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RELATIONAL TEAM INCENTIVES AND OWNERSHIP

LUIS RAYO

ABsTrACT. This paper develops a stylized theory of internal organization of the firm
based on the interplay between explicit (court-enforced) and implicit (self-enforced) in-
centives. The firm is modeled as a team that meets repeatedly, and is confronted with
a problem of moral hazard. Two instruments are used to induce effort: court-enforced
ownership shares over the stream of profits, and self-enforced voluntary transfers con-
tingent on a non-verifiable performance measure. These transfers are sustained by the
surplus created through repeated interaction. I consider several environments differing
in the level of informational asymmetry befween team members. When information is
fully symmetric, ownership shares will be dispersed so that no single player is the full
residual claimant of output, and every player receives implicit incentives. However,
when information is sufficiently asymmetric due to either hidden actions or hidden
information, ownership will be concentrated in the hands of one player to the degree
that she receives no implicit incentives. Moreover, this player can always be charged
with paying all voluntary transfers to the remaining members, and is therefore viewed
as an endogenously chosen principal. Thus, the model endogenizes the principal-agent
relationship which the existing repeated agency literature takes as given, and in this

sense suggests a theory of hierarchy.

1. INTRODUCTION

In market economies, substantial resource allocation occurs within firms. Following
the work of Coase [1937] and Williamson [1975,1985|, much effort has been devoted to
understand the precise means by which firms outperform market contracting. Key to
materializing these efficiency gains is the internal organization of enterprise. Indeed, the
structures of ownership and hierarchy display wide diversity across firms together with

a strong correlation within industries (e.g., Hansmann [1996]), which prompts inquiry

regarding the conditions that favor particular forms of organization.
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2 LUIS RAYO

This paper views organizational design as a response to the problem of incentive cre-
ation, much as Alchian and Demsetz [1972], but takes the position that a primary source
of incentives is the surplus, or “relational capital”, created by the repeated interac-
tion among the members of the firm. Although myriad factors influence organizational
structure, the present analysis focuses on the exploitation of relational capital while ab-
stracting from other well known determinants of organization.! Such an approach allows
for a detailed consideration of the subtleties behind repeated interaction while retaining
tractability. Thus, rather than considering a general theory of the firm, the paper merely
seeks to add a new element to the discussion.

The firm is modeled as a team of infinitely lived players who repeatedly interact with
each other, and are confronted with a problem of moral hazard regarding their lev-
els of effort towards joint production. In the spirit of Alchian and Demsetz [1972]
and Holmstrom [1982], moral hazard arises because efforts are non-contractible due
to a lack of observability by third parties. Joint output (i.e., profits), however, will
be contractible. Moreover, due to the nature of their interaction, team members will
have an informational advantage over courts. In particular, they will publicly observe
a (non-contractible) noisy performance measure. Accordingly, the team will have two
instruments to induce effort: ownership shares and voluntary transfers (e.g., productiv-
ity bonuses). Ownership shares will simply be court-enforced property rights over the
stream of profits.? Voluntary transfers, on the other hand, can be made contingent on the
non-contractible performance measure. As in Bull [1987] and MacLeod and Malcomson
[1989], these transfers will be self-enforced through the use of relational capital.

The analysis is centered around the interplay between these explicit (court-enforced)
and implicit (self-enforced) incentives. In fact, provided there is only a limited amount of
relational capital (e.g., players are impatient), neither type of incentive alone can induce
first-best efforts, which calls for their combined use. Thus, the organizational design
problem concerns the allocation of ownership shares, together with the implicit agreement
to carry out performance payments, in a way that best promotes effort. Formally, this
translates into the dual problem of minimizing the amount of (scarce) relational capital
required to implement the desired effort profile.

The shadow cost of providing implicit incentives stems from their need for relational
capital. In particular, the amount of relational capital demanded to sustain (i.e., self-
enforce) a given contingent performance bonus is equal to the power of such bonus, i.e.,

the difference between its highest and lowest prescribed values. In other words, the

"Most conspicuously risk-sharing, capital raising, hold-up, and collective governance.
2Thus, ownership shares will correspond to a restricted notion of “ownership”: the receipt of residual

earnings. A second notion, that of residual rights of control, will be mostly absent from the analysis

(albeit somewhat captured by the exercise of discretion regarding voluntary transfers).
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power of implicit incentives corresponds to the level of discretion that must be given to
the player ultimately in charge of paying the bonus. Discretion, in turn, will only be
exercised against short-run opportunism to the extent that such player faces a threat
of losing future surplus. Consequently, she must be allocated a corresponding fraction
of relational capital. Ownership shares, on the other hand, can substitute for implicit
incentives and hence save on relational capital. But since shares are limited (e.g., not
every player can be the full residual claimant of earnings) they will be allocated where
they best serve this purpose.

The gist of optimal design is the marginal rate of substitution between ownership
shares and the power of implicit incentives, given the desired effort schedule; i.e., the
rate at which explicit and implicit incentives can be traded off, for each player, while
inducing the same levels of effort. Equivalently, this incentive trade-off represents the
marginal savings in relational capital brought on by increases in ownership shares, and
will hence dictate the distribution of ownership in the dual minimization problem. In
other words, within this dual problem, the incentive trade-off represents the marginal
benefit of allocating ownership in hands of each player, while the (shadow) cost derives
from an adding up constraint that restricts allocated shares to not exceed 100% of
ownership.

A key determinant of the incentive trade-off is the degree of informational asymmetry
between team members. Whenever a player’s deviations are hard to detect by her peers
(e.g., when her work is complex and hard to assess), her implicit incentives must be
high powered, and thus relatively expensive. In addition, when a player’s marginal
contribution to output is high (e.g., when she plays an important role in the firm),
explicit incentives will be particularly effective towards increasing her effort. In this way,
the combination of high difficulty to assess performance and high marginal contribution
to output, for a given player, yields a favorable incentive trade-off and therefore promotes
allocating ownership in her hands.?

The model considers several environments differing in the level of informational asym-
metry between peers. When information is fully symmetric, ownership shares will be
dispersed so that no single player is the full residual claimant of output, and every
player receives implicit incentives. However, when information is sufficiently asymmetric
due to either hidden actions or hidden information, ownership will be concentrated in
the hands of one player to a degree that she receives no implicit incentives. Moreover,

this player can always be charged with paying all voluntary transfers to the remaining

3A high marginal productivity would also promote ownership in a static model (e.g., Holmstrom
[1982]). The novelty of the analysis is in the combination of marginal productivity and informational

asymmetry (in relation to an efficient use of continuation surplus).
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members, and is thus viewed as an endogenously chosen principal. In this sense, the
model endogenizes the principal-agent relationship, suggesting a theory of hierarchy.

Intuitively, the variation in optimal ownership arises from the specific shape taken
by the incentive trade-off across information environments. Under full symmetry, since
any deviation is detectable, if a player deviates she will necessarily be punished, and
therefore she might as well select a global deviation towards her “static best response”
(i.e., her optimal effort level in the absence of implicit incentives). Formally, the binding
effort-incentive constraint will be a global one. In accordance, two effects arise when
increasing ownership in her hands: (i) the incentive to perform any given deviation is
reduced, and (ii) the effort corresponding to the optimal static deviation is increased,
reducing the size of this global deviation. As a consequence, the incentive trade-off,
representing the marginal benefit of increasing ownership, will be positive due to (i),
and decreasing due to (ii). Decreasing marginal returns will then imply that spreading
ownership is beneficial.

In contrast, under sufficient informational asymmetry, small deviations become espe-
cially tempting because they are the hardest to detect: now the binding effort-incentive
constraints will be local. As a result, an increase in ownership has only effect (i) described
above, and therefore marginal returns to ownership will be positive and constant. Conse-
quently, it is optimal to adopt a corner solution that concentrates ownership in hands of a
player with the most favorable incentive trade-off. (The paper also discusses intermediate
cases of informational asymmetry, giving rise to intermediate ownership patterns.)

Section 10 compares the above results with patterns of ownership and hierarchy (within
relatively simple firms) discussed in Alchian and Demsetz [1972], and Hansmann [1996] .
For example, shared ownership and shallow hierarchy are the norm in service partnerships
wherein “the quantity and quality of each individual’s inputs and outputs can be observed
with relative ease”, Hansmann [1996, p. 70]. On the other hand, Alchian and Demsetz
associate concentrated ownership and marked hierarchy (i.e., the “classical firm”) with
an underlying shirking problem that stems from a difficulty to detect behavior.

Section 2 relates the paper to the literature. Section 3 discusses the contracts consid-
ered throughout. Sections 4 through 9 develop the formal analysis. Finally, Section 11

summarizes the results and comments on possible extensions of the model.

2. RELATION TO THE LITERATURE

The paper builds primarily on two strands of the literature, those concerning team
moral hazard (e.g., Alchian and Demsetz [1972], Holmstrom [1982]), and repeated agency
with implicit contracting (e.g., Bull [1987], Spear and Srivastava [1987], MacLeod and
Malcomson [1988,1989,1998], Pearce and Stacchetti [1993], Baker, Gibbons and Murphy
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[1994], Levin [2000], Che and Yoo [2001]).* The distinctive feature of the present model
is that it introduces relational considerations to the team incentive problem while en-
dogenizing the principal-agent relationship, which the above work takes as given (e.g.,
these models include a pre-determined principal who is the residual claimant of output
and is not subject to moral hazard).

The structure of the model is closest to Levin’s [2000] repeated agency, and indeed
capitalizes on many of his results. I extend his work in two dimensions. The first is
relatively straightforward and concerns the addition of multiple agents (Levin [1998] and
Dewhurst [2000] also include results in this direction). The second, and more novel,
involves endogenizing ownership. In this sense, the analysis shifts from the study of
optimal agent compensation to the broader theme of organizational design.

Also related is the literature on ownership and integration spawned by Grossman and
Hart [1986], and Hart and Moore [1990]. They view ownership as the possession of
residual control rights over assets, which play a key role in the allocation of ex-post
bargaining power and thus provide incentives for ex-ante investments.® Their theory
is designed to study the boundaries of the firm, rather than its internal organization,
and thus serves a complementary purpose (while focusing on a complementary notion
of ownership). In this line of inquiry, Baker, Gibbons and Murphy [2001,2002] view the
interplay between explicit and implicit contracts as key to understanding integration.
Their work also stresses the issue of allocating discretion (and trust) across players.”

More generally, the present work fits into the theory of incentives in organizations
(centered around the principal-agent paradigm) that highlights the role of the firm as a
means to induce productivity. Gibbons [1998], and Baron and Kreps [1999] present com-
prehensive discussions of this field. Papers related to particular aspects of the analysis

will be mentioned in turn.

3. CONTRACT SPACE

The paper limits attention to a class of simple contracts with two goals in mind.
The first is tractability. The combination of multi-sided moral hazard and repeated
interaction imposes technical challenges that can nevertheless be surmounted through
suitable simplifications. The second goal is potential applicability. These contracts will

have a clear empirical counterpart, together with multiple practical advantages (in terms

“Tmplicit contracts, and the interaction between implicit and explicit contracts have been widely

studied outside agency relationships, e.g., Klein and Leffler [1981], Bernheim and Whinston [1998].
®In fact, the entitlement to profit streams (i.e., the notion of ownership adopted herein) remains fixed

in their analysis.
fSee also Bragelien [1998] and Halonen [2001].
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of robustness and informational efficiency) that are not embedded in the model but are
nevertheless likely to be relevant for real-world design.

The initial simplification involves the use of stationary contracts, which is without loss
of optimality under the time-invariant environment I employ (see also Levin [2000]).7
Next, explicit contracts are assumed to be linear functions of output = (i.e., profits) of
the form a,;x + w;, where «; is the ownership share in hands of player ¢, and w; is her
court-enforced wage. Notice that proportional profit sharing, a;x, is at the core of every
for-profit enterprise. Moreover, complex sharing rules are rarely observed.®

Finally, implicit contracts will take an additively separable form. Associated to each
player, there will be a noisy performance signal y; that serves as an imperfect measure
of effort. The self-enforced voluntary transfer received by player 7, denoted by 7;, can in
principle be any arbitrary function of the (non-contractible) signal vector y. However, in
the contracts considered, 7;(y) will be of the form: b;(y;) + vi(y—i). That is, the transfer
will only depend on y; through the function b;(-) (e.g., a performance bonus), which
in turn does not depend on other players’ signals y_;. The second function v;(y—_;) will
simply be used to balance the budget across players.?

Additive separability generates the robustness property that each player will exert the
prescribed level of effort regardless of the signal produced by her peers. Equivalently,
observing y_; in advance will not alter player i’s effort incentives. Conversely, whenever
such robustness property is imposed, additive separability can be adopted without loss
of optimality. This kind of robustness will be especially desirable (in a practical envi-
ronment) whenever actions are not taken at precisely the same time, or if the evaluation
period is long, allowing for an information flow concerning peer performance before all
actions are taken. (Further advantages of separability are discussed once the details

become clear.)

"Such invariance, however, will preclude consideration of important matters such as reputation build-
ing and job-training.

8 A notable exception is the use of derivative instruments such as stock options. Consideration of these
instruments is left for future research. However, their use is by no means pervasive, and in any event it

is convenient to first focus on the underlying asset «;.
9Separable transfers rule out relative performance compensation schemes in which marginal incentives

are affected by peer performance. Nonetheless, the main value of such schemes derives from the fact
that, when the uncertainly behind y is not independent across players, measuring relative performance
provides a statistical advantage, granting superior incentives (e.g., Mookherjee [1984]). In the model
below, however, the signals will be independent and in this sense relative performance will be unneces-
sary. Moreover, as discussed at length by Baron and Kreps [1999, pp. 225-31], relative compensation
schemes present abundant practical disadvantages (e.g., they would generally call for a complex process
of handicapping that easily entails haggling and corruptibility), especially pronounced in the present

framework when additive separability is relaxed.
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4. MODEL

N infinitely lived risk-neutral players, denoted by ¢ € {1,2, ..., N}, interact each period
t =0,1,... At date ¢, they take four kinds of actions: (i) the decision whether or not to
participate in joint production for that period; (ii) in case they do participate, the level
of effort exerted towards production; (iii) monetary transfers; and (iv) the selection of
court enforced contracts for the following period.!”

Any subset of players can engage in production at date ¢, and each player that decides
not to participate receives a fixed reservation (flow) payoff @w;(1 — 8), where 6 € (0,1) is
the players’ common discount factor, e.g., the players engaged in production may exclude
the non-participating players from the proceeds of their work. If player ¢ is the only one
that decides to participate, she also receives w;(1—§). However, I assume it is optimal for
every player to participate in production. Consequently, for expositional purposes and
(essentially) without loss of generality, it will be convenient to assume that whenever
at least one player decides not to participate, joint production does not take place and
every player receives her min-max payoff 7;(1 — §).11

Each period has three stages, as shown in Figure 1. In the first, the players simulta-
neously take their participation decisions. Let mt € {0,1} denote player i’s decision to
participate (7t = 1) or not (7t = 0) in period ¢; and define «* := [[, %, which is simply
the joint participation indicator function. If ¢ = (0 each player gets her reservation value
T;(1 — 6) as assumed above. Nature then selects a vector of types 8 € RV, where 6" is
i.i.d. across time, and each entry #% belongs to the interval [0;,6;] € R. Two cases will
be considered: (i) 6! is only privately known to player 4, and (i) 6 is publicly observed.

In the second stage, provided 7t = 1, after (partially or totally) observing nature’s

selection, players simultaneously select effort levels ei € Ry.!2 Each e} will be private

O\ acLeod [1984] uses repeated team production to model a labor cooperative, but allows neither for
an endogenous selection of ownership shares within the team, nor for the use of self-enforced performance

payments.
H)\ore precisely, although production by a proper subset of players may arise in a non-stationary

optimal contract, such contract can be replaced without loss of optimality with a stationary contract
that must involve participation by all players at every ¢ on the path of play (by the above assumption
that full participation is optimal). Furthermore, this contract can always be sustained by threat of full
separation (i.e., the worst possible punishment), and thus partial participation will never play a role. In
this sense, given that I focus on stationary contracts, the above simplification will be (essentially) without
loss of generality (i.e., it will not alter the path of play). On the other hand, if we require renegotiation
proofness (which can be done without loss of optimality as shown below), then any optimal stationary
contract will involve participation by all players for every ¢ and every history. Thus, partial participation

will never play a role, and the simplification will be (fully) without loss of generality.
2Notice that a message stage regarding types 6;, before the selection of e, is ruled out. Allowing for

such message games would raise a broad set of issues beyond the scope of the paper (e.g., truth telling
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FiGure 1. Period ¢ Timing

information, but it will produce a noisy signal y! commonly observed by all players (but
not by courts).

In the third stage, they transfer money and select the court enforced contract for period
t + 1. There will be two kinds of monetary transfers: voluntary and court-enforced. Let
7t w! € R denote the net voluntary and court enforced monetary transfer respectively,
received by 4 in period ¢, and assume a balanced budget: Y, 7¢ < Y.l = 0.13 A
court-enforced contract for period ¢, denoted by <wt, at> , will specify a vector w! of court
enforced monetary transfers conditional on participation (i.e., wages), together with a
vector of ownership shares o. Each o! will represent the fraction of period ¢ output (i.e.,

profits) to which i is entitled, so that of € [0,1] and >, af = 1.1

constraints would need to be added, interacting in non-trivial ways with the effort selection constraints

that follow). In any event, only Theorem 6 below would be affected by type communication.
30ne could, more precisely, specify what transfer is made between each pair of agents. But such

extra detail is unnecessary for the analysis.
Although in principle >, 7¢ may be negative (corresponding to payments to third parties or money

burning), this will not arise in the optimal contracts studied below.
“Court-enforced severance payments and bonding (i.e., payments conditional on no participation)

will be of no use provided they do not alter total reservation surplus >, U.
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The selection of <wt+1,at+1> works as follows. Each player simultaneously proposes
a value for <wt+1,at+1> denoted by T% if they all agree (i.e., TY = ... = T'y;) then
<wt+1,at+1> takes such value, and otherwise it remains equal to the previous period
contract <wt,at> 1% In period ¢ = 0 only the third stage is played, so the game begins
with voluntary transfers and the selection of <w1, a1> .

Provided joint participation takes place, period t joint output is given by ! € R,
a random variable stochastically determined by the effort vector e, and accrues to the
players according to fractions af. The cost of effort for each player is given by c;(e!, 0%) €
R, . Throughout, I assume the expected value of per-period output conditional on effort
levels, E [z | e |, and the cost functions ¢;, do not change across time and satisfy, for all
%

Assumption (A1l):

a. Ez | e] is smooth, strictly increasing, and concave in e.

b. ¢;i(e;,0;) is smooth in both arguments, strictly increasing and strictly convex in e;,
and has decreasing differences in (e;,0;). Also, ¢;(0,0;) =0 for all 6;.

c. Elz|e]—ci(e,b;) — —o0 as e; — oo for all e—; and all 0;.

d. a%c,»(o,?i) < %E x| 0,e_; | for all e_;, and a%ci(o,e,») — 00 as 0; — —00.16

Smoothness is used for analytical convenience. Concavity of E [z | - | and strict con-
vexity of ¢;(-, #;) will imply unique solutions. Decreasing differences for ¢;(-, ) means the
cross-partials dc?/0e;00; are negative (e.g., single-crossing), so that higher types have
a lower marginal cost. (Alc) guarantees that optimal efforts remain bounded. Finally,
(A1d) implies that first-best effort is positive for (at least) the highest type 6;, and zero
for sufficiently low 6;.

1 assume payoffs are quasilinear in money and the cost of effort is additive, so that

the period t expected payoff for player ¢, once nature has selected types, is given by
gf =7t {afE [a: | et] —ci(e Z,Qf —)—wt} +(1-7 )ul(l —9) —{—Tf.

Let u! denote the present value of future payoffs as of the beginning of period ¢ (before

the selection of 8%), i.e.,
o
ul = By Z(ST—tgiT.
T=t

15 Alternatively, it could be assumed that only the agreement of the affected parties is required to
change a contract, but any non-unanimous procedure could be replaced by a unanimous one that uses
the threat of permanent separation if agreement is not reached. On the other hand, the results would
not change if we allowed for explicit contracting over future values of {(w, a) several periods in advance.

6 Although 6; € [0,,0:], T assume c; (e, -) is well defined over R.
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Players will publicly observe the entire history of output, signals y* (and possibly 67),
and all actions except e!. But courts can only verify output levels, monetary transfers,
and the decisions to participate (e.g., employment). Consequently, any actions that are
contingent on ' (and possibly #), can only be enforced through implicit contracts, i.e.,
through equilibria of the repeated game.

In order to allow for a dynamic programming approach (Abreu, Pearce and Stacchetti
[1990]) T will focus on (pure strategy) perfect public equilibria (Fudenberg, Levine and
Maskin [1994]), where the period t actions of each player can only be conditioned on the
commonly observed history, except for effort levels, which can also be conditioned on the
(possibly) private information 6% of that period alone.!” TLet h' denote the commonly
observed history at the beginning of period t. An action profile for player i at time t,

at(+), is a collection of functions

i
(mi(),ei(:), 7i (), Ti () -

Where 7t(-) is a function of hf. el(-) is a function of h?, type 6%, and possibly the
type vector °,. And 7%(-), T%(-) depend on A’ as well as on the period ¢ participation
decisions, output levels, signals v/, and possibly on the vector 8. However, I assume that
the realization of 2 contains no information about e! beyond what is conveyed by y!, and
therefore it will be optimal to restrict attention to contracts that do not condition the
transfers 77 () on 2! (see also Holmstrom [1979] and Shavell [1979]).18 In what follows,
I consider only such contracts.

A strategy for player i, o;, is simply a collection of action profiles, one for each t:
(af(-))zo . A relational contract is a strategy profile o := (01, ...,0n), and we say that a
relational contract is self-enforcing iff it constitutes a Nash equilibrium following every
history (which is equivalent to a perfect public equilibrium given the above restrictions
on the strategy sets).

Section 5 develops some preliminary results that dramatically simplify the analysis.

In particular, the use of stationary contracts will allow us to express the problem of

"One might wonder if an equilibrium that uses mixed and/or private strategies can yield a higher
payoff. However, the only possible gain from randomizations will concern mixtures of effort levels, which
can potentially improve effort-incentive compatibility. In particular, the marginal explicit incentives faced
by player ¢, i.e., O‘iaie,iE [z | es,e—i], can be increased using a lottery over e—; provided this derivative
is convex in e_;. (Coﬁcavity of E [z | - | and convexity of the cost functions will nevertheless make such
randomization costly). Thus, weak concavity of the expected marginal products will provide a sufficient
condition for pure strategies to be optimal, and consequently for public equilibria to convey no loss of
optimality. Randomizations for monitoring purposes of the type considered in Kandori and Obara [2000]
are of no value in the present setup since the public signal y has a product structure (Fudenberg, Levin

and Maskin [1994]).
8The use of & as a possible public randomization device will not be valuable, since adding variability

over voluntary transfers will only make their enforcement more difficult.
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optimal contract design as a “static” problem with an additional dynamic enforcement

constraint, described in Section 6.

5. PRELIMINARIES

As a benchmark, consider a single period of the team game taken in isolation: the
stage game. To fix ideas, suppose 6 is publicly observed. Since there is no future, after
production takes place there is no incentive to make monetary transfers, and therefore
7; = 0 for all 7. Thus, the only source of incentives is ownership a. Denote player i’s

static best responses to e_; by
ef (i, e_;,0;) := arg max {E [z | ei,e_i| —ci(ei,0:)} -

Also let e*(#) represent the unique first-best effort levels given 6 (i.e., those that
maximize joint surplus). Notice that, provided ef(#) > 0 for two or more players,
first-best cannot be achieved in this one-shot game because at least one player will
not receive the full return to her effort. This is a special case of the teams problem
in Holmstrom [1982, Theorem 1|. Finally, observe that no participation in production
always constitutes a Nash equilibrium of the stage game.

We now return to the original infinite horizon game. Since players are always able to

walk away from the relationship, we must have
(P) ub > ; for all 4 and all £.

Namely, the worst possible equilibrium payoffs from any period onward are given by
the present value of the worst stage game Nash equilibrium payoffs @;(1 — ¢). These
inequalities will be referred to as participation constraints (P). Now let 5 := (1-6) >, @,
which represents the total reservation flow surplus. Likewise, let s := (1—§) Y, u! denote
the average per-period surplus from date ¢ onward. (i.e., “s” will be used to denote flow
payoffs, while “u” represents present values.)

Lemma 1 is a straightforward extension of Levin [2000, Theorem 1] to the present
multi-sided moral hazard setup. It states that the joint surplus created by any self-
enforcing contract can be divided arbitrarily across peers provided their participation
constraints are satisfied. Thus, the objective of contract design will be the maximization

of (expected) joint surplus. All proofs are in Appendix 1.

Lemma 1. Suppose some self-enforcing relational contract o generates a total surplus
sY/(1 — &) larger than the reservation surplus &5/ (1 — 8) (from the viewpoint of t = 0).
Then, for any A € [0, 1]V with > i A\ =1, there exists a self enforcing relational contract
0 that generates surplus s°/(1 — 8) and payoffs u) =u; + \; (s° — 65) /(1 = 6).



12 LUIS RAYO

The Lemma implies that the (individually rational) utility possibility frontier is lin-
ear, a consequence of the fact that payoffs are quasilinear in money, and utility can be
transferred using court-enforced payments (which in turn are agreed upon through the
threat of separation). In what follows, in the spirit of Levin [2000] I focus on station-
ary relational contracts, which will turn out to be optimal. A stationary contract will
be defined conditional on no deviations regarding past voluntary transfers and contract

proposals:

Definition 1. A relational contract o is stationary iff
(a) for all t, i, and all histories, T(-) = (w, ) for some (w, ) .
(b) for all t > 1 and all i, conditional on no deviations in past voluntary transfer

and contract proposal stages, we have that al(-) depends neither on h' nor on t, i.e.,
a;(-) = ai(").

Notice that in a stationary relational contract, 7%(-) can still depend on participation
decisions of the current period, on signals y*, and possibly on 6, which will be key for
the creation of incentives. Also, the above definition of stationarity differs from that of
Levin [2000] in the sense that he conditions on no deviations in any past stage (i.e., the
history must be on the equilibrium path). Thus, the above definition is more restrictive.

Lemma 2 establishes the optimality of stationary contracts.

Lemma 2. Suppose an optimal relational contract o exists. Then, there exists an opti-

mal relational contract o that is stationary.

Although the proof of the Lemma is lengthy, the driving force is straightforward.
In a non-stationary contract, incentives will be provided (in part) through contingent
continuation values u§+1 that deter shirking. However, these contingent continuation
values can always be replaced by the combination of voluntary transfers and (possibly)
money burning (i.e., Y, 74 < 0) at the end of each period, while maintaining uﬁ"'l fixed.
In other words, any “punishment” or “prize” following production can be settled on the
spot, instead of through changes in future actions.

In addition to possible money burning, the optimal stationary contract ¢ built in the
proof of the Lemma uses Nash reversion (i.e., permanent separation) to punish deviations
at the money payment stage. Thus, the contract may be susceptible to renegotiation,
which in turn could undermine incentives and potentially destroy the equilibrium. How-
ever, this can be avoided. On one hand, the contracts considered below will never involve
money burning. Informally, this is because voluntary payments will be additively sep-
arable: 7;(y) = b;(y:) + vi(y—i), and the function v;(y_;) can be used to balance the
budget without affecting effort incentives. (In what follows, I drop the redundant period

t superscripts).
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Nash reversion, on the other hand, can also be dispensed with. In fact, it is possible
to replace any optimal stationary contract, that generates continuation surplus levels
Ss/(1 — &) on the path of play, with a new self-enforcing contract that implements the
same actions and that produces surplus levels of at least 65/(1—6) following any history.
This is achieved by punishing any deviation by player ¢, in period ¢, with the following
actions in t 4+ 1: (i) no joint production, (ii) voluntary transfers and the agreement
towards a contract that together produce a continuation surplus s/(1 — §), but only a
continuation value of @; for player ¢ (which is possible due to Lemma 1). The fact that
players must loose one period of production, following a deviation, is needed so that a
new stage of transfers and agreement towards court enforced contracts is reached. Thus,
an amount s of total surplus is destroyed in the process. Nevertheless, it is fair to assume
that any contract renegotiation among players also consumes at least one period, and
therefore the above contract can never be renegotiated in favor of one that produces a

higher surplus.

6. ““STATIC”’ DESIGN

It will be useful to informally describe the structure of the contract design problem,
and discuss the general methodology used in what follows. Once stationary contracts
are employed, the problem faced by the team can be expressed as a static one with an
additional dynamic enforcement constraint. In particular, the problem is to select a sta-
tionary contract o, composed of an effort schedule € (6) , an explicit contract (@, @) , and
contingent voluntary transfers 7(y) (or 7(y, #) if 6 is public information), that maximizes

the joint flow surplus

§:=Fp {E [z ]20)] - e (a(ei),ei)} :
i
subject to three constraints (corresponding to each of the three stages of the period ¢
game).

The first is the participation constraint (P) derived above, i.e., u; > W;, where the
continuation surplus ; is simply the present value of the expected per-period payoff
under o. The second is an effort-incentive constraint, denoted by (E), which requires
that each player i finds it optimal to select the prescribed effort €;(6;) (or €;(#) in the
case of public information) given that: (i) the remaining players select e_;(6_;), and (ii)
voluntary transfers 7(y) are credible. The third is a voluntary transfer constraint that

requires transfers to be credible, denote this constraint by (7).!° In particular, each

9No additional constraint concerning the selection of the period t + 1 court enforced contract will be

required. Due to the threat of separation, constraint (P) will be sufficient for such purpose.
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player ¢ must prefer to pay —7;(y) (whenever 7;(y) is negative) over loosing her future
net surplus ¢ [u; — @;], regardless of the value of y. Thus, the constraint is given by
(T) —inf7;(y) < 6 [u; —w) for all 4.
y
An important simplification will occur when transfers are additively separable, i.e.,
Ti(y) = b (yi)+ vi(y—s), and no money burning takes place. Indeed, the 2- N inequalities

in (P) and (') can be expressed as an aggregate dynamic enforcement inequality:2°

(DE) Z {sup@(y,») - i?if/gi(yi)} < 52 [u; — ;] = T f 5 5—73].

Yi

i
The right hand side of (DFE) is the total amount of relational capital available to
enforce voluntary transfers, while the left hand side is the cost of enforcing the bonus
payments (in terms of relational capital), i.e., the minimum amount of relational capital
needed to enforce them. Now let
Ab; := S;l-p bi(yi) — i;[}if bi(yi),
which will be called the power of player i’s implicit incentives. Informally, this power will
require allocating discretion in hands of the team members j that pay such voluntary
bonus. However, this discretion will only be used as dictated by the contract (and against
short-run opportunism) if these members j fear the loss of future surplus 6 [u; — ;.
Indeed, the higher the power of Ab;, the higher the level of discretion in hands of players
j, and the higher the values of §[t; — ;] must be, thus consuming more relational
capital. Consequently, the cost of implicit incentives is precisely their power.
The next step will be the consolidation of constraints (E) and (DE) into a single rela-
tional capital inequality (RC'), off of which we can read the optimal ownership structure.
This is done in Sections 7 through 9 while specializing the model to different information

environments.

7. SYMMETRIC INFORMATION

Assume the vector of types 6 is commonly observed by all players, and y = e. Namely,

there is no informational asymmetry across peers. As suggested in the previous section,

20To illustrate why this is the case, suppose ;(y—;) is equal to
*Nl_ 1 > bi(y)),
J#i
i.e., the payment of each bonus b (yi) is shared equally across the remaining players (in fact, this as well
as any other linear sharing rule will be optimal). Then, (T') will imply (DF) by adding up both sides
of (T') across 4. Conversely, whenever (DFE) and (E) hold, net future surplus [§ — 3] /(1 — 6) can always
be distributed across players (using w) in a way that both (P) and (7") hold, while maintaining effort

incentives (E). (The formal derivation is shown below.)
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the problem reduces to the static maximization of flow surplus, subject to constraints
(E) (effort incentives) and (DFE) (dynamic enforcement).

Under symmetric information, additive separability of voluntary transfers can be
adopted without loss of optimality, and their use does not change the optimal own-
ership pattern (all formal derivations are in Appendix 1).?! These transfers will depend
on both e and 6: 7;(e,0) = b;(e;,0)+ vi(e_;,0), and only the first function b; will affect

i’s effort incentives. Thus, constraint (E) is given by
(E) B x| e(0)] — ci(@(0),0:) + bi(@(6),0) >
max {aiE @ | es,ei(0)] — ci(e, 0:) + biei, 9)} for all §.

(Where the variables with a “ =7 are those prescribed by the contract.) Constraint

(DE), on the other hand, must account for the variability of #, and in this case becomes

~ ~ )
(DE) sgp; {sgip bi(e;,0) — igfbi(ei,é‘)} < 5 [s—73].

As shown in Proposition 1 below, these two constraints can be unified in a single
inequality (RC). To see how this is done, consider again the power of implicit incentives
(in this case, a function of #):

Ab;(0) := sup b;(e;,0) — inf b;(e;,0).
e; €
Given 0, it turns out that the least expensive way to induce player i to exert effort e; (6)
is to set Ab;(f) equal to the short-term gain from the optimal static deviation. This
short-term gain is obtained using the terms in (E) while ignoring the bonus payments,

and is equal to

piai, e(0), 0;) = max {E [w | es, e-i(0)] - ciles, 05)} — {oa B[ | €(9)] — ci(@i(6:),0:)} -

Notice that if we set player ¢’s bonus following a deviation an amount ¢;(a;,€(6), 0;) lower
than her bonus following cooperation, then she will be induced to follow the prescribed
effort with the smallest possible bonus power. Once Ab;(0) = ¢;(«a;,e(0),0;), constraints
(E) and (DE) reduce to constraint (RC') below, which depends only on €; (§) and «, and

says that the sum of short-term gains from deviating cannot exceed relational capital:

Proposition 1. Effort schedule €(-) can be implemented using a stationary relational

contract with ownership structure o if and only if

(RC) s%p;soi(ai,’e\(@ﬁi) < —F-3,

2! As formalized by Corollary 1 in the Appendix, additive separability will imply that money burning

can be avoided.
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where 5 is the (expected) per-period surplus achieved under efforts €(-) when no money

burning takes place:

5= Ey {E [ | €(0)] — Zc,»(a(e),oi)} .
i

The analysis will be separated into two cases, according to whether or not first-best
can be achieved. Let s* denote the flow of first-best surplus, i.e., achieved when first-
best efforts e*(-) are implemented, and no money burning take place. Whenever s* >3
(which is assumed throughout), first-best can be achieved under any ownership structure
provided ¢ is sufficiently close to 1. However, it will be relevant to derive the ownership
structure that implements e*(-) in the least expensive way (in terms of relational capital).
Equivalently, this efficient ownership structure will implement first-best for the lowest
possible §, or the highest possible 5, for which first-best can be achieved.

On the other hand, when first-best cannot be achieved we have:

Lemma 3. Under any second-best stationary relational contract, constraint (RC') must

bind.

Consequently, regardless of whether first-best can be achieved or not, I search for the
efficient ownership structure that minimizes the left hand side of (RC'). Theorems 1 and
2 are based on the solution to this minimization problem, and contain the main results

of the section.

Theorem 1. Suppose first-best surplus can be achieved. Then, there exists a first-best

stationary relational contract under which:

(a): ownership is non-extreme, i.e., a; < 1 for all i,
(b): all players receive implicit incentives, i.e., supy Ab;(6) > 0 for all 1.

Theorem 1 follows from the shape of the (short-run) incentives to deviate ¢;(-).22

These functions will be decreasing and convex in «;. In fact, application of the envelope
theorem yields:
0
8_(11-%
which is negative for all a; < 1 because the static best response e; will be smaller than

*
1

(i, e”(0),0:) = E [z | €], 2;(0)] — E[z ] e*(0)],

—1

ef(#). Since e} increases with «y, this derivative will also be increasing in «;, and equal

to zero when «; = 1.

2Garvey [1995] presents a result in a sense related to Theorem 1. In a two-agent simple example,
he compares the optimal distribution of ownership under a one-shot vs. a repeated game. Under the
specific technology considered, ownership becomes more symmetric in the repeated case. In his model,

since no monetary transfers are possible, non-extreme ownership occurs by assumption.
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Recall that ¢,(a;,e*(0),0;) represents the cost of implicit incentives, and equals the
bonus power Ab;. Thus, the negative of the above derivative equals the incentive trade-
off

OADb;
(*) - a '27
Q;

which portrays the marginal savings in relational capital due to increased ownership in

hands of player i. But since these marginal savings are decreasing, fully concentrated
ownership will be inefficient. Informally, when player ¢ possesses all shares, a marginal
reduction in q; will only cause a second-order increase in Ab;, i.e., 8Ab¢/8ai|ai:1 =0.
But allocating these additional shares in hands of any other player j for which e;(é’) >0
(and thus —0Ab;/0a; > 0) will yield a first-order decrease in Ab;. The combined effect
will be a reduction in the need for relational capital, rendering «; = 1 inefficient. (The
formal argument, shown in Appendix 1, is more subtle because it requires considering
the effect of a changing €, but follows an analogous method.)

The decreasing incentive trade-off (x) can be used to say more about the efficient value
of « for a fixed 0. For example, if all players are identical, they will hold equal shares.
On the other hand, notice that () equals the reduction in total output when a player
reduces effort to her static best response. Thus, if a player is relatively “productive”, in
the sense that a deviation to her static best response causes a higher loss in output than
a deviation from each of her peers (under equal ownership shares), then she will receive
a higher share of profits. (Under a changing value of # the analysis is more involved, but
the same type of pattern emerges.)

The results in Theorem 1 can be extended to second-best contracts provided two

conditions hold:

C1-Joint Effort: e(-) is such that supge;(6) > 0 for at least two players.

C2-Complementarity: For all 7, %E [z | e;,e_;] is non-decreasing in e_;.

Condition (C1) says that at least two players exert positive effort (for some 6), and it
will be sufficient to guarantee that ownership is never concentrated in hands of a single
player. (If only one player j exerts positive effort, i.e., (C1) is violated, then it will be
optimal to set a; = 1.)

Condition (C2) states that individual efforts are complementary, and implies that they
can only produce positive externalities across peers. Under (C2) implicit incentives will

be provided to all (productive) players.?3 Intuitively, analogous to the reasoning above,

23((C2) is not required when type # plays no role, e.g., when g, = 8; for all 4. It can also be dispensed

with whenever the efforts prescribed by the contract are at least as large as the static best responses:

a(e) 2 ef(al,é‘,l(e),el) fOI' all < and all 6.
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if a given player receives only explicit incentives, a marginal amount of ownership shares
can be taken away from her while causing only a second-order increase in her incentive
to deviate.2? These shares can then be transferred to a player who previously received
implicit incentives while first-order reducing her incentive to deviate. The result will
be a relaxation of (RC), violating Lemma 3. However, this first-order reduction in the
second player’s incentive to deviate will only occur if she is prescribed a higher effort

than her static best response, which in turn will be guaranteed by (C2).2

Theorem 2. Suppose first-best surplus cannot be achieved. Then, any second-best sta-

tionary relational contract o satisfies:

(a): whenever (C1-Joint Effort) holds, ownership is non-extreme,
(b): whenever (C2-Complementarity) holds and o delivers a per-period surplus strictly
higher than s, implicit incentives are provided for every player that exerts positive

effort (for some 0).

In contrast to Theorems 1 and 2, the two sections that follow develop extreme own-

ership results under asymmetric information.

8. HIDDEN ACTIONS

Consider now the case of hidden actions where individual efforts are only privately
observed, but stochastically influence the publicly observed vector y. Each y; € [g, y] C
R will be a noisy signal of effort e;, and will be distributed according to the smooth
conditional cumulative function F(y; | e;) with full support, which will not depend on
e_;, i.e., conditional on e;, each y; will be i.i.d. across players.?8 Let f denote the density
of F. The two assumptions below will be imposed throughout the section. Following
Rogerson [1985], they allow for a first-order approach to effort-incentive compatibility.

Assumption (A2): The likelihood ratio %(yl | e;) is increasing in y; for all e;.

Assumption (A3): F(y; | ¢; = ¢; '(2)) is convex in z.

(A2) states that a higher e; always stochastically increases the value of y; (in the
sense of first-order stochastic dominance). (A3) implies that the marginal impact on
y; of increasing the cost of effort, z, is stochastically decreasing, i.e., the net marginal
returns to effort in terms of y; are decreasing. Thus, (A3) is a joint condition on F' and

¢;, and will hold whenever ¢; is sufficiently convex in e;.

24This again is a consequence of the envelope theorem: if a player receives no implicit incentives, then

her prescribed effort level €; must equal her static best response e, and thus d¢,/da; = 0.
25This issue did not arise under first-best because c; < 1 implies that the static best responses will

never be higher than first-best effort levels.
264 will also be (conditionally) i.i.d. across time. The analysis would not change if we allowed for a

different function F;(y; | e;) for each player, this is avoided for notational simplicity.
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In order to focus on the effect of hidden actions, I initially assume that type 6 plays
no role, so that c;(e;,0;) = c;i(e;) for all i and 6;, e.g., §; = 6;. The case where 6 does play
a role is discussed in Appendix 2. Voluntary transfers will be required to be additively
separable: 7;(y) = b;(y;) + vi(y—i), which is without loss of optimality when instead we

require that the choice of e; is “robust” to the value of y_;.2” Formally:

Lemma 4. Let 0 be a self-enforcing stationary contract that implements efforts € using
transfer schedule 7(-). Suppose 7(-) is such that the effort-incentive constraints for all
players are also satisfied whenever T;(y) is replaced by 7;(yi,y—;) for any fived y_;. Then,
there exists a self-enforcing stationary contract that implements efforts € using additively

separable transfers, and that yields a (weakly) higher surplus than o.

As shown in Lemma 5 below, a further advantage of separable bonuses is that they
never call for money burning. The Lemma also shows that each budget-balancing func-
tion v;(y_;) can be expressed, with no loss, as a linear combination of the functions
b;(y;), for j # i. The coeflicients of these linear combinations will be indeterminate, im-
plying that any player can be made the (partial or total) residual claimant of her peer’s
bonuses if and only if she is endowed with a large enough continuation surplus 6 [u; — @;].
Since the utility possibility frontier is linear (i.e., Lemma 1), the players will therefore

be perfect substitutes in terms of such bonus-paying (or budget-balancing) task.

Lemma 5. Let o be a stationary self-enforcing contract that implements effort levels €
using additively separable voluntary transfers 7(-). Also, fix constants 73 € [0,1] such
that Zi# yg =1 forallj (i.e., yg will be the fraction of bonus b; paid by playeri). Then,
there exists a stationary self-enforcing relational contract o that implements effort levels

€ using transfers T such that:

() 7i (y) = bi(yi) — Zﬂbj(yj) for all i and all y,
J#

for some functions b;(-) : Ry — R. Thus, no money burning takes place.

2"Under a two-sided moral hazard environment similar to the present one (but with fixed ownership
shares), Dewhurst [2000] solves for the optimal non-separable voluntary transfer schemes. These have
the “bang-bang” property that, for each realization of y, one party (e.g., the one with the lowest y;)
transfers all her future surplus to the other party. When applied to a multi-agent setup, this extreme
form of comparative performance compensation will be especially subject to the practical disadvantages
discussed by Baron and Kreps [1999], e.g., in this case, for each y, N — 1 players will transfer all their
future surplus to the single remaining player according to a pre-determined handicapping rule (of doubtful

plausibility). Moreover, these schemes call for money burning, which further subtracts realism.
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The contract design problem now becomes

,m%{Eu|a—§:ma%si

%

(E) e; € argmax {o; E [z | ej,e_] + E[bi(yi) | ei] — ci(e;)} for all 4,

(DE) E;Amgliéb—ﬂ.

This problem is greatly simplified if we replace constraints (E) with the corresponding

first-order conditions

0 ~ 0 ~ foan _
(FOQC) ala_eiE [|€e]+ a—@jE bi(yi) | ei] — ¢ (e;) =0 for all 4.

In fact, under (A2)—(A3), it turns out that a cost-effective way (in terms of (DE)) to
induce effort is to use “one-step” non-decreasing bonus payments, under which (FOC)
and (E) are equivalent.?® These one-step bonuses take only two values, according to
whether y; is above or below a certain cut-off level 7;. Given the desired effort e;, this
cut-off is defined by

Je:(yi | &) = 0.

Under (A2), fe,(y; | €) will be negative for all y; < ¥;, and positive for all y; > 7;.
Since signals below y; will convey “bad” news in terms of effort, player i will be punished
by receiving only infy, b;(y;), while “good” signals y; > ; will be rewarded by sup,, b;(y;).
(When y; = y; either bonus can be paid.)

Although during the voluntary transfer stage (in equilibrium) it will be common knowl-
edge that the prescribed efforts € were indeed selected, it is useful to interpret the one-step
schemes as implicitly performing a statistical test. In fact, a (uniformly most powerful)
Neyman-Pearson test of the null hypothesis “e; = €;”, versus the alternative “e; < €;”
(i.e., it is the downward local effort constraints that will be binding) will have a rejection
region of the form {y; < y;} for some ;. Thus, the optimal test for these hypotheses of
size F(y; | €;) has precisely {y; < yi} as its rejection region. (The scheme then pays the
low bonus when the test “concludes” that an effort e; < €; was selected.)

The next step is to combine (FOC) and (DE) into a single inequality (RC) that no
longer depends on voluntary payments. Notice that under the above one-step bonuses,

the first-order conditions become

0

Elz|e]— AbF,,(5; | &) — ci(e;) = 0.

Z8This result generalizes the optimality of one-step schemes derived by Levin [2000].
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From (FOC) we can solve for Ab;, and substitute into (DE), to obtain

(RO) Ak =Y (@) - @)} < T 57,

where the functions p;(e;) and ¢;(€) contain the terms in (FOC):

(e O Blrle
%7 and Qi(/e\) = M
—Fe, (Ui | &) —Fe, (i | &)

(RC) can then be used to derive the optimal ownership structure. However, the

pi(€i) ==

optimal contract must satisfy N additional conditions. Since the equivalence of (FOC)
and (E) requires the bonuses to be non-decreasing, we need Ab; = p;(e;)— aiq;(€) > 0

for all ¢. The above reasoning is formalized in Proposition 2.

Proposition 2. Effort vector € can be implemented using a stationary contract o with

ownership structure « if and only if (RC) holds and
(ND) Ab; = pi(€;) — a;qi(e) > 0 for all i.

The analysis is again separated into two cases, depending on whether or not first-best
can be achieved. In either case, as in the previous section, I focus on ownership structures
that minimize the left hand side of (RC) (subject to (ND)). These will correspond to
the most efficient structures under first-best (i.e., Theorem 3), and to the only optimal

structures under second-best because (RC') will bind (i.e., Theorem 4).

Theorem 3. Suppose first-best surplus can be achieved. Then, there exists a first-best
stationary contract with extreme ownership ay = 1 concentrated over some player k €

arg max; g;(e*), and therefore Aby = 0.

Under first-best efforts e*, pi(e) = qi(e*) (i.e., ci(ef) = %E [z | €*]) and therefore
the inequalities in (N D) will be redundant. Thus, an efficient contract solves the linear
problem max, ), @;q;(€*), achieved by concentrating ownership in hands of the players
in argmax; g;(e*), or in hands of any single one among them. (Indeed, in a “generic”
environment we can expect arg max; ¢;(e*) to be a singleton.) Thus, a high level of ¢;(e*)
promotes ownership. In fact, g;(e*) is equal to the incentive trade-off —9Ab;/0c; > 0,
representing the marginal savings in relational capital brought on by increased ownership
in hands of player 7.

The incentive trade-off does not depend on «; (intuition for this is provided below),
and will be high when two conditions are combined: (i) a high marginal productivity
%E [z | €*], and (ii) a low —F,, (y* | €f), where y* is the optimal bonus cut-off value.
The quantity —F,, (y} | ef) will be positive due to (A2), and proportional to the power

of the above Neyman-Pearson test against local deviations e; < e}, given by F (v | ;) .
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In particular, if we set e; = e — € for some small € > 0, and Taylor-expand this power

F (y} | ;) around e}, we obtain:
Fyi [ei) 2 F(yi [ei) = Fe; (47 | ei) e

Thus, a low value for —F,, (yF | ef) corresponds to a poor test, and implies that devi-
ations by player ¢ are hard to detect. Therefore, ownership will be placed in hands of
a player when she possesses a high marginal productivity combined with a high level of
informational asymmetry with respect to her peers, in the sense that her actions are
hard to assess.

Theorem 4 deals with second-best contracts. As before, given efforts €, there will
be an incentive to concentrate ownership in hands of the players within arg max; g;(€).
But, due to Constraint (N D), this can only be done as long as Ab; = p;(€;) — a;q:(e) >
0. Since under second-best we will typically have d;(€;) < %E [z |e] (and therefore
pi(€;) < qi(€)), Ab; may equal zero for oy; < 1, and hence full concentration may not
arise. Nonetheless, concentration over some player k € arg max; ¢;(€) to the point where

she receives zero implicit incentives will always be optimal.

Theorem 4. Suppose first-best cannot be achieved. Then, there exists an optimal con-
tract such that some player k € argmax;q;(€) receives no implicit incentives, i.e.,
Aby, =0 (where € denotes the optimal effort levels).

Moreover, assume argmax; q;(€) is a singleton. Then, under any optimal contract

that implements €, player k = arg max; g;(€) receives no implicit incentives.

The above extreme ownership results greatly diverge from the efficiency of dispersed
ownership under symmetric information (section 7). This difference is accounted for
by the way ownership impacts the incentive trade-off, in turn a consequence of which
effort-incentive constraints bind. Under symmetric information, any effort deviation will
be detected with certainty and can be punished with equal strength. As a consequence,
the most tempting deviation will be the global one towards the static best response e;.
Formally, it is this global constraint that binds. Moreover, the size of the most tempting
deviation [e; — €] is decreasing in a;. Thus, an increase in ownership not only reduces the
incentive to incur in a given deviation, but also reduces the size of the optimal deviation.
This second effect, responsible for the curvature of ¢,, implies that the incentive trade-off
is decreasing.

Under asymmetric information, in contrast, small deviations are the hardest to detect
and therefore become especially tempting. Together with the fact that players face a
concave problem, this implies that only local constraints will bind. Therefore, changes

in «; will not alter the size of the most tempting deviation (i.e., it is always a local one),
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so the above curvature effect will disappear, resulting in a constant incentive-trade off.

This intuition will also apply to the case of hidden information that follows.

9. HIDDEN INFORMATION

This section considers the case where each type 6; is only privately known to player
i. In order to focus on the effect of hidden information, y is set equal to e (as in Section
7). For expositional simplicity, I also assume that output takes an additively separable
form, i.e., Assumption (A4) below. However, the results that follow also hold for the
more general technologies in (A1l). This generalization and some caveats are discussed

in Appendix 3.

Assumption (A4): E[z|e]| =", z(e;), for some functions z;(-).%

Due to (Ala), each z;(-) will be smooth, increasing, and concave. Also normalize
x;(0) = 0.

If we consider the effort selection stage in isolation, (A4) implies that any effort sched-
ule e(+) that is implementable using a Bayesian mechanism, will also be implementable in
dominant strategies (while balancing the budget), adding considerable robustness to the
contract (e.g., the details of the distribution of 8 will be irrelevant, and learning peers’
efforts in advance will not alter incentives).

Indeed, in order to motivate the use of separable transfers, I will impose this re-
quirement of dominant strategy implementation for the effort selection stage, i.e., the
prescribed effort €;(6;) is required to be optimal for player ¢ regardless of the choice of
e—;. (Notice that such requisite is analogous to that imposed in the previous section:
robustness to y_;.) As shown in Lemma 6, under dominant strategy implementation,
additively separable bonuses can be adopted without loss of optimality.?’ Conversely,
any additively separable bonuses will implement efforts in dominant strategies, while

eliminating the need to burn money.

29(A4) will represent an environment where tasks are relatively independent from each other. But
one may then wonder why the team is together in the first place, i.e., why doesn’t each player create
a firm on her own? A possible reason would be the existence of a fixed set-up cost that is shared
across players. As argued by Williamson [1975], this cost may refer to a physical asset or even to the
acquisition of information. Radner [1970, p.457] notes that “the acquisition of information often involves
a ‘setup cost’; i.e., the resources needed to obtain the information may be independent of the scale of the
production process”. Furthermore, Williamson [1975, p. 49] submits that: “(1) there are reasons other
than nonseparabilities for internal organization to appear; (2) nonseparabilities are much less widespread

than is commonly believed”.
30Complex comparative performance schemes may save some relational capital even in this case of

separable output, but would loose robustness.
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Lemma 6. Let o be a stationary self-enforcing relational contract that implements ef-
fort levels €(-) in dominant strategies (for the effort selection stage). Then, there ex-
ists a self-enforcing relational contract o that implements effort levels €(-) in domi-
nant strategies using voluntary transfers T such that:

(a) No money burning takes place:
Zﬂ(e) =0 for all e.

(b) Transfers are additively separable:
Ti(e) = bi(e;) —vi(e—;), for alli and e,
for some functions b; and v;.

Once additive transfers are adopted, the key step of the analysis (as in previous sec-
tions) will be the consolidation of constraints (DE) (i.e., Y, Ab; < 12 [§—73]) and (E)
(i.e., the effort selection constraint) into a single inequality, off of which we can read the
optimal ownership structure. This amounts to solving for the power of bonuses Ab; in
terms of « and the desired effort schedule e{-).

Consider initially the case where first-best can be sustained. In order to implement
€*(+), the power Ab; must be large enough to discourage two kinds of deviations: those
that are observed by peers and those that are not. In particular, whenever player @
selects an effort within e?([6;,6;]) (i.e., the range of efforts occurring on the path of
play), her peers (who do not know ;) cannot distinguish whether she is indeed following
the prescribed effort ef(6;) or she is deviating to an effort prescribed for some other
type. In contrast, when e; ¢ eX([8;,0:]), it will become public knowledge that she indeed
deviated and can be punished accordingly.

The second sort of deviations will be analogous to those considered in Section 7 (under
full information), so Ab; must be at least as large as the gain from performing the optimal
static deviation ef. Since e < e(6;) (provided «; < 1), the only profitable deviations

outside e} ([f;, 6;]) will be towards some e; < e}(6;). Moreover, under single-crossing, the

type that most gains from this kind of deviation is §,, and her gain is given by
@i, e;(8;),0;) := max {a;m;(e;) — ci(es, ;) } — {euimi(ef (8;)) — ci(ef (8:),8:)}

representing the power of b; required to hinder such observable deviations.

Deviations within e} ([0;,0;]), on the other hand, will be deterred through an adequate
selection of the slope of b;(e;). Using a first-order approach to the incentive problem
(e.g., Mirrlees [1971], Milgrom and Segal [2002]), Appendix 1 shows that this slope must

be equal to the marginal externality caused on peers:

(5) (1 — ai)i(ei),
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i.e., b;(e;) will align private and social marginal benefits by internalizing such external
effect. By integrating (5), and letting x} (0) := x; (e](¢)), it follows that

bi(e; (0)) — bi(e; (8:) = (1 — o) [ (0) — 27 (8))]

which defines the incentive power necessary to deter deviations within ef([¢;,0;]). Let

Axf(0;,0;) := [27(0;) — x7(8:)]-
As formalized in Proposition 3, by combining the analysis for both kinds of deviations,

we obtain the total necessary power of implicit incentives:
Ab; = (i, €7 (), 8;) + (1 — o) A (8;,05).

Proposition 3. There exists a self-enforcing contract that achieves first-best surplus

using ownership structure « if and only if

(RO) 3 ilon,ei(0),8) + 3" (1= ) A (6,71) <

Under first-best, the most efficient ownership structure will minimize the left hand side
of (RC). The first term, )", ¢;, corresponding to observable deviations, has the properties
derived in Section 7 (under symmetric information). Thus, according to Theorem 1, it
provides an incentive to disperse ownership. The new term, ). (1 — ;) Ax}, associated
with unobservable deviations, indicates that a high Az} promotes ownership in hands
of 7. Az} will be related to both the productivity of 7 and the level of informational
asymmetry she bears with respect to her peers.

High informational asymmetry can be though of as a large dispersion in type 6;, i.e.,
a large interval [Qi,gi]. As 8, decreases and 6; increases, the dispersion in efforts will
increase and so will Az}. In other words, a large Az} will endow ¢ with a large range of
deviations that will go undetected.

Furthermore, when 6, is sufficiently low, e}(8;) and x}(¢;) will be zero, and thus any
desirable deviation (i.e., e; < ef(6;)) will go undetected. Condition (C3), representing
extreme informational asymmetry, describes this case.

C3-Asymmetry: e;(8;) = 0 for all i.

Under (C3), the range Az} will correspond to its upper limit = (6;). Moreover, a high
marginal productivity @/ (e;) will imply a high value for 2%(6;), and therefore it promotes
ownership as well.

Notice also that (C3) implies Y . ¢, = 0 (i.e., € = e (¢;) = 0 for all 7), so the incentive
trade-off becomes

_OAb; AL

Bai ¢




26 LUIS RAYO

These returns will be independent of «; because the binding effort constraints are al-
ways local. Thus, according to (RC'), any efficient ownership structure will concentrate

ownership over the players in arg max; Az}, or in hands of any single one of them:

Theorem 5. Suppose e*(-) is implementable and (C3-Asymmetry) holds. Then, it is
optimal to concentrate ownership over any single player k € arg max; Ax}, and therefore

Ab, = 0.

When (C3) does not hold, extreme ownership will still be efficient whenever: Az} —
Azt > x;‘(ﬁj) for all j # k. This condition simply says that the marginal advantage of
increasing a, i.e., Axy — Az (captured by the second term in (RC)), will be larger than
the marginal benefit of increasing ownership in hands of some other player (captured by
the second term in (RC)), which is at most —0¢;/0a; |a;—0= x}(€;). On the other hand,
when Az? is the same across players, Theorem 1 applies and ownership will be dispersed.

Consider now the case of second-best contracts. Although ownership in general will
not be fully concentrated,3! a result in the lines of Theorem 4 would say that it is
optimal to concentrate ownership in hands of a player k to the point where she receives
no implicit incentives. However, such a result need not be true. The reason is that
explicit incentives, which are linear in x;, cannot fully substitute for implicit incentives
when these are non-linear. (Recall that, under first-best, implicit incentives are indeed
linear.) Thus, increased ownership may not fully eliminate the need for bonuses. This
nonetheless suggests that ownership concentration will result if we restrict bonuses to be
linear in x;, which is confirmed by Theorem 6.32

Let 7;(0;) := x;(e;(6;)), where €(-) denotes the second-best effort schedule. For tech-
nical reasons, linearity will only be imposed over the equilibrium domain Z( [Qi,@]),

because otherwise bonuses would be unbounded and thus not credible for some histories.

Theorem 6. Suppose (C3-Asymmetry) holds for any optimal contract, i.e., A%; =
7;(6;), and voluntary transfers must be linear on the path of play, i.e., for all i we
have b;(Z;(0;)) = Ni+ [;7:(0;) for some constants A\; and (3;, and all 0;. Then, there ex-
ists an optimal contract under which some player k € arg max; Ax; receives no implicit
incentives, i.e., 3, = 0.

Moreover, assume arg max; AZ; is a singleton. Then, under any second-best contract

that implements Z(-), player k = arg max; AZ; receives no implicit incentives.

3le., a; = 1 would imply that e; (-) = e} (-), which need not be desirable under second-best.

321 inear schemes, i.e., piece rates, are commonly adopted. A possible “robustness” reason for this is

given by Holmstrom and Milgrom [1987].
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Since instruments «; and [3; are perfect substitutes in terms of inducing effort (i.e.,
O0a; /0f; |e,= —1), the incentive trade-off will be equivalent to that under first-best:

OAb;  A{BAT}
8041' - 8041' _sz'

As above, AZ; will be associated to marginal productivity and informational asymmetry.

Finally, when we do not restrict bonuses to be linear, a high AZ; will also promote
ownership. In particular, to the extent that «; can substitute for (the linear part of) b;,
we will have —9Ab; /0c; = AZ;, and thus ownership concentration will be optimal to

such an extent.33

10. PARTNERSHIPS AND THE ‘“‘CLASSICAL FIRM”’

This section relates the previous results to patterns described by Alchian and Demsetz
[1972], and Hansmann [1996]. The above model would best resemble relatively simple
closely-held firms (as opposed to large publicly owned corporatioms).34 Within this class,
which constitute the overwhelming majority of all enterprises, shared ownership is domi-
nant in service professions (e.g., law, accounting, investment banking, management con-
sulting, advertising, architecture, engineering, and medicine) where “the productivity of
individual employees can be, and generally is, monitored remarkably closely”, Hansmann
(1996, p. 70]. Such firms are typically composed of a relatively small number of individ-
uals of the same profession, who understand well what their peers are doing. Their work
is also relatively independent from each other and thus easier to assess.?® And in terms
of adverse selection, “employee ownership tends to appear in precisely those settings in
which management is likely to have relatively little difficulty understanding employees’
preferences”, Hansmann [1996, p. 73].

Employee ownership, on the other hand, rarely occurs in the industrial sector and in
non-professional services (e.g., hotels and retailing), where a larger task diversity is likely
to entail informational asymmetries. Indeed, centralized ownership and hierarchy are the

trade-mark of what Alchian and Demsetz call the “classical firm”, wherein ownership

33 As an illustration, using Milgrom and Segal’s [2002] envelope Theorem 2 we obtain:

bi (i (0:)) — bi(wi(8,)) = ci(ei (), 0:) — ci(ei(,),6;)

79
+/Q %ci(ei(z),z)dzfa,;Aaz,;,

which only depends on «; through the last term, and its derivative w.r.t. «; is precisely Axz;. (The full

derivation can be seen from the proof of Proposition 3.)
34 At least one feature of the model that precludes an adequate consideration of very large firms is

that any team member can be made the sole residual claimant of output.
35 Alchian and Demsetz [1972, p. 779] conclude that for a “cooperative productive activity [...] mea-

suring marginal productivity and making payments in accord therewith is more expensive by an order

of magnitude than for separable production functions”.
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and control are concentrated in the hands of the manager/monitor. Underlying this
widespread form of organization, they observe, is a difficulty to detect performance.
In fact, they view clustered ownership and control as a response to the problem of
asymmetric information, i.e., the owner monitors employees, and her incentive emerges
from the residual claim of earnings.?® The above analysis also identifies informational
asymmetry with hierarchy, but through a different channel: the optimal use of relational

capital.

11. SUMMARY AND CONCLUSIONS

In the above the analysis, the unifying principle behind the optimal allocation of

ownership is the incentive trade-off
OAD;

~Bar R

i.e., the marginal rate of substitution between the power of implicit incentives Ab;, and

explicit incentives «;, under the desired effort profile €. By indicating the marginal sav-

ings in relational capital achieved by increasing ownership, this trade-off isolates two key

factors behind organizational design: marginal productivity and informational asymme-

try. The following table summarizes the specific value for the incentive trade-off under

the three information environments considered.

Information Environment —0ADb; /0|5
Symmetric Information Elx|e|—FElx|ef, e
. . 9 ~ ~ |~
Hidden Actions —se bl |e] /e (¥i | &)
Hidden Information AZ;

When information is fully symmetric (Section 7), the trade-off is given by the difference
between expected output under the prescribed effort €; and expected output under the
optimal static deviation e;. This difference, which depends positively on marginal pro-
ductivity, is decreasing in «;. Thus, marginal returns to ownership shares are decreasing,
and consequently it will be optimal to disperse ownership (while partly favoring produc-
tive members). Under hidden actions, on the other hand, the trade-off depends positively
on marginal productivity %E [z | €] and negatively on —F¢, (¥ | €;), the power of an
optimal statistical test regarding deviations by member ¢. Therefore, when a player’s ac-
tions are both productive and hard to assess, the marginal benefits of ownership (in her
hands) are high. Similarly, under hidden information, the returns to ownership will be

associated with member i’s productivity and the difficulty (experienced by i’s peers) of

*Tn a context of information gathering (regarding the optimal course of a firm’s action) and costly

communication, Segal [1996] argues that concentrating the managerial task also improves incentives.
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detecting her deviations, both of which increase AZ;. Under both asymmetric informa-
tion environments, the incentive trade-off will not depend on «;, implying that extreme
ownership (to the point where Ab; = 0) will be efficient. Moreover, extreme ownership
will be the only efficient structure when (even infinitesimal) differences exist in the above
idiosyncracies.

The second aspect of organizational design concerns the payment of voluntary trans-
fers. In all three cases, there is considerable liberty in allocating the task of paying
bonuses, together with the discretion required. In fact, discretion can be given to any
member as long as she is also allocated sufficient relational capital (in the form of con-
tinuation surplus). But since the utility possibility frontier for the team is linear, the
available relational capital can be freely distributed across members, making them per-
fect substitutes in performing this task.3” Nonetheless, an important difference across
information environments does arise.

When information is symmetric, every (productive) player will receive implicit incen-
tives and therefore cross-monitoring is inevitable. It is also possible to cast bonuses in
terms of punishments following deviations instead of prizes following high effort (or any
combination of both). As a consequence, transfers can be limited to punishment stages
of the game, and thus never occur on the equilibrium path of play.

Under asymmetric information, in contrast, transfers will occur in equilibrium. How-
ever, since ownership is concentrated in hands of a single player to a degree that she
receives no implicit incentives, this player need not be monitored by her peers. In addi-
tion, she can be charged with the task of paying all of her peers’ voluntary bonuses, and
thus serves as an endogenously selected principal. This organizational structure resem-
bles Alchian and Demsetz’s [1971] classical firm, where the metering activity is focused
in the hands of a single owner-manager.

The concentration of ownership and metering has an important advantage. Since
transfers are additively separable, once the principal handles the metering task, cross-
monitoring between peers is unnecessary, i.e., the only relevant information for the (en-
dogenously selected) agents is their own effort measure y;, needed to asses if they indeed
received the stipulated bonus. Thus, the unique cross-informational requisite is the prin-
cipal’s knowledge of all agents signals y;, which involves N — 1 “pieces” of information,
and hence this structure constitutes the most efficient one in terms of information re-
quirements. (In the other extreme, if the payment task is fully dispersed across the team,
each member ¢ will need to learn y_;, and therefore N (N —1) pieces of cross-information

must be processed.)

#"MacLeod and Malcomson [1998] consider a repeated agency model where the form of the labor

market determines how future surplus must be allocated, thus eradicating such flexibility.
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I conclude with a possible direction for future work. Two important simplifications
in the model are that the quality of information is exogenous (i.e., investments towards
improving information are not considered), and the information structure across team
members is “homogeneous” in the sense that the performance vector y is publicly ob-
served by the team (e.g., any two players have the same information regarding their
N —2 peers). Allowing for non-homogeneous and/or endogenous information structures
may produce multi-layer hierarchies (and multiple divisions) where subsets of players
with relatively homogeneous information are grouped under principals, which in turn
are subject to the metering discretion of yet higher ranked players. If successful, such
an approach would provide insights for more complex corporations, based again on the

subtle interplay between implicit and explicit contracting.

12. APPENDIX 1: PROOFS

Proof of Lemma 1. Let ¢ be identical to o except for the fact that the new period zero monetary
transfers, ?? , are now equal to T? - u? + ou; + N (SO - 5§) ﬁ (which maintain a balanced
budget), and non-payment of these transfers is punished by permanent separation. Notice that &
is self-enforcing from period ¢ = 1 onward by construction. Moreover, if the t = 0 transfers are
made, the payoffs under the new contract will be ﬂ? = 0u; + N\ (80 — 55) ﬁ, as required by
the Lemma. Thus, it suffices to verify that these transfers are indeed credible, which will occur

whenever:

<6 [ﬂl ;| for all 4,

-
where ﬂll are the continuation values under the new contract. But observe that:

1
1-0

7y < =T+ N (8" - 63)
= 7+l - 6w

= 6[&%—@2],

where the second equality follows from the fact that ﬂ? = 7’? + 6&}. ]

Proof of Lemma 2. Let s°/(1 — 6) be the expected surplus generated under o (recall that
s' /(1 —§) is the surplus generated from period ¢ onward, which may depend on h'), and assume
sY > 6% (otherwise any stationary contract that implements the no-participation stage game Nash
equilibrium outcome every period would be optimal).3® Assume also that, under o, ), T? =0,
because otherwise the contract could be improved by setting these transfers to zero (which would

not alter incentives).

*¥Notice that any surplus occurring at period 1 or later is discounted when comparing it with
s? because production does not take place at t = 0.
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Observe that s” must be at least as large as 682, for any history h'. Because otherwise there
would exist a history h! and a contract o’ that specifies the same actions as o, following hl',
but one period in advance, creating a higher surplus than s0 /(1 = 6). Moreover, this implies
joint production must take place at ¢ = 1.

Consider first the case where 6 is publicly observed. The proof will build a stationary contract
30

0 that creates expected flow surplus = 59 and that implements, in every period, the t = 1

effort levels specified by ; denote these by €;(¢). Also let 7;(y, ) (with Y, 7(y,6) < 0) and
u;(y, 0) denote, respectively, the # = 1 monetary transfers and continuation payoffs (from period
2 onward) achieved under the original contract after type vector 6 and signals y are realized at
t = 1. Finally, let a denote the ¢ = 1 shares under ¢. Since o is self-enforcing by hypothesis,

we must have:
Eg{oi By [x [ e(0)] — ci(€:(0),0:) + By [1i(y,0) | €(0)] + 0 Ey [uiy,0) | e(0)]}
(P) > w; for all 4, and
u;(y,0) >; for all i, y and 6,
which are required for participation in production;
(B) By le[e(0)] —ci(e(0),0:) + By [1i(y,0) | €(0)] + 6 Ey [ui(y, 0) | €(0)]
2 By [x | e, ei(0)] — cilei, 0i) + Ey [Ti(y, 0) | ei,ei(0)]

+OEy [ui(y,0) | ei,e_i(0)] for all i, 0, and e;,
which is required so that efforts €;(6) are indeed selected; and
(T) —71i(y,0) < 6u;(y,0) —u;| for all 4, y and 6,

so that transfers are credible.
Now let the new stationary contract ¢ have, for all 7 and all ¢ > 1: %g =1 if and only if no
deviations have occurred in the past (i.e., any deviation is punished with permanent separation);

el(l) = e (0); <c~ut, at> = (w, @) for some w specified below (i.e., T%(+) = (@, a) for all t > 1);

(2

and 74(-) = 7;(-), where 7;(-) (a function of current variables only) satisfies
(7) Ti(y,0,m) = 0 whenever m = 0,

and, whenever m = 1,

(#2) Ti(y,0) = 7i(y, 0) + bui(y, 0) — 6.

Where the values of ; in (77) are given by:

u; = FEgEy,ui(y,0) | e®)] fori < N, and (7i1)

s0 N .
uN = m—zui, (iv)

i<N
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which correspond to the stationary expected continuation payoffs, under the new contract, from
any period onward. These values are achieved by selecting the court enforced payments w such

that:
@i = (1= 8)u; — Eg {i B, [ €(0)] — ci(€:(0), 0;) + E, [7:(y,0) | €(6)]},

which add up to zero due to (iv), since the flow surplus created under & is given by:
=0 —5E, {Em [z | e(0)] =) _ci(@i(0),6:) + > Ey [Ty, 0) | a(e)]} .

It must now be shown that the above actions indeed constitute an equilibrium. Let (P') , (E'),
and (7") denote the inequalities corresponding to (P),(E), and (T'), but under the new con-
tract. From the reasoning in the second paragraph of this proof, we must have s/ (1 — §) >
§s2/ (1 —=8) =6, ui(y,0) for all y and 0, so that 0/ (1 — &) > 6", EgFy [u;i(y,0) | €(0)] .
Thus, from (4i7) and (iv), uny > EpEy [un(y, ) | €(#)] . Which, together with (P), (i) and
(#41), implies (P’). On the other hand, (F), (T) and (i¢) directly imply (E’) and (77).

Finally, (i7) and the fact that Y, w; > > . u;(y, 8), for all y and 6, imply a balanced budget:

Z?’i(yﬁ) = Z [Ti(y,0) + du;(y,0) — éu;] < 0.
i i

On the other hand, the proof for the case where the values of 9§ are private information is a
special case of the above proof, except for one difference mentioned below. This special case is
one in which the above functions €;(#), 7;(y, €), and w;(y, ), now take the form €;(6;), 7i(y),
and u;(y). The only difference arises from the fact that, in condition (F), every function that
depends upon 6_; must be replaced by its conditional expectation over 8_; given 0;, after which

the proof applies to the case of private information. il

Proof of Proposition 1. For necessity, suppose € (+) is implemented by ¢ using shares «. Then,

for all 7 and all 8 we must have:
o B[z | e(0)] — ci(ei(0),0;) + Ti(e(0),0) (E)
> max{aiE [z | ej,e_i(0)] — ci(es, 0i) + Ti(es, e—i(0-:),0)},

in order for € (-) to be selected given transfers 7; (-); and

- inef Ti(e,0) < O[u; —1;] for all 4, (T)
ZTi(e,Q) < 0 for all e and all 0, (B)

so that transfers are credible and the budget is balanced (where u; denote the continuation

payoffs under o). But (F) implies that for all 7 and all 6:

gol(al,a(@), 01) S Tz(é\(@), 0) — inf Tz(ez,é\,l(@,l), 9)

€4
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Thus, summing the above equations across ¢ we obtain:
Zg@i(ai,é\(Q),Qi) < —Zingi(ez’,/eli(Q—z’)ag)
(2 (3
i

= -
= 1—(58 S

0
<
- 1-96

1f6EQZT,»(€(0),9)

[s —73] for all 0,

where the first inequality follows from (B); the second inequality from (7'); the equality from
the fact that, due to the stationarity o, the continuation surplus ZZ u; must equal the present
value of 3 minus the expected level of money burning per period; and the last inequality is again
a consequence of (B). From which (RC) follows directly.

For sufficiency, suppose (RC') holds for shares « and efforts € () , and let o be a stationary
contract that prescribes € (+) using the following continuation values u; (achieved under appro-

priate selection of w) and transfer scheme 7;(-):

— , 5 _ ,
u; = 7y foralli< N, anduNzl_(s—Zui, (7)
<N
Ti(e,0) = bi(e;,0) — I 1bN(eN,9) for all i < N, and (47)
Tn(e,0) = bn(en,0) =Y bi(e;,0), where (i)
<N
(i, e(0),0;) if e; =&i(6), :
biei,f) = {%(a e0).6:) tei=2®) ¢ <N
0 otherwise,

b ,0) =
wiew,?) on(an,e(0),0n) otherwise.

By construction the budget will be balanced (indeed no money burning will take place following
any history), and effort levels € (-) will be selected given 7;(-). It thus remains to show that such
transfers will be credible. Since 7;(e,0) > 0 for all e, 0, and all i < N, it suffices to show that
player N will find it optimal to make her corresponding transfers, for whom we have:

—infry(e, ) = su (i, e(0),0;
n(e,0) 913290( (0),0:)

€,

0
1-46

S {/S\—g]Z(S[UN—ﬂN],

where the first equality follows from (i) and (7i7); the inequality follows from (RC'); and the
last equality follows from (7). Il



34 LUIS RAYO

Corollary 1. Any optimal stationary relational contract involves no money burning on the path
of play. Moreover, any optimal relational contract o can be replaced by an optimal stationary

relational contract 0 that involves no money burning following any history.

Proof. The sufficiency proof of the above Proposition shows that, whenever (RC') holds under
ownership structure «, there exists a stationary contract that implements the corresponding
effort levels €(6) using no-money burning following any history. Thus, the Corollary follows from

the necessity direction of the above proposition and Lemma 2 (stationarity). il

Proof of Lemma 3. Let €(-) denote the effort schedule implemented by a second-best contract
0. Since first-best cannot be achieved, we must have €(-) # €*(+) over a positive measure subset
of the type space. Now suppose contrary to the claim that constraint (RC') holds with slack.

Also suppose we change the effort schedule to:
e(d) := xe*(0) + (1 — Ne(o),

for some small A > 0. Due to the continuity of E [z | -] and ¢;, for all small A constraint (RC')
will still hold under schedule €(-), which makes it feasible. But, due to the concavity of the
objective (i.e., (Al)), €(-) will deliver a strictly higher surplus than €(-), a contradiction to the

fact that o was optimal. |

Lemma 7. (Based on Conditions (C1) and (C2) in the text.) Let o be an optimal stationary

contract, with ownership structure &, that implements effort schedule € (-). Assume

() & € argmin {sgpzsoxai,a(e), e»} .
(3
Then:
(a) Under (C1-Joint Effort) we must have sup; a; < 1, i.e., non-extreme ownership.
(b) Under (C2-Complementarity) wheneversupg >, ¢;(@i, €(0),0;) > 0 we have: supg €; () >
0 = supgp;(;,e(0),0;) > 0 for all i, i.e., implicit incentives are provided for every player

that (for some 0) exerts positive effort.

Proof. The proof will first deal with part (b) of the Lemma, and then part (a) will be shown as

a special case. Due to the optimality of o, under (C2) we must have that3°

(2) e;(0) > ef(a;,e_i(0),0;) for all ¢ and all 6.

To see this suppose that (i) were not true for a given #. Then, €;(f) could be increased to the
static best response e; (@;,e—;(0),6;) simultaneously for all players ¢ for which (z) was violated,

which will weakly increase the static best responses of all players (due to (C2)), and such process

% More precisely, (i) could hold only over a full measure subset of the type space. But for
simplicity, and without loss of optimality, this type of distinction is omitted throughout the
paper.
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can be repeated until convergence is achieved and (7) holds. But these changes will strictly
increase surplus due to (A1) and relax (RC'), a contradiction.

For notational simplicity, the proof will assume E [z | €] = Zl e;- The general case follows
exactly the same steps.

Suppose, towards a contradiction of (b), that WLOG supy ¢, (1, €(0), 61) = 0 and supy ey (0) >
0. Then, due to (A1) we must have e1(0) = ef(ar,€e_1(0),0;) for all 0, and &; > 0. It will
now be shown that any small transfer (N — 1)e of ownership from player 1 to the rest of the

players will reduce the level of supy >, ; (v, €(0),0;), that is:

sup {901(/071 — (N =1)e,e(0),01) + > ¢;(@ + 6,/6\(9)791')} (i)

i>1
< suchpi(ai,’e\(Q), 0;) for all small € > 0,
o

which contradicts ().

Using a Taylor expansion we have, for all '

i>1

= Y ¢i(@,e),6))

o
de

pr(@ — (N = 1D)e,e(0),61) + Y pi(@i+e,e(0), 9?)] € + o)
i>1 =0

= > @@, e0),0) = > @) — e (@, e-i(0),07)] € + o(e?)

% i>1

< sup {Z (@3, 2(0),0:) — Y [e:(6) — e} (@, €-4(6),6)] 6} +o(e?),

i>1

where the second equality and the existence of the derivatives follow from Milgrom and Segal’s
[2002] Theorem 3 on directional derivatives, and assumption (Al). (Notice that the above deriva-
tives are directional because de > 0. Moreover, the continuity of ¢; (and E [z | -]) from (A1),
and the fact that €(-) must be bounded, guarantee that the hypotheses of such Theorem 3 are

met).
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Now select a sequence 6™ such that:

(iv) Jim {Z%(aiﬁ@”), 07) =Y [ei(0") — e (@i, ei(6"), 67)] 6}

i>1

= Slolp {Z (@, e(0),6;) — Z [€i(0) — e (a;,e—i(0),0;)] e} , and
i i>1

(v) lim [e;(0") — e} (i, e—;i(6™),67)] exists for all i,

which is possible because the sequence [€;(6") — €5 (q;,€_;(0"), 07" )] must lie in a bounded space
(due to (A1)).

Let € > 0 be sufficiently small so that |&;(6) — el (a,e_; (), él)} € < ¢;(d;,2(6),8;) for all
% and some 5, with strict inequality for some ¢, which is possible because by hypothesis we have
supg »_; i (@i, €(0),0;) > 0, implying that there exist an 7 and a 6 such that ¢;(@;,e(),6;)

> 0. Thus, we must have

(vi) Slolp {Z o;(@;,e(0),0;) — Z [€i(0) — e (as,e—i(0),6;)] 6} > 0.

i>1
Let K 1= limy, o [6;(0") — € (q;, €—;(0™),07)] > 0 (where the inequality follows from (7)),
and notice that the combination of (vi) with (#v), (v), and the continuity of ¢; (and E [z | -]),
implies that K; > 0 for some j > 1. On the other hand, using (iv):

Slelp {Z (i, e0),0;) — Z [€i(0) —ei(a;,e_i(0),0;)] e} (vig)

i>1
= lim ) oi(@,e(d"),07) =y Kie
7 i>1

< Sl;p Z Soz(ahé\(e)v 92) — Kje.
Thus, combining the sets of equations (#ii) and (vii) we obtain:
p1(@1 — (N = 1)e,2(8'),61) + Y ¢;(@i +€,2(6),6))
i>1
< Slelp Z Soi(aivé\(g% 92) — Kje+ 0(62)7
%

and since —K e + o(e?) < 0 for all small €, (4) must hold.

Finally, for part (a) of the Lemma, assume contrary to the claim that WLOG @1 = 1, which
from the optimality of o implies €] (-) = €7 (+) and thus ¢, (@1, e(0),61) = 0 for all 8, together
with supy ey (#) > 0 (from (A1)). Since by hypothesis WLOG supy €2 () > 0, we must have
that py(Qa,e(0),62) = ca(e2(0),02) > 0 for some 6 (where the equality follows from the fact
that @2 = 0), and therefore supy Y . ¢, (@, €(#),0;) > 0. Thus, except for (C2), the hypotheses

of part (b) of the Lemma are met and yet the conclusion is contradicted. But, since a7 = 1,
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condition (7) will be satisfied even when (C2) does not hold, and therefore the above reasoning
applies (i.e., (C2) is only used to prove (7)) and the conclusion of part (b) of the Lemma must

indeed hold, a contradiction to the fact that a3 = 1. I

Proof of Theorem 1. (Based on Lemma 7 above.) Observe that, under first-best schedule €*(+),
the hypothesis (C1) of part (a) in Lemma 7 is always satisfied due to (Al). Now let

a* € arg min < su (i, e(0),6;) .
gmi { epgw( @ )}

Combining Lemma 2 (stationarity) with Proposition 1, we know that first-best can be imple-
mented using a stationary contract under ownership structure a*. Part (a) of the Theorem then
follows directly from part (a) of Lemma 7, and part (b) of the Theorem follows from (A1), i.e.,
supg ;(ai,e*(0),0;) > 0 whenever o; < 1. 1

Proof of Theorem 2. Suppose a second-best contract o induces effort schedule €(+) under own-

ership structure . From Lemma 3 (i.e., binding (RC')) we must have

@ € arg min { sup (a,€e(0),0;) 5.
i {ezw ) >}

(3
Thus, (a) follows directly from part (a) of Lemma 7; and part (b) follows from part (b) of Lemma
7 by noticing that supg Y, ¢;(@;,e(6),0;) > 0 is implied by the hypothesis that o delivers a
surplus strictly higher than 5 together with the fact that (RC') must bind (Lemma 3). I

Sketch of proof for Lemma 4. Due to (A2), contract o can be replaced without loss of opti-
mality by a contract under which 7;(y;,y—;) is non-decreasing in y; and non-increasing in y_;.

Moreover, by hypothesis, additively separable transfers of the form b;(y;) + v;(y—;), with

() bilyi) = iy, T0) — 7i(F), and vily—i) =~ > bilyy)

J#i
(where 7 is the highest possible value of y), will also induce efforts € while balancing the budget.
Finally, since no surplus is destroyed through money burning, transfers w can always be selected
in a way that constraints (P) and (7") hold. Indeed, the total amount of relational capital

required to enforce these new transfers will not exceed the available surplus:
- Z igf {bi(yi) +vily-i)} = — Z igf Ti(Yi, J—i) + Zﬁ@)
KA KA KA
< - ;igfn(yi,?_i) < - infriy)

0
1-9

(where s is the flow surplus achieved under ). The equality follows from (7); the first inequality

<

[s —3],

follows from the (implicit) hypothesis that transfers 7;(-) are balanced; and the last inequality
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follows from the (implicit) hypothesis that constraint (7") is satisfied under the original contract

o. 1

Proof of Lemma 5. Consider first the original contract 0. Let s = (1—0) ), u; be the expected
flow surplus it generates (from period 1 onward), and u; > %; the corresponding continuation

payoff for player . Also let 7;(y) = 71 (y;) + 72(y—;) for all i. Under o we must have:
(E) e; € arg max {aE x| e,e_] —ci(ei) + E [Tzl(yl) | ;] } for all 4.
Moreover, in order for voluntary transfers to be enforceable we need.:

(T) —inf7; (y) < 6fu; — ;) for all 4.
y

And, finally, budget balance implies:
(B) Zn (y) <0 for all y.
i

Now let the new contract o satisfy:

W) = 7o) —suprl(y) for all i (i)
Tily) = bilys) =D _lbjly;) for all 4 (i0)
J7
1
up = w— 5 inf b;(y;) for all ¢ < N, and (4i7)
Yi
N S - 1 ~ .
uy = 1_6—i<ZNUi—mE ;Ti(yﬂe]- (1)

Observe that budget balance with no money burning occurs by construction. We must now
check that the analogous conditions to (F) and (7") are satisfied under &. Denote these conditions
by (E') and (T"). Notice first that (E”) follows directly from (F) and (7). On the other hand,
(T") for i < N follows directly from (i%), (#i7), and the fact that b;(y;) < 0; and for i = N we
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have:
—inf 7y (y) = —infry(yn) +supTi(yN)
y YN YN
< b[uny —un]|+sup inf TN (yn,y—nN)
yn Y-N

= 6s—duy—08 ) wu;+supinf Ty(yn,y—n

< ébs—bun + Z {infTi (y) — 6@} +sup inf 7x(yn,y-nN)
ien OV uy ¥

= §s—duny + Z {inf bi(yi) — (5@,} + Z {supinfn(yi,yi)}
ien VY i w ¥

< Gs—6» a—duy <6 iy —un],

<N

where the first equality follows from () and (7); the first inequality form (7); the second equality
from the definition of s; the second inequality from (7); the third equality from (); the third in-
equality from (iii) and (B) (i.e., ), sup,, inf,_, 7;(yi,y—i) < 0because _;inf, , 7;(y;,y i) <
> Ti(y") < 0for all y'); and the last inequality from (iv) and (B) (ie., E Y, 7 (y) | €] <0).

Finally, notice that (7”) and the fact that —inf, 7; (y) > 0 (which follows from (¢) and (7))

imply that u; > W; for all 2. Thus, ¢ is indeed self-enforcing. 1

Lemma 8. Fiz effort vector €, ownership structure &, and bonus scheme /b\l() such that (FOC')
holds. Then, under (A2) there exist one-step bonuses 51() such that (FOC) holds for € and @,
and such that:

> {Suipgi(yi) - i;fgi(yi)} <> {Supgi(yi) - i;f/b\i(yi)} :

i i v
Moreover, the cut-off value for each bonus Bz() is given by ¥;, which is uniquely defined by:
fe:(i | @) = 0.

Proof. 1t is sufficient to show that, for each player %, there exists a one-step bonus 51() € {b;, EZ},
with b; < by, such that:

o - R o ~ .
—6eiE{bi(yi)|ei} - —aeiE[b,»(yiHe,}, and (49)
Ei—bi < sup/b\i(yi)—inf/b\i(yi). (i)

Yi Yi

Due to (A2), there exists a ¥; such that fe,(¥; | €;) =0, fe, (y:i | €) < 0 over (—00,7;), and
fe; (yi | €) > 0 over (¥;,00). Now suppose %E [/b\l(yz) | é\i} > (). The proof for the case in

which B%ZE F;l (yi) | é\l} < 0 is symmetric, and trivial for the case in which B%ZE F)\Z (yi) | é\z}
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= 0 (i.e., simply set b; = b;). Let 5,() be such that:

~ b; fory; > i,
bi(yi) = .

b, otherwise,
with b; = infy, b; (i), and b; such that (i) holds, that is:

(1i7) /;0 i fe, (yi | €)dy; = /i |:/b\z(yz) —QZ} fe; (yi | €)dy; + /:Ujo?;z(yz)fe, (yi | €i)dy;.

Notice that we must have b; > b;, because otherwise %E [bi (yi) | é\i} < 0, which is impossible
due to (i7¢) and the assumption that %E F)\z(%) |é\i} > 0. It now remains to show that

b; < Sup,, /b\z (y;) in order to prove (77). Suppose on the contrary that b; > Sup,, /b\l (ys), which
implies:

N i [/b\l(yz) _Qi:| Je: (Wi | €)dys,

Yi o]

oo 3,
[ b= bw)] v @i > 0= |
where the second inequality follows from the fact that b; = infy, /b\l (yi), and contradicts (77). I

Lemma 9. Suppose €, & and /b\() solve the relaxed problem with constraint (FOC) instead of
(E), and each /52() is a one-step bonus with cut-off value y; (defined in the above Lemma 8).

Then, each /b\z() must be non-decreasing.

Proof. Let the one-step bonuses be given by

Bilys) = b for y; > i,
i) = biL otherwise.

It must be shown that bfl — biL > 0. Observe that the first-order condition for each 2 reduces to

) . 0
1 Q;
( ) ! (961'
where Fy, (y; | €;) < 0 due to (A2).
Initially assume that first-best is achieved, i.e., € = e*. Then, for each 7, we must have

0 0
o — < * = (e*
a,aeiE[:He]_aeiE[:ﬂe] cer),

Elz|e]— (b —b)) F., @i | @) = ci(@),

which, together with (), establishes the claim.

Now suppose first-best is not achieved. Consider relaxing the problem further by replacing
constraint Zl a; =1 by Zl a; < 1 (while maintaining the same objective). It is straightforward
to verify that whenever first-best can be achieved under this new problem, it can also be achieved
when we require ZZ a; = 1; and whenever first-best cannot be achieved under this new problem,
constraints » . «; < 1 and (RC') must bind. Therefore, since first-best cannot be achieved by

assumption when » . «; = 1, contract <€, Q, b()> must also be a solution to the new problerm.
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Furthermore, suppose towards a contradiction that there exists a player k such that bg < b],;J .
Then we must have ag > 0 (because otherwise (i) would imply that e, = 0, which could be
achieved by setting bfl = bf and thus relaxing (RC), a contradiction). Now consider modifying
the contract by reducing both the level of o and the level of (bﬁ — bf ) in a way that the first-
order condition for player k is not altered. Notice that such a change relaxes both constraints

(RC) and Zl a; < 1 under the new problem, without changing the objective, a contradiction. i

Lemma 10. Suppose €, & and/b\(-) satisfy (FOC'), and each /17\2() is a non-decreasing one-step
bonus with cut-off value y; (defined in the above Lemma 8). Then, under (A2) and (A3), €, &
and /b\() also satisfy (F).

Proof. The incentive constraint for each player ¢ is given by
€ = argmax {%E ] es, @] — [supby(yi) — i?r}f/b\i(yi) F(yi | &) — Ci(ei)} ;
2 yl 2

which is strictly concave under (A2) and (A3). Thus, the first-order constraints (FOC') are

sufficient for constraints (E). I

Proof of Proposition 2. For sufficiency, suppose (RC)—(N D) hold, and consider a stationary

contract that uses ownership structure « and one-step bonuses b(-) such that, for each i < N,

o 0 otherwise,

and for 2 = NV:

0 for >N,
b (yn) = { YN Z YN

—pn(en) + angn(e)  otherwise,

where y; satisfies fe;(yi | €;) = 0. Also, let transfers 7;(-) and continuation values u; be given
by:

Ti(y) = bi(yi) — N 1bN(yN) for i < N,
() = bn(yn) — D biyi),
<IN
u; = Ty fori < N, and
s _

Notice that, due to Lemma 10 (on sufficiency of (FOC)), provided the above voluntary transfers
are credible, each player will indeed select effort level €;. Moreover, the budget will balance by

assumption. It remains to verify that the voluntary transfers are credible, which follows from the



42 LUIS RAYO

fact that 7;(y) > 0 for all i < N, and for i = N

—infry(y) = Z{pi(é\i)—az’%’(é\)}

Y

0

<
- 1-9¢

{/S\—g] S (S[UN—EN].

For necessity, on the other hand, suppose € can be implemented using ownership structure a.
Then, due to Lemmas 8-10, it can also be implemented using a non-decreasing one-step bonus

scheme 5() with cutoff values ¥;. Under such scheme we must have that the first-order conditions
hold for all i:

. 8 ~ 7 . 7 o~ o~ ]/~
(2) aig-Elr|e] - <SHP bi(yi) — lﬂ_sz'(yz')> Fe; (4] @) = ci(@),
€ Yi Yi

and that constraint (DF) (in the text) is satisfied:

(i4) > {

i

0
1-¢

5-73.

supgi (yi) — infgi (y,)} <
; Yi

Yi

Conditions (RC)—(N D) follow from combining (7) and (7). I

Proof of Theorem 3. Under first-best effort levels e* we have that ¢(e}) = B%E [ | €*] for

all 4. Thus, condition (N D) in Proposition 2 is redundant, and (RC') becomes

> (- o) ai(e?) < 75 33,
(2
which achieves a minimum when a; = 1 for any k € arg max; g;(e*). The claim then follows as

a Corollary of Proposition 2. i

Proof of Theorem 4. Existence of a second-best contract follows from the fact that the objective
is continuous in e (i.e., (Al)), and constraints (RC) and (N D) are compact (i.e., smoothness
of F' and (A1)). On the other hand, under any second-best contract, constraint (RC') must
bind (the reasoning is analogous to that in the proof of Lemma 3). Let € denote an optimal
effort schedule. Then it follows from Proposition 2 that, given €, an ownership structure will be

optimal if and only if it solves
main Z {pi(€i) — aiqi(e)} s.t.
K3
pi(€;) — a;qi(e) > 0 for all 4.

Now, for the first claim, let k € arg max; g;(€), and notice that there exists an @ that solves
the above problem and such that either py(ex) —arqx(€) = 0 or a = 1 and pg (e ) —argr(e) >
0. However, if & = 1, any optimal contract must have ¢} (ey) = %E [x|€], and thus

pr(€x) — arqr(€) = 0. Therefore, we must have Aby, = p(ex) — argr(e) = 0.
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Finally, for the second claim, assume argmax; ¢;(€;) is a singleton, and WLOG equal to k.
Then, from a reasoning similar to that in the previous paragraph, any & that solves the above

problem must be such that pg(€r) — arqgr(€r) = Abr = 0. 11

Proof of Lemma 6. Consider first the original contract 0. Let s = (1 — ) ), u; be the ex-
pected flow surplus it generates (from period 1 onward), and u; > u; the corresponding contin-

uation payoff for player i. Since € (+) is implemented in dominant strategies we must have:
(E) e; (0;) € arg me:?x {a;zi(e;) — ci(ei, 0;) + 75 (e, e—i)} for all 4, 6; and e_;.
Moreover, in order for voluntary transfers to be enforceable we need.:

(T) - iI;f Ti(e) < 6 [u; — ;] for all i.

And finally, budget balance implies:

(B) Zn (e) <O0.

Now fix constants 7? € [0,1] for all 7 and all j # i such that Zi;éj 7{ = 1 for all j, and let

the new contract o satisfy:

bi(e;) = infri(e;,e—;) —supinfr;(e;,e_;) for all 4, (7)
Fi(e) = bile)) =Y ylbi(e;) for all i, (i)
JFi
U = U — %inf bi(e;) for all i < N, and (7i7)
~ s - 1 ~ .
in = 1_6—;Vui—l_éEg{;Ti(e(Q))}. (iv)

Observe that budget balance with no money burning occurs by construction, and the functions
v;(e—;) in part (b) of the Lemma are given by ., v1b;(e;). We must now check that the
analogous conditions to (E) and (7") are satisfied under 7. Denote these conditions by (E’) and

(T"). First notice that (F) implies:

e; (0;) € arg max {alﬂvl(el) —¢;i(ei,0;) +inf T, (ei,ei)} for all 7, and 6;,

€—j

so that (E") follows from the fact that 7; (€) only depends on e; through inf._, 7;(e;,e_;). On
the other hand, (7”) for ¢ < N follows directly from (i¢), (4i¢), and the fact that bj(e;) < 0 for
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all j; and for 2 = N we have:

—inf 7y (e) = —infry(e)+supinf 7n(en,e_n)
e e en €_N
< bluny —un] +sup inf Ty (en,e—n)
EN €—-N
= 65—6EN—6Zui+sup inf Tn(en,e_nN)
i<N en =N
< 65—6EN—)—Z{infTi (e)—éﬂi}—l—sup inf Tn(en,e—n)
<N - € en =N
= 65—%N+Z{in_fbi(ei) —6ﬂi}+ZsupinfTi(ei,ei)
i<N L P R

< 58—52171'—5@]\[ < éluny —un],
i<N

where the first equality follows from () and (7); the first inequality form (7); the second equality
from the definition of s; the second inequality from (7); the third equality from (); the third in-
equality from (4i7) and (B) (i.e., >, sup,, infe_, 7i(e;, e_;) < 0because ), infe_; 7;(e},e_;) <
>, Ti(e') < Oforall €'); and the last inequality from (iv) and (B) (i.e., Eg {>_, 7 (€(#))} < 0).
Finally, notice that (7”) and the fact that —inf. 7; (¢) < 0 for all ¢ (which follows from (i)

and (7)) imply that @; > ;. Thus, ¢ is indeed self-enforcing. N

Proof of Proposition 3. For notational simplicity, this proof assumes that x;(e;) = e;, and
[Qz,gz] = [0, 1] (the proof for the general case follows exactly the same steps). For sufficiency,
suppose (RC) holds and let o be a stationary contract with ownership structure a such that:
(2) e(-) =€),

1

) Ti(e) = bi(e;) — N1 b;(e;) for all 4, with
J7i
(ZZ/) b'(e') _ ‘Pi(ah e;(0)7 0) + (1 - ai) {ei - e;‘(O)] if e; = {6;(0), er(l)h
o 0 otherwise,
1
(vi7) w; =; — 5 inf 7;(e) for i < N,
, s*
(iv) and uy = 1_5_2%"

<N
Where the continuation values u; are achieved by an appropriate selection of court enforced
transfers w. The budget will balance by construction. It will now be shown that the voluntary
transfer scheme in (77)—(74") will induce first-best effort levels provided it is credible. First notice
that no player 7 of type 6 (the subscript is dropped for simplicity) will profit by deviating to an
effort level inside [€](0), 00), other than €} (). Moreover, by construction, if a player 7 is of type

0 she will not gain by deviating to an effort lower than e} (0). Thus, it remains to show that no
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player 7 of type 6 > 0 will gain by selecting an effort lower than e(0), for which it will suffice
to prove that

a;e;(0) — ci(e;(0),0) + bi(e;(0)) = .ej(0) — ci(e;(0),0) + bi(e; (0))

> sup {we; —ci(e;,0)}.
87;<E7;(0)

But the first inequality follows from the above argument, and the second inequality follows from
a;e; (0) — ci(€7(0),0) + bi(ej (0)) = sup {aie; —ciei, 0)},
e;<e;(0)

together with the fact that ¢;(e;, #) has decreasing differences in (e;, ), i.e., assumption (A1).
It must now be shown that the voluntary transfers in (i7)—(i¢’) are indeed credible. For every

i < N this follows directly form (#i7), and for i = N we have

_iI;fTN(e) = —Zir;fTi(e)-i-Zi%fTi(e)

<IN

i jFi i<N
= > {pi(i,ef(0),0) + (1 — i) [ef (1) = e} (O)]} =6 ) [ui — ]
¢ i<N
< 1f6[s*—s]—62[u,—m]
<N
= Oluy —un],

where the second equality follows from (i7)—(i7’); the third equality from (7i7); the inequality
from (RC'); and the last equality from (iv).

Finally, observe that for all players infe 7;(e) < 0. Thus, the voluntary transfer condition
—infe 7i(e) < 6 [u; — W;] implies u; > W; for all 4, which provides the participation conditions
and completes the proof for sufficiency.

For necessity, let the stationary relational contract o achieve first-best surplus using ownership
structure a. Due to Lemma 6, WLOG we can assume the (credible) voluntary transfers prescribed

by o are given by:

Ti(e) = bi(e;) — ——= ) bj(e;), for all 4,
for some functions b;(-). Now let U;(0) := sup,, {cie; — ci(ei,8) + bi(ei)} , and notice that,
since €*(-) is implementable by hypothesis, we must have:

(v) Ui(0) = aie; (0) — ci(e; (0),0) + bi(e; (0)) for all 6.

i
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Application of Milgrom and Segal’s [2002] envelope Theorem 2 to (v) yields:

0
0
Ui(6) = Us0) + [ ggeslei (2),2)dz,
Jo 00
which in combination with (v) implies:
bi(e;(0)) — bi(e; (0)) = ci(ej(0),0) — ci(€;(0),0) (vi)
0
0
+ [ gpeeita), e — o ei(0) — i (0)].
g 00
However, since €*(-) is first-best efficient we must have:

Facilei(2),2) = ——{ei(2) —cilei(2), )},

and therefore (vi) becomes:

(vii) bi(e;(0)) — bi(e; (0)) = (1 — ) [ej(0) — €; (0)] -
On the other hand, in order to preclude any deviations from type 6 = 0, we must have:
bi(ei (0)) —bi(ef) = pi(ai, e7(0),0) (viii)
fore; : =arg max {a;e; — ci(e;,0)} .

Since transfers 7; () are credible by hypothesis, we must have, for all :
Olus —w] = —7ilef,eZ(1)) (i)
1
= —biled) + o Dbl (1),
J#i
Summing up (ix) across players yields:

1 f 5 [s* =3 > Z {bi(e; (1)) — bi(e7)} (xi)

= Z {0i(e7 (1)) — bi(e; (0)) + bi(e (0)) — bi(e;) }
> ) (1 aq)[ef(6) —ef(0)] + Z%(ai,e?(o)ao),

%

where the second inequality follows from (vii) and (viii), and completes the proof. I

Proof of Theorem 5. The first claim is a consequence of Lemma 2 (stationarity) and Proposi-
tion 3: Lemma 2 implies €*(-) is implementable using a stationary contract with, say, ownership
structure . The necessity direction of Proposition 3 implies (RC') holds for o/, and thus (RC')
must also hold for any « such that ), @; = 1, where € := argmax; Ax}. The claim then
follows from the sufficiency direction of Proposition 3. The second claim, on the other hand,

follows from the fact that «; = 1 implies Ab; = 0. I
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Proof of Theorem 6. For notational simplicity, this proof assumes that z;(e;) = e;, and [Qi,gi} =
[0,1] (the proof for the general case follows exactly the same steps). Consider the first claim.
Existence of some optimal contract o follows from the fact that the objective is continuous in
e(+) (say under an Lj metric), and the constraints are compact. For compactness, notice that
under (A1) any optimal contract will involve a non decreasing and bounded schedule e(-), but
such schedules constitute a compact set. Moreover, the subset of these schedules satisfying the
constraints is closed, and hence compact. Finally, compactness regarding bonuses follows from
their linearity.

The proof now proceeds by construction of a contract o that satisfies the desired properties,
and that provides a surplus at least as high as that created under 0. Throughout, let the variables
with a tilde “~ ” correspond to contract ¢, and those without a tilde to the original optimal
contract 0. We may assume WLOG that \; = 0 for all ¢, because such non-contingent voluntary
payment can be fully replaced by court enforced transfers w.

Claim 1: WLOG 3; < 1 — «; for all 7. Suppose that (3; > 1 — «;. This implies player j is
selects en effort level e;(-) > €}(+) (where €} (-) is the first-best level). But if 3; was reduced to
1 — «, player j would exert the first-best effort level for all #, and all other incentive constraints
would still hold. Thus, total surplus cannot decline, which establishes the claim.

Claim 2: WLOG f3; > 0 for all ¢. Suppose that ﬁj < 0. This implies player j selects an
effort level e;(-) < e;‘() But if 3; was increased to 0, player j would exert an effort level
ei(-) € [ej(+),€}(-)], and all other incentive constraints would still hold. Thus, total surplus
cannot decline, establishing the claim.

Now suppose [3; > 0 for all ¢, otherwise the claim in the Theorem would be true. Since o is

self-enforcing we must have:
8> Jui—w) = Y A= fei(l), and (i)
u; > u; for all 4, )

where (i) is the (DFE) constraint required for voluntary transfers to be credible, and (i) is
required for voluntary participation. Now WLOG let 1 € argmax;e;(1), and let the new

contract ¢ be such that:

(27) e(r) = eil),

(1v) a1 =ay+ B, and a; < o for all ¢ > 1,
(v) B1=0, and Bi=5i—)—ai—5zi for all 7 > 1,
(vi) Fi(e) = B3;min {e;, e;(1)} for all i > 1, and

File) = =Y Bymin{e;, e;(1)} .

i>1
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Moreover, let the court enforced transfers w be such that:

(vid) U =7 forall i > 1, and th = w1 + Y [u; — ),

i>1
Observe that if ¢ is self-enforcing, it will produce the same surplus as . We must therefore
verify this is indeed the case. From (7v) and (v), the effort levels in (¢i7) will be optimal
provided transfers are credible (i.e., total incentives remain constant: ,Bl + a; = B; + a;). But
since T;(+) > 0 for all ¢ > 1, in order to verify that transfers are credible it will suffice to examine

the incentives for player 1, for whom we have:
—1 g — 2 o < o c..
1r61f T1(e) Z Biei(1) < Z Biei(1) (vii)
(3 (3
< 52[%—@] =0 [ug — ],
A

where the first equality follows from (v7); the first inequality from the fact that 1 € arg max; e; (1),
B, < By, B; > fB; foralli > 1, and > B, = > B; (ie., (iv) and (v)); the second inequality
from (7); and the last equality from (vii).

Finally, (i) and (vii) guarantee voluntary participation, completing the proof for the first
claim.

On the other hand, suppose the second claim is false, and let o be an optimal contract that
implements Z(-). Then, following exactly the same steps as above, we can build a new contract &
that achieves the same surplus as ¢ and for which — ), inf. 75(e) < 0 Y, [u; — @] (i.e., there
is slack in the voluntary transfer constraint). This is possible because the fact that arg max; AZ;
(= argmax; €;(1)) is a singleton implies the first inequality in (viii) will be strict. Moreover,
since first-best cannot be achieved, there exists an player j for whom Bj + a; < 1. Thus,
incentives can be strengthened for j by (slightly) increasing Bj without violating any incentive

constraint, and by strict concavity of the objective this will increase surplus, a contradiction. il

13. APPENDIX 2

Consider the setup of Section 8 (i.e., hidden actions), but now suppose nature’s selec-
tion of @ does affect costs, i.e., §; < ;. Since 6 is publicly observed before the selection
of efforts, the reasoning in Section 8 applies following any value of 6. That is, on-step

schemes will be efficient, and the power of bonuses, now a function of €, becomes:
Abi(0) = pi(ei(0)) — aigi(e(0)),

Moreover, (RC') must now hold for all 6:

0
1-¢

5-73].

(RC) sgp ; Ab;(0) <
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However, since a must be selected before the realization of 6, the optimal ownership

structure solves:
min su Ab;(0) s.t.
i ep; (0)
(ND) iIelf Ab;(#) > 0 for all 1.

Under first-best (VD) can be ignored, and extreme ownership will still arise whenever
there is some player for whom the function g;(e(#)) is larger than those of her opponents
for all §. This will also be the case whenever 8* € argmaxg >, Ab;(0)%° can be selected
independent of « (e.g., this occurs if = is additively separable in a way that E [z | €] can
be expressed as ), F [x; | e;] , for some random variables x; that are independent of e_;).
The analysis for second-best will be more involved due to the presence of (N D). However,
a basic principle remains: the marginal returns to ownership will be high whenever there
is a combination of high marginal productivity and informational asymmetry, i.e., a high
qi(€(0)). Finally, if the timing was altered so that o was selected after observation of 6,

the resulting ownership structure a(#) would be precisely that described in Section 8.

14. APPENDIX 3

Consider the setup of Section 9 (i.e., hidden information), but without Assumption

(A4) on additive separability. Now define, for all i:
xi(ei) := Ep_,Ey [x | ei,e—i(0-;)] .

That is, x;(e;) is the expected value of output given e;, and given that other players
follow efforts e_;(A_;) while §_; is unknown to i. As in Section 9, let Ax; := z;(e;(0;)) —
xi(ei(d;)). It turns out that, for these functions z;(-), Proposition 3 and Theorems 5-6

will remain valid.4! However, some caveats follow:

1. Recall that a type communication stage, before the selection of e, is ruled out
(e.g., footnote 16). But communication may be necessary to achieve first-best
whenever the cross partials 02F [z | €] /0e;0e; are not zero. As a consequence, the
best outcome that can be sustained is a “limited information first-best” with efforts

kok
1

Theorem 5 refer to such limited information outcome.

e*(0;) := arg max, {xi(e;) — ci(e;,0;)}. The generalizations of Proposition 3 and
2. In the absence of (A4), the equivalence between additive separability of voluntary

transfers and dominant strategy implementation (Lemma 6) will no longer hold.

40This problem is well defined because first-best efforts guarantee that each Ab;(0) is continuous in 6.
“'ndeed, the same proofs remain valid once the possibility that z;(0) > 0 is accounted for, e.g., we

can no longer assume WOLOG that z;(0) = 0.
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3. Under (A4), the linear bonuses in Theorem 6 had a straightforward interpretation
as piece-rates. But when (A4) is relaxed, the empirical meaning of a linear function

over x; will not be as clear.
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