1(θ) + z̃2(θI) ≤
ẑ1(θ) + ẑ2(θ

I).

Proof: Under the hypothesis of the theorem, condition (ii) of Lemma 6 implies
condition (ii) of Lemma 5, proving V EP ⊂ V EPF. This and Theorem 1 yield the
result. Q.E.D.

The intuition behind this result concerns the punishment outcome ẑ that is spec-
ified for a particular message profile (θ, θI) with θ W= θI. This outcome must deter
player 1 from declaring “θ” in state θI and it must deter player 2 from declaring “θI”
in state θ. The total punishment level is ẑ1(θ) + ẑ2(θ

I). Lower punishment levels
support a greater range of value functions.
The sets V EP and V I can be compared in a similar way.

Theorem 3: V EP = V I if and only if, for all θ, θI ∈ Θ and every ŵ ∈ WF, there is
an ex post renegotiation outcome ẑ ∈ Z such that ẑ1(θ) + ẑ2(θI) ≤ ŵ1(θ) + ŵ2(θI).
Proof: By Lemmas 3 and 4, we can assume that ŵ ∈ WF in the interim-

renegotiation implementation condition for any given message profile (θ, θI) with
θ W= θI. Then, under the hypothesis of the theorem, the conditions for implementation
with ex post renegotiation (Lemma 5) imply the conditions for implementation with
interim renegotiation (Lemma 4), proving V I ⊂ V EP. This and Theorem 1 yield the
result. Q.E.D.

Results For a Class of Trade Technologies

I elaborate on Theorems 2 and 3 by considering the general class of trading envi-
ronments in which player 1 alone makes the trade decision (player 2’s trade action is
trivial). I make several assumptions that put some structure on the technology.

Assumption 1: A2 = ∅, so A = A1. Also, A and Θ are compact subsets of R, and
u1(·, θ) and u2(·, θ) are continuous functions of a for every θ ∈ Θ.

Define U(a, θ) ≡ u1(a, θ) + u2(a, θ). Define a ≡ minA, a ≡ maxA, θ ≡ minΘ,
θ ≡ maxΘ. Assumption 1 guarantees that these exist and that maxa∈A U(a, θ) exists.
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Assumption 2: U(·, θ) is quasiconcave and has a unique maximizer, for every θ ∈ Θ.

Define a∗(θ) ≡ argmaxa∈AU(a, θ).

Assumption 3: u1 is strictly supermodular, meaning that u1(a, θ) − u1(aI, θ) >
u1(a, θ

I)− u1(aI, θI) whenever a > aI and θ > θI.

Assumption 4: There is a state θ∗ > θ such that a∗(θ∗) > a.

Assumption 5: Player 1’s bargaining weight is positive: π1 > 0.

Assumption 2 means that U is increasing below, and decreasing above, its maxi-
mum. Assumption 3 means that, without considering transfers, player 1’s marginal
value of increasing his trade action rises with the state; that is, higher trade actions
are more attractive to him as the state increases. In words, Assumption 4 says that
there is some non-minimal state in which the efficient trade action is greater than the
minimum action. A variation on Assumption 4 is:

Assumption 4I: There is a state θ∗ < θ such that a∗(θ∗) > a.

I consider these technical assumptions to be quite weak, in that many interesting
examples satisfy them. Example 1 satisfies all of these assumptions, as does Exam-
ple 2 in the next section. More generally, a wide range of buyer/seller relationships
fit in. Specifically, suppose a is the number of units of an intermediate good to be
transferred from the seller to the buyer. The buyer’s benefit of obtaining a units in
state θ is B(a, θ); the seller’s cost of production and delivery is C(a, θ). Suppose
that B is increasing and concave in a and that C is decreasing and concave in a. If
choosing a is the buyer’s decision (he selects how many units to install, for example),
then u1 ≡ B and u2 ≡ C. If the seller chooses a (she decides how many units to
deliver, say), then u1 ≡ C and u2 ≡ B. In either case, Assumptions 1 and 2 are
satisfied. Assumption 3 adds the weak monotonicity requirement on the payoff of
the player who selects a. Assumptions 4 and 4I require that it is efficient to trade a
positive amount in some non-minimal state and in some non-maximal state.

Theorem 4: Under Assumptions 1-5, V EPF W= V EP and so the MDER program is
not justified. Furthermore, under Assumptions 1-3 and 4I, V EP W= V I.

The proof, which is rather involved yet instructive, is in Appendix B. In the first
part of the proof, I show how the punishment level ẑ1(θ) + ẑ2(θ

I) can be written as

u1(a, θ) + π1R1 + u2(a
I, θI) + π2R2 + σ,
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where (i) a and aI are the trade actions that player 1 is induced to select in states
θ and θI, respectively; (ii) R1 and R2 are the renegotiation surpluses in these states
and given these actions; and (iii) σ is a “slack” term on the difference in transfers
between the states that the equilibrium conditions imply (so σ is a function of the
states and actions). The slack term is zero in a forcing contract, where a = aI. I show
that, under the assumptions, one can depart from a = aI in a particular way so that
the slack term will decrease more than the sum of the other terms increases, proving
the first claim of the theorem via Theorem 2. The second claim is proved using the
same expression for the punishment level and invokes Theorem 3.15

6 Two More Examples

To further demonstrate how the proper accounting of the technology of trade improves
our understanding of contractual imperfections, I present two more examples.

Example 2: Efficient Cooperative Investments

Consider a contractual setting with what Che and Hausch (1999) call “cooperative
investments” (more descriptively, cross investments). A buyer (player 1) and a seller
(player 2) contract to trade one unit of an intermediate good. At Date 2, the seller
makes an investment θ ∈ [0, θ], at immediate cost θ, which enhances the buyer’s value
of trade, denoted B. The trade action at Date 6 is either “trade” (a = 1) or “not
trade” (a = 0). There are two versions of the model; in one version, the buyer makes
the trade decision, whereas, in the other version, the seller makes this decision. Payoffs
are defined by u(0, θ) = (0, 0) and u(1, θ) = (B(θ),−ε[θ− θ]) for every θ, where ε is a
small positive number. The term ε[θ−θ] is the seller’s delivery cost and is decreasing
in θ. Note that I do not include the seller’s investment cost in the specification of u.
I assume that B is differentiable and concave, with BI(θ) > ε[θ − θ], BI(0) > 1, and
B(θ) < 1. In this example, trade is always ex post efficient. The efficient investment
θ∗ solves maxθ∈[0,θ]B(θ) − (1 − ε)θ and is interior. I consider the setting of ex post
renegotiation and assume that the players have equal bargaining weights.
Che and Hausch (1999) study the forcing contract set V EPF and they show that, in

settings with cross investments, the hold-up problem severely restricts implementabil-
ity and leads to inefficiently low investment. In fact, for the model here with ε suffi-
ciently close to zero, they prove that the “null contract”–forcing no trade, regardless

15The assumptions can be relaxed to some extent at the cost of added complexity and logical
steps. For example, one can easily extend the result to more a general setting in which A and Θ are
unbounded. Also, we do not have to assume that Θ is a subset of R. The arguments in the proof
go through without modification if there is a subset of Θ that is isomorphic to a compact subset of
R, such that the assumptions are satisfied using the mapping from R to Θ. We can also dispense
with the assumption that U has a unique maximizer.
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of the messages–is best. Through renegotiation, it gives the seller the incentive to
invest at the inefficient level that solves maxθ∈[0,θ]B(θ)/2− ε[θ − θ]/2− θ.
Explicitly accounting for the technology of trade, however, reveals that Che and

Hausch’s conclusions are very sensitive to the trade technology. Consider the version
of the example in which the buyer makes the trade decision and let value function v∗

be defined by v∗2(θ) = B(θ
∗)− ε[θ− θ∗] for all θ ≥ θ∗ and v∗2(θ) = B(θ)/2− ε[θ− θ]/2

for θ < θ∗. The following mechanism implements v∗ with ex post renegotiation. The
parties direct the external enforcer to ignore messages and to compel a transfer of
B(θ∗) from the buyer to the seller if and only if the buyer accepts delivery; otherwise,
there is no transfer. Clearly, with this contract, the buyer will accept delivery if and
only if θ ≥ θ∗. If the seller selects θ ≥ θ∗ at Date 2, then the parties would not
renegotiate; on the other hand, the parties would renegotiate and split the surplus of
B(θ)− ε[θ − θ] if the seller chooses θ < θ∗. Thus, v∗ is implemented. At Date 2 the
seller solves maxθ∈[0,θ] v

∗
2(θ)− θ, and the solution is the efficient investment θ∗.

In the version of the example in which the seller makes the trade decision, Che
and Hausch’s conclusions are valid. To see this, note that player 2’s incentive to invest
is heightened by making v2(θ) − v2(θI) large for θ > θI, which means v1(θ) + v2(θI)
is low. With reference to the condition of Lemma 5, we thus want the punishment
level ẑ1(θ) + ẑ2(θ

I) to be small. In a non-forcing contract, the seller can be given the
incentive to trade in state θ and not trade in state θI if and only if θ ≥ θI. However, it
is not difficult to verify that such a contract produces a higher level of ẑ1(θ) + ẑ2(θ

I)
than does the contract that forces no trade.
This example satisfies Assumptions 1-5 and 4I in the previous section, which

implies that V EPF W= V EP W= V I. That Che and Hausch’s conclusions hold in one
version of the example is due to the nature of investment (that the seller makes it).
In other words, the added implementability afforded by V EP relative to V EPF does
not help increase the seller’s incentive to invest in the particular case in which the
seller makes the trade decision.

Example 3: Complexity and Hold-up

Next consider an example along the lines of Segal (1999) and Hart and Moore
(1999). This example will reiterate these authors’ main point–that hold-up problems
can exist in cases of “complex, pure self investment”–and show that the insight is
still valid when one properly accounts for the technology of trade. A buyer (player 1)
and a seller (player 2) contract to trade one unit of an intermediate good. As with
the previous example, the state represents the seller’s Date 2 investment. The seller
can either invest “high,” which yields state H, or invest “low,” yielding state L. The
high investment entails a cost c, which is immediately paid by the seller and is not
included in the u specification below. Low investment is costless.
The buyer makes the trade decision at Date 6, which is either ah or al. Function
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u is defined by: u(ah,H) = (10, 0), u(al,H) = (22,−22), u(ah,L) = (0, 0), and
u(al,L) = (10,−8). This example exhibits pure self investment in that, if the optimal
trade action is chosen (ah in state H, al in state L) then the seller’s investment would
affect only his own cost (0 in state H, 8 in state L). However, the environment is
complex because the seller’s investment affects the buyer’s value when the suboptimal
trade decision is made. Assume that c ∈ (0, 8), which means that high investment
is efficient. Also assume that the players can renegotiate ex post and that the buyer
has all of the bargaining power during renegotiation.
The analysis of forcing contracts runs as follows. By the revelation principle and

the renegotiation-proofness principle, one can focus on contracts that force ah at price
pH when the message profile is (H,H), and force al at price pL when the message profile
is (L,L). The contract specifies either ah or al when the message profile is (L,H)–that
is, when the buyer reports L and the seller reports H. Consider these cases separately.
First, suppose that the contract forces ah at price p̂ when the message profile is

(L,H). For truthful reporting to be an equilibrium of the message game in both states,
it must be that player 1 has no incentive to send message L in state H and player 2
has no incentive to send message H in state L. If player 1 deviates in state H, then
there would be no renegotiation (because ah is still specified). Player 1 thus reports
truthfully in state H if and only if

10− pH ≥ 10− p̂.
If player 2 deviates in state L, then the players would renegotiate the contractually-
specified trade action, but player 1 would get all of the surplus. Player 2 thus reports
truthfully in state L if and only if

pL − 8 ≥ p̂.
Combining the two inequalities yields the constraint pL ≥ pH + 8.
Second, suppose that the contract forces al at price p̂ when the message profile

is (L,H). In this case, renegotiation would occur if player 1 reports L in state H, but
renegotiation would not occur if player 2 reports H in state L. Equilibrium conditions
for the message game are

10− pH ≥ 22− p̂+ 10
and

pL − 8 ≥ p̂− 8,
which simplify to pL ≥ pH + 22.
Clearly, in both cases player 2’s payoff in state L must be at least as high as is his

payoff in state H, which means no forcing contract induces the seller to invest high.
In fact, with ex post renegotiation, no contract (forcing or non-forcing) can induce
high investment.
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To see why non-forcing contracts cannot improve on forcing contracts in this
example, consider the scope of non-forcing contracts. Suppose that, given a particular
message profile, the contract specifies a price of ph if the buyer chooses trade action
ah and a price of pl if the buyer chooses trade action al. This is necessarily a forcing
contract either if pl − ph > 12 (in which case player 1 has the incentive to choose ah
in both states) or if pl − ph < 10 (in which case player 1 has the incentive to choose
al in both states). If pl − ph ∈ [10, 12] then player 1 has the incentive to select ah in
state L and to select al in state H. There are no values of pl and ph that give player 1
the incentive to select ah in state H and al in state L.
Thus, there is only one type of non-forcing contractual provision: that which has

pl − ph ∈ [10, 12]. This leads to outcome w defined by w(H) = (22− pl, pl − 22) and
w(L) = (−ph, ph). The implied ex post renegotiation outcome is z, where z(H) =
(22−pl+10, pl−22) and z(L) = (2−ph, ph). If this contractual provision is specified
for the message profile (L,H) then equilibrium conditions for the message game are

10− pH ≥ 22− pl + 10

and
pL − 8 ≥ ph.

Combining these inequalities with pl − ph ∈ [10, 12], we obtain pL ≥ pH + 18. Again,
player 2’s payoff in state L must be higher than it is in state H, implying that he does
not have the incentive to invest high.
By ordering ah and al so that ah is “lower” than al, this example satisfies As-

sumptions 1-5, but it does not satisfy Assumption 4I. We have V EPF W= V EP, but the
difference between these sets has to do with the lower bound of pH − pL, whereas it
is the upper bound of pH − pL that is critical for the seller’s investment incentive.
The upper bound is −8 when there is ex post renegotiation, with both forcing and
non-forcing contracts.

7 Conclusion

I have demonstrated that, to appropriately study institutional constraints, the analy-
sis of contract must start with an understanding of the technology of trade. When
parties can renegotiate just before making trade decisions, this technology greatly
affects implementability. Thus, researchers should take a structured, game-theoretic
approach to studying contract and enforcement. One must be clear about exactly
what is verifiable, the nature and timing of inalienable actions, and how external
enforcement occurs.
My analysis here has implications for the applicability of popular mechanism de-

sign models. Some theorists, including Segal and Whinston (2002), have stated that
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future work in applied contract theory will be geared toward discovering whether
it is the MDER or MDIR program that is the “right” model of any particular set-
ting. I find that this objective is in error. The MDER program under-represents the
true scope of implementability. Contracting parties can often overcome contractual
imperfections–to motivate efficient cross investment, for example–even when they
have the opportunity to renegotiate just before making trade decisions. Finally, I
emphasize that the mechanism design methodology is still applicable and useful, as
long as one correctly defines the outcome set. Unfortunately, differential methods
may be less applicable than is currently thought, because the trading game does not
generally exhibit the constant-sum condition that underlies the analysis of Segal and
Whinston (2002).
I conclude that the MDER program makes hidden assumptions of contractual

incompleteness. It can be justified on the basis of a restriction to forcing contracts or,
as noted inWatson (2003) in the context of durable trading opportunities, a restriction
to short-term contracts. I can think of no ready defense of these incompleteness
assumptions, just as I see no reason to believe that parties would limit themselves to
forcing or short-term contracts.16

My analysis also has practical relevance. In the least, it should remind us that, to
some extent, messages are a theoretical construct. While we sometimes do observe
contracts that require parties to send verifiable messages (in real estate transactions,
for example), we also often see option contracts that merely specify transfers on the
basis of productive actions.
There are myriad promising opportunities for fruitful research on contracting with

institutional constraints. Given the importance of the technology of trade, further
analysis of specific technologies and their relation to unverifiable activity are in or-
der. This will provide a theoretical base for empirical analysis of contractual form

16My message can be further illustrated in the context of Edlin and Hermalin’s (2000) debate
with Nöldeke, G. and K. Schmidt (1998). In their discussion of whether a party could let an
option expire and then renegotiate from scratch, Edlin and Hermalin appeal to the “outside option
principle,” whereby the outside option implies an inequality constraint on the outcome of negotiation
rather than serving as the disagreement point. While there are bargaining models that justify
treating outside options in this way, these models blur the distinction between verifiable trade actions
and noncontractible renegotiation opportunities. If parties can exercise trade-based options in the
process of renegotiating, then either trade actions are really not fully verifiable or the opportunity
to renegotiate can be partially controlled by the external enforcer (because he can observe a party’s
actions whenever an option can be exercised–which, for example, would be in every round of an
alternating-offer bargaining game). Edlin and Hermalin may have one of these justifications in mind,
or they may be thinking of an institutional constraint that limits the time in which an option may be
exercised. In any case, I assert that one must model the timing of renegotiation and trade in order
to understand exactly what is being assumed. Note that, in my framework, the non-contractible
renegotiation opportunity is separated in time from the verifiable trade actions, so that a party cannot
delay the trading opportunity by refusing to make an agreement at the time of renegotiation. Other
modeling approaches may be useful for comparison.
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and the implications of contractual imperfections. It will also be instructive to exam-
ine settings with partial verifiability, expanding on the analysis of Hart and Moore
(1988), and to look at how legal institutions constrain the writing and enforcement
of contracts.

A Appendix: Proofs of the Lemmas

Proof of Lemma 1: The result follows from the fact that one can add a constant
transfer t ∈ R2

0 to any given function ŷ without altering the players’ incentives in the
trading game in any state. Q.E.D.

Proof of Lemma 2: For any direct-revelation mechanism (Θ2, f), define w(θ1,θ2) ≡
f(θ1, θ2) for all θ1, θ2 ∈ Θ. Observe that truthful reporting is a Nash equilibrium
if and only if w

(θ,θ)
1 (θ) ≥ w

(θ1,θ)
1 (θ) and w

(θ,θ)
2 (θ) ≥ w

(θ,θ2)
2 (θ), for every θ ∈ Θ and

all θ1, θ2 ∈ Θ. Combining this fact with the definition of implementability implies
that v is implementable if and only if condition (i) of the lemma holds and, for every
pair of states θ, θI ∈ Θ, there is an outcome w̃ ∈ W such that v1(θ) ≥ w̃1(θ) and
v2(θ

I) ≥ w̃2(θI). Lemma 1 implies that v1(θ) ≥ w̃1(θ) and v2(θI) ≥ w̃2(θI) hold for
some w̃ ∈ W if and only if condition (ii) of the lemma is true. That V N is closed
under constant transfers also follows from Lemma 1. Q.E.D.

Proof of Lemma 3: Suppose that (Θ2, g) implements v. We can assume that
M = Θ2 by the revelation principle. For every message profile m, write âm and ŷm

as the functions that support g(m) as described in Equation 1. That is, ŷm(a) is the
transfer specified for message m and trade action a; âm(θ) is the equilibrium action
profile in state θ following message m.
Define mechanism (Θ2, f) as follows. For every message profile (θ1, θ2), the ex-

ternal enforcer is directed to force the action profile (â
(θ1,θ2)
1 (θ1), â

(θ1,θ2)
2 (θ2)) and the

transfer ŷ(θ1,θ2)(â
(θ1,θ2)
1 (θ1), â

(θ1,θ2)
2 (θ2)). Players are given the incentive to select the

assigned trade action by the threat of severe punishment for any deviation; recall the
construction discussed in the text. This forcing contract yields outcome w(θ1,θ2) that,
written in terms of the functions supporting (Θ2, g), has the following payoff vector
in state θ:

w(θ1,θ2)(θ) = u(â
(θ1,θ2)
1 (θ1), â

(θ1,θ2)
2 (θ2), θ) + ŷ

(θ1,θ2)(â
(θ1,θ2)
1 (θ1), â

(θ1,θ2)
2 (θ2)).

Define f(m) ≡ wm for every m ∈ Θ2.
Note that f(θ, θ)(θ), which we can write as w(θ,θ)(θ), is equal to g(θ, θ)(θ). To

complete the proof of the lemma, we must show that truthful reporting is a Nash
equilibrium of the message game in every state. Suppose that, in state θ, player 1
deviates by reporting θ1 while player 2 reports θ. Then player 1 gets a payoff of

w
(θ1,θ)
1 (θ) = u1(â

(θ1,θ)
1 (θ1), â

(θ1,θ)
2 (θ), θ) + ŷ(θ1,θ)(â

(θ1,θ)
1 (θ1), â

(θ1,θ)
2 (θ)),
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which is weakly less than

u1(â
(θ1,θ)
1 (θ), â

(θ1,θ)
2 (θ), θ) + ŷ(θ1,θ)(â

(θ1,θ)
1 (θ), â

(θ1,θ)
2 (θ))

because â(θ1,θ)(θ) is a Nash equilibrium of the trading game �A, u(·, θ) + ŷ(θ1,θ)(·)X.
But this last value is exactly player 1’s expected payoff conditional on message profile
(θ1, θ) in state θ, under mechanism (Θ2, g). Write this payoff as g(θ1, θ)1(θ). It, in
turn, is weakly less than g(θ, θ)1(θ), the payoff for player 1 when both players report
truthfully in state θ. Thus, for mechanism (Θ2, f), we have f(θ1, θ)1(θ) ≤ f(θ, θ)1(θ).
The analogous calculation holds for player 2, which means truthful reporting is an
equilibrium in every state. Q.E.D.

Proof of Lemma 4: Suppose v is implementable with interim renegotiation and let
vI ∈ V N be a value function that satisfies the expressions in Definition 3. Obviously,
v is efficient in every state, so v1(θ) + v2(θ) = γ(θ) for every θ ∈ Θ. By Equation 4,
v satisfies condition (i) of Lemma 2. Furthermore, v(θ) ≥ vI(θ) in the vector sense,
for every θ; thus, condition (ii) of Lemma 2 is also satisfied, implying v ∈ V N. To
prove the “sufficiency” direction of the lemma, simply note that v1(θ) + v2(θ) = γ(θ)
implies r(v, θ) = 0, so, by Definition 3, V I ⊂ V N. The last claim of the lemma follows
from Lemma 1. Q.E.D.

Proof of Lemma 5: Lemma 1 implies that Z is closed under constant transfers.
Since the maximum joint value exists in every state, condition (i) holds if and only
if, for every θ ∈ Θ, there is an outcome z ∈ Z such that z(θ) = v(θ) for every θ ∈ Θ.
The rest of the proof follows the proof of Lemma 2 with Z in place of W . Q.E.D.

Proof of Lemma 6: Recognizing that ZF ⊂ Z and ZF is closed under constant
transfers, this lemma is proved in the same manner as was Lemma 5. Q.E.D.

B Appendix: Proof of Theorem 4

I first prove the claim about the relation between V EPF and V EP. The method
involves characterizing how non-forcing contracts can be used to induce player 1 to
select different actions in different states. This enables the problem of finding a
punishment outcome to be written in terms of the trade actions that are selected in
two states. I then invoke Theorem 2.
Consider outcomes (state-contingent payoffs from Date 6). For any given transfer

function ŷ, the following are necessary conditions for player 1 to select trade action
a in state θ and action aI in state θI:

u1(a, θ) + ŷ1(a) ≥ u1(aI, θ) + ŷ1(aI) and
u1(a

I, θI) + ŷ1(aI) ≥ u1(a, θI) + ŷ1(a). (8)
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Transfer function ŷ can be specified so that player 1 is harshly punished for selecting
any trade action other than a or aI. Then, in every state, either a or aI maximizes
player 1’s payoff from Date 6 and we have an equilibrium. Thus, we have:

Fact 1: Expression 8 is necessary and sufficient for the existence of functions ŷ :A→
R2
0 and â :Θ → A such that (i) â(θ) is a Nash equilibrium of �A,u(·, θ) + ŷ(·)X, for

every state θ, and (ii) â(θ) = a and â(θI) = aI.

Expression 8 yields two other useful facts as well. First, by summing the in-
equalities, we see that there are values ŷ(a), ŷ(aI) ∈ R2

0 that satisfy (8) if and only
if

u1(a, θ)− u1(aI, θ) ≥ u1(a, θI)− u1(aI, θI). (9)

Assumption 3 then implies:

Fact 2: If θ > θI then Inequality 9 holds if and only if a ≥ aI. If θ < θI then
Inequality 9 holds if and only if a ≤ aI.
In words, this means that player 1 can only be given the incentive to choose greater
trade actions in higher states.
For any two states θ, θI ∈ Θ, define

E(θ, θI) ≡ {(a, aI) ∈ A2 | Inequality 9 is satisfied.}.

Also, for states θ, θI ∈ Θ and trade actions a, aI ∈ A with (a, aI) ∈ E(θ, θI), define

Y (a, aI, θ, θI) ≡ {ŷ :A→ R2
0 | Inequality 8 is satisfied.}.

Expression 8, combined with the identity ŷ1 = −ŷ2, implies:
Fact 3: Given θ, θI ∈ Θ and a, aI ∈ A, with (a, aI) ∈ E(θ, θI), we have

min
ŷ∈Y (a,a ,θ,θ )

ŷ1(a) + ŷ2(a
I) = u1(aI, θ)− u1(a, θ).

Using Expression 2, any given w ∈W can be written in terms of the trade decisions
and transfers that support it. Specifically, we have w(θ) = u(â(θ), θ) + ŷ(â(θ)) and
w(θI) = u(â(θI), θI) + ŷ(â(θI)), where â and ŷ are the functions that support w in
Expression 2.
For any state θII and trade action aII, define R(aII, θII) to be the renegotiation

surplus if, without renegotiation, player 1 would select aII. That is, R(aII, θII) =
U(a∗(θII), θII)−U(aII, θII). Combining the expressions for w in the previous paragraph
with Fact 1 and the definition of ex post renegotiation outcomes, we obtain:
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Fact 4: Consider any two states θ, θI ∈ Θ and let α be any number. There is an
ex post renegotiation outcome z ∈ Z that satisfies z1(θ) + z2(θ

I) = α if and only if
there are trade actions a, aI ∈ A and a transfer function ŷ such that (a, aI) ∈ E(θ, θI),
ŷ ∈ Y (a, aI, θ, θI), and

α = u1(a, θ) + ŷ1(a) + π1R(a, θ) + u2(a
I, θI) + ŷ2(aI) + π2R(a

I, θI). (10)

In the last line, the first three terms are w1(θ) plus player 1’s share of the renegotiation
surplus in state θ, totaling z1(θ). The last three terms are w2(θ

I) plus player 2’s share
of the renegotiation surplus in state θI, totaling z2(θI).
Our objective is to find the best (minimum) punishment level for states θ and

θI, which means minimizing ẑ1(θ) + ẑ2(θI) by choice of ẑ ∈ Z. To this end, we can
use Fact 3 to substitute for ŷ1(a) + ŷ2(a

I) in Expression 10. This yields the best
punishment level for trade decisions a and aI in states θ and θI, respectively, written

ν(a, aI, θ, θI) ≡ u1(aI, θ) + π1R(a, θ) + u2(a
I, θI) + π2R(a

I, θI). (11)

Assumption 1 guarantees that ν(a, aI, θ, θI) has a minimum by choice of (a, aI) ∈
E(θ, θI). We therefore have:

Fact 5: The minimum punishment level in the setting of ex post renegotiation, minẑ∈Z ẑ1(θ)+
ẑ2(θ

I), exists and is equal to PEP(θ, θI) ≡ min(a,a )∈E(θ,θ ) ν(a, aI, θ, θI).
We obtain a similar characterization of the minimal punishment level for the setting
in which attention is restricted to forcing contracts. The characterization is exactly
as in Fact 5 except with the additional requirement that a = aI.

Fact 6: The minimum punishment level for the MDER program, minẑ∈ZF ẑ1(θ) +
ẑ2(θ

I), exists and is equal to PEPF(θ, θI) ≡ mina∈A ν(a, a, θ, θI).
Observe that, by Theorem 2, V EP = V EPF if and only if PEPF(θ, θI) = PEP(θ, θI)

for all θ, θI ∈ Θ. We can compare the minimization problems to determine if this is
the case. I proceed by focusing on states θ∗ and θ, where θ∗ is a state that satisfies As-
sumption 4. Let b1 denote a solution to the MDER problem mina∈A ν(a, a, θ∗, θ) and
let b2 denote a solution to the MDER problem mina∈A ν(a, a, θ, θ∗). I shall establish
a series of additional claims which, ultimately, demonstrate that V EP W= V EPF.
Consider the implications of b1 < a∗(θ∗). In this case, we know that (a∗(θ∗), b1) ∈

E(θ∗, θ) because θ∗ > θ. Note that if the MDER program is justified, it must be that
ν(b1, b1, θ∗, θ) ≤ ν(a∗(θ∗), b1, θ∗, θ). Some algebraic manipulation reveals this inequal-
ity to be equivalent to U(a∗(θ∗), θ∗) ≤ U(b1, θ∗), which contradicts Assumption 2.
[The algebra uses Assumption 5 to divide by π1; it is also simplified by recalling the
definition of R and by noting that u2(a, θ) − π2U(a, θ) = π1U(a, θ) − u1(a, θ).] A
similar contradiction is produced in the case of b2 > a∗(θ). We thus obtain:
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Fact 7: If V EPF = V EP then b1 ≥ a∗(θ∗) and b2 ≤ a∗(θ).
Next compare, for states θ∗ and θ, the minimum punishment level of the MDER

problem with the value of choosing a = b1 and aI = a in the minimization problem
that defines PEP. Note that (b1, a) ∈ E(θ∗, θ) because θ∗ > θ and b1 ≥ a. If
the MDER program is justified then it must be that ν(b1, b1, θ∗, θ) ≤ ν(b1, a, θ∗, θ).
Algebraic manipulation reveals that this inequality is equivalent to

u1(b
1, θ∗)− u1(a, θ∗)− [u1(b1, θ)− u1(a, θ)] ≤ π1[U(a, θ)− U(b1, θ)].

Presuming that the MDER program is justified, Fact 7 and Assumption 4 imply that
b1 > a. Assumption 3 then implies that the left side of this inequality is strictly
positive, which means U(a, θ) > U(b1, θ). Using Assumption 2, we obtain:

Fact 8: If V EPF = V EP then U(a, θ) > U(a, θ)

We can perform a similar analysis by reversing the order of states θ∗ and θ and
comparing the minimum punishment level of the MDER problem with the value
of choosing a = b2 and aI = a in the minimization problem that defines PEP.
Clearly, (b2, a) ∈ E(θ, θ∗), so if the MDER program is justified then it must be
that ν(b2, b2, θ, θ∗) ≤ ν(b2, a, θ, θ∗). Algebra reveals that this inequality is equivalent
to

u1(a, θ
∗)− u1(b2, θ∗)− [u1(a, θ)− u1(b2, θ)] ≤ π1[U(a, θ

∗)− U(b2, θ∗)]. (12)

By the definition of b2 (solving the minimization problem that defines PEPF), we have
that ν(b2, b2, θ, θ∗) ≤ ν(a, a, θ, θ∗). This inequality is equivalent to

π1[U(a, θ
∗)− U(b2, θ∗)− U(a, θ) + U(b2, θ)]

≤ u1(a, θ∗)− u1(b2, θ∗)− [u1(a, θ)− u1(b2, θ)]. (13)

Combining Inequalities 12 and 13, we get

U(a, θ∗)− U(b2, θ∗)− U(a, θ) + U(b2, θ) ≤ U(a, θ∗)− U(b2, θ∗),

which simplifies to U(b2, θ) ≤ U(a, θ). Recalling that b2 ≤ a∗(θ) (from Fact 7) and
using Assumption 2, we obtain:

Fact 9: If V EPF = V EP then U(a, θ) ≤ U(a, θ)
Facts 8 and 9 provide the contradiction that proves V EPF W= V EP.
I next prove the claim about the relation between V I and V EP. Using the charac-

terization of Lemma 4 to justify limiting attention to forcing contracts (via Lemma 3),
we have:
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Fact 10: The minimum punishment level in the setting of interim renegotiation,
minw∈WF w1(θ)+w2(θ

I), exists and is equal to P I(θ, θI) ≡ mina ∈A u1(aII, θ)+u2(aII, θI).

Observe that, by Theorem 3, V I = V EP if and only if PEP(θ, θI) = P I(θ, θI) for all
θ, θI ∈ Θ. A sufficient condition for V I W= V EP is that, for some θI, a∗(θI) does not solve
mina ∈A u1(aII, θ) + u2(aII, θI). To see why this is the case, take any θ and consider
any solution to the minimization problem that defines PEP(θ, θI); let (b, bI) denote
this solution. Because R ≥ 0, the only way to get PEP(θ, θI) = P I(θ, θI) is if bI solves
mina ∈A u1(aII, θ) + u2(aII, θI) and if R(b, θ) = R(bIθI) = 0. However, if bI solves this
minimization problem then bI W= a∗(θI) and so R(bI, θI) > 0.
Specifically, consider states θ and θ∗, where θ∗ satisfies Assumption 4I. I will show

that a∗(θ∗) does not solve mina ∈A u1(aII, θ) + u2(aII, θ∗). Compare the punishment
level of a∗(θ∗) to that of a, noting that a < a∗(θ∗). Trade action a produces a strictly
lower value if

u1(a, θ) + u2(a, θ
∗) < u1(a∗(θ∗), θ) + u2(a∗(θ∗), θ∗).

Using the identity u2 = U − u1 and rearranging terms, we see that this inequality is
equivalent to

U(a, θ∗)− U(a∗(θ∗), θ∗) < u1(a∗(θ∗), θ)− u1(a, θ)− [u1(a∗(θ∗), θ∗)− u1(a, θ∗)].

The left side of this inequality is strictly negative (by Assumption 4I) and the right side
is strictly positive (by Assumption 3). Thus, a∗(θ∗) does not solve mina ∈A u1(aII, θ)+
u2(a

II, θ∗).
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