Secondary Appendix to “Relational Incentive Contracts”

This appendix provides details on the model of optimal contracting with subjective

performance measures and discusses the existence of optimal relational contracts.

APPENDIX C: SUBJECTIVE PERFORMANCE MEASURES.

Consider a full review contract that in its initial period specifies effort e, payments
w and b (y), and continuation payoffs u (y),n (y) contingent on output, with reversion to
static no trade equilibrium following a deviation in payments or in proposing or accepting
the contract. Define W (y) = w 4 b (y) and expected payoffs:

u = (1=6)Ey[W —clel+6Eyu(y)|e,
T = (1=6)Ey[y—Wlel+6Ey[m(y)|el,
and s = u + 7.

This contract is self-enforcing if and only if (i) both parties are willing to participate,

u>wand 7 > 7 (ii) the agent will choose e, i.e.
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(1) the principal will truthfully report, i.e. for all y, 3y’
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and (v) for all y, the continuation payoffs u (y) ,7 (y) correspond to a self-enforcing contract.

The Equilibrium Payoff Set. Assuming an optimal contract exists that generates surplus
s*, an argument identical to in the proof of Theorem 1 implies that the set of payoffs achiev-

able with a self-enforcing full review contract is equal to {(u,7) : w > T, 7 > 7 and v +7 < s*}.

Termination Contracts are Optimal. I now argue constructively, along the lines of The-
orem 2, that there is a termination contract that achieves the optimal surplus s*. Suppose

the contract described above is optimal. Then,



s = (1—8)Byly — c| ] + 8B, [s(y) | . (1)

Note that because s* is optimal, s (y) < s* for all y and hence Ey [y — c | €] > s*.

Now, let u* € [u,s* — 7| be given and define 7* = s* — u*. T construct a termination
contract with these payoffs. Suppose the contract specifies effort e, payments w* and b* (y),
and probabilities of continuation a* (y). Define a* (y) so that the expected continuation

surplus following any outcome y is the same as under the original contract:

540 () (5" %) =s(y). 2)

Let u* (y) = u+a* (y) (v* —u) and 7* (y) = T+a* (y) (7* — 7) be the expected continuation
payoffs following output y. Define b*(y) to so that agent’s expected future payoff following

outcome y is the same as under the initial contract:

0 (y) + 754 (W) = by) + T—5uly)- (3)

Combining (2) and (3) implies that for all y,
% 6 *
=0 Y) + 757 () = —b(y) + 57 (W)-
Finally, define the fixed payment w* so that the agent’s expected payoff is u*:

wt = (1 - 8)By [w* +0* (y) | el + 6B, [u* (4) | e].

I claim that this termination contract generates surplus s = s* and is self-enforcing. To

see this, observe that the surplus generated, s, satisfies:
s=(1-6)Byly—cle]+6{3+E[a"(m)|e](s—73)}.

Substituting (1) and (2) into this expression shows that s = s*. Moreover, this termination
contract, with effort e, payments w,b*(y)and contingent continuation payoffs u* (y) and
7* (y) satisfies the constraints (7)—(v) by definition. Hence, it is self-enforcing.

Self-Enforcing Termination Contracts. Next I identify simple conditions under which
a termination contract is self-enforcing (analogous to Theorem 3). Consider a termination
contract with effort e, payments w and b(y), and continuation probabilities a (y). The

expected payoffs u, m satisfy the recursive equations:

w = (1-8)By [W(y) —c| el +8u+ 6B, a ) | e (u—1)
(1= 8)Byly — W () | ¢ + 67+ 6B, [a(y) | o] (r — 7).

™



while the surplus s = v + 7 depends only on the effort and continuation probabilities:
s=(1-6)Eyly—clel+85+06E,[a(y)|e](s—73) (4)
This contract is self-enforcing if and only if it satisfies: (i) the participation constraints

w >, m > (ii) incentive compatibility for the agent

0
eeargmengy b(y)+1—_(5a(y) (u—7)|e| —c(é),

and (%ii) for the principal,
—b(y) + %a (y) (m —7) is constant in y;

(iv) willingness to make payments,
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and finally (v) for all y, 0 < a(y) < 1.

The next result reduces these constraints in a manner analogous to Theorem 3.

Lemma 1 A self-enforcing termination contract can implement effort e with continuation
probabilities a1 Y — [0,1] if and only if:

0
e € argmasx — B, [ (y) (s —3) | 4]~ c(?) (5)
where s is defined by (4) and is greater than or equal to's.

Proof. (=) If a termination contract defined by e,w,b(y),a (y) is self-enforcing, it must
satisfy (i)—(v) above. Adding the constraints () and (4i) implies it must satisfy the stated
constraint, and from (i) it must satisfy s > 3.

(<) Given e, : Y — [0, 1] satisfying the stated constraint, with s >3, complete the
termination contract by adding b(y) = 0 for all y and w = E[y —7 | ] . This completed
contract gives expected payoffs u = s—7 and w = 7. To see that it is self-enforcing, observe
that it satisfies (i), (#:) and (iv) by definition, (v) because a(y) € [0,1], and (%) because

b(y) =0 and u —u= s —3, so the assumption (5) implies incentive compatibility. Q.E.D.
Optimal Incentive Structure. Given the above, an optimal contract solves:
max s subject to (4),(5),

ecl0,e],:Y —=R
and 0 <a(y)<lforallyeV.



It is useful to make the following change of variable. Given a termination contract with
effort e and continuation probabilities o : Y — [0, 1], define the “per-period” loss following

outcome y to be:
T =0 —-ay)(s-3).

Making the change of variable, the optimal contract solves:

6
eyt B el R W) d
d
s.t. - {=Ey [T ()| e] —c(e)} =0,
s—35>71(y) >0 for all y.

Note that I have used a first-order condition in place of the agent’s effort constraint, a valid
substitution under the Mirrlees-Rogerson conditions.
This optimization problem is linear in 7 (y). Given the monotone likelihood ratio prop-

erty, the solution has e < ef? and

s—35 ify<y
T(y) = . A
0 ify>g

for some § € Y. Reversing the change of variables shows that under an optimal termination

contract a(y) =0 for all y < § and a(y) = 1 for all y > §. This proves Theorem 7.

Limit Inefficiency. Consider a solution to the optimal contract defined by a pair e, and
a per-period loss 7 (y) as described above. Given this, and after some algebra, the agent’s
first-order condition can be written as:

By(r () | | e — ¢(e) =0,

Now, because f > 0 and f./f is continuous on [y,%], it follows that f./f € [—/,1] for some
finite [ > 0. It follows that F,./F € [—[,l]. Consequently,

de) o)
Bl Wl = T57mge 2 1

This provides a bound on expected surplus independent of the discount factor:

/
sSE[y—c[e]—#<sFB.

So even as 6 — 1, an optimal contract cannot approximate the first-best.



APPENDIX D: EXISTENCE OF AN OPTIMATL CONTRACT.

I now consider the existence of optimal relational contracts in the model of Section 1. 1
show that for the relevant cases studied in the paper, an optimal contract will exist. The
argument is closely fashioned on the self-generation construction of Abreu et al. (1990).
They prove that in a broad class of games with a finite number of hidden actions and a
continuous noisy performance measure, the equilibrium payoff set is compact — this implies
the existence of optimal equilibria. 1 cannot directly adopt their result or proof, but instead
use a slightly different argument.

Define s™P =By, [y — ¢ | e"? (6)] to be the first-best joint surplus. Let £ C [3, sP] be
the set of joint surpluses that are consistent with a self-enforcing contract. To characterize

£, 1 first define an associated contracting problem (Problem C) for each s € [3,s"P].

max 1-96)E —cle(@)|+0os
(L= OBy ly ] (6)
subject to e(f) € argmax Ey [W(p) | e] —c(e,b) for all 6,

T (5-3) 2 sup W(p) —inf W(g).

Problem C looks for the optimal effort schedule among those that could be enforced given a
fixed continuation surplus s. To account for possibility that the parties could forego trade,
allow e (-) to be chosen either as a function e : © — [0,€] or as e (#) = 0, where ¢()) = 0
and Efy — cle = 0] =5.

Assumption Problem C admits a solution for all s € [5,s"P].

Define m (s) to be the maximized value of Problem C for each s € [3, s'P].

Lemma 2 The set {s: m(s) > s} has a largest element s* and m(s*) = s*.

Proof. First, when s = 3, the only feasible solution to Problem C is to set e (6) = ) or

e () = 0, so consequently m(3) =3. Second, m(s) is weakly increasing because an increase

in s both increases the objective and relaxes the constraints. Third, for all s € [3,s"5],

m(s) < s'P by the definition of s¥2. Thus m : [3, s8] — [5, s"P] is nondecreasing with
SFB)

m(3) =5 and m( < sP'B. Tarski’s fixed point theorem applied to the function m

implies the existence of a largest fixed point. Q.E.D.

Lemma 3 £ D [5, s%].



Proof. I first argue that s* € £. Suppose e(#) solves Problem C for s = s*. Because e ()
is feasible for Problem C, Theorem 3 implies that it can be implemented by a stationary
self-enforcing contract. Moreover, as m (s*) = s*, this stationary contract will generate

surplus s*. Thus ¢* € £ and the result follows from convexity. Q.E.D.

Lemma 4 £ C [35,s%].

Proof. Suppose to the contrary that there is some s' > s* with s* € £. Then the contract

that supports s' has some initial effort e () and continuation payoffs s!' (¢)such that:
st = (1= 0)Boyly — cle(9)] + 8Bqy[s (¢)le ()]

Self-enforcement implies that for each ¢, s! (¢) € £.

Suppose that for all ¢, s!(p) < s. Then e(#) must be feasible for Problem C given
the parameter s and hence m(s) > s. But because s > s* this contradicts the definition of
s*. Thus, it must be that s' () > s for some ¢, or in other words that sup,s' (¢) > s.
Consequently since s > s*, sup,, s' (¢) > m(sup, s' (¢)). I now argue to a contradiction
by constructing a sequence s!, 52, s3, ... converging to some § with the property that § > s*
and m (8) = §.

2 > 0 is chosen small enough so that s* >

' (p),
) =

Define s* = sup, s'(¢) — €*, where &
m(sup,, s' (). Since e (#) must be admissible for Problem C with parameter sup,, s
the definition of s' above implies that m(sup,, st(¢)) > s'. Because m(supy, ' (¢)
m (52 + 52), it follows that s2 > m (52 + 52) > gl

Now, because s' (¢) € € for all ¢, and s?

< sup, s' (@), it must be the case that
s? € £. So this same construction can be repeated to find some e and corresponding s>
with 53 > m (53 —|—53> > s2. Moreover, it is possible to take 0 < €% < &2. Tterating this
process yields an increasing sequence s — s and a decreasing sequence €” — ( such that
for all n,

8n+1 >m (8n+1 +€n+1> 2 Sn'

Taking limits implies that m(3) = 3. Since § > s! > s* this yields a contradiction. Q.FE.D.

This establishes that if Problem C admits a solution for any s, then & = [3, s*] so an
optimal contract exists. Problem C is a relatively straightforward problem. It is easy to
check that if @ and Y are finite, it will admit a solution. Given that ® and Y are continuous,
the problem needs to be checked separately for different informational conditions. If there
is symmetric information, i.e. ¢ = {#,e,y}, then an assumption that S is concave and

¢ is convex ensures a solution. With hidden information, the approach to combining the



constraints taken in Section III, combined with concavity, ensures a solution. The moral
hazard existence problem is more complicated and is discussed by Holmstrom (1979). Under
the Mirrlees-Rogerson conditions, however, the first-order approach is valid, and a solution
certainly exists. Thus, for the cases considered in the paper, existence of an optimal contract

is not a problem.



