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Abstract

Using a simple bargaining game, we investigate how strategic in-
teractions are shaped by preferences, technology and endowments. We
study if changes in relative military capabilities make conflicts more
likely, and find a non-monotonic relationship between the cost of con-
flict and the probability of conflict. The game has strategic comple-
ments if the cost of conflict is small and first-mover advantage is large,
and strategic substitutes otherwise. This characterization generates
predictions regarding strategic investments, e.g., in defense systems.
An extension shows how expanding one’s territory today may increase
the risk of conflict tomorrow.
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1 Introduction

Russia’s annexation of Crimea, and China’s island-building in the South
China Sea, are recent examples of what Schelling (1960) called “strategic
moves”. A strategic move presents the other side with the stark choice of
either conceding and losing the contested territory for sure, or resisting and
risking a major confrontation. Such strategic moves have a rich history. After
World War II, the Soviet Union gained the first-mover advantage in Eastern
Europe by occupying it in violation of the Yalta agreement.1 If the West
had not conceded, for example in Czechoslovakia or Hungary, a military con-
frontation would have been quite likely, because the Soviets could not have
retreated from these countries without a massive loss of reputation. Con-
versely, US soldiers stationed in Western Europe represented “the pride, the
honor, and the reputation of the United States government and its armed
forces” (Schelling (1966), p. 47). Therefore, the Soviet Union had every
reason to believe that the United States would resist an attack on West-
ern Europe. An East-West confrontation was avoided because the Soviets
conceded Western Europe just as the West had conceded Eastern Europe.
A confrontation may be unavoidable if two opposing sides move into the

same territory. For example, China and India contested vast border terri-
tories, and “[t]he military forces of both sides began pushing into remote
and previously mostly unoccupied mountainous frontier regions in 1958 and
1959”(Garver (2006), p. 105). These moves have been attributed to domestic
political concerns.2 Neither side wanted a war, but having made the commit-
ment, neither side was able to back down. War resulted from “the movement
and stationing of Chinese and Indian security personnel. They acted in a
competitive fashion, and incidents were bound to occur, particularly because

1At the Yalta conference in February 1945, it was agreed that the Soviet Union would
recover the territory it had lost after 1941. Elsewhere there were supposed to be free
elections and democratic governments.

2Mao was struggling with the consequences of agricultural collectivization, and his
confrontational international policies have often been attributed to his domestic problems
(Garver (2006), p. 123). In India, China’s repression of Tibet led to intense criticism
of Nehru’s policy of befriending China. Nehru’s “forward policy” established military
outposts in the contested border areas. According to Garver (2006), if China had given
Nehru “a few face-saving sops for him regarding Tibetan ‘autonomy’that Nehru could
use in fending off his domestic critics, Nehru might not have felt compelled to prove his
toughness on the border issue. Instead of adopting the forward policy, he might have stood
by a still-not-discredited friendship policy”(Garver (2006), p. 103).
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jurisdictions and border markings had never been jointly defined. The In-
dians hardened their stance on the borders after a major incident occurred
not in the Assam Himalaya but near the Aksai Chin. The conflict spiral pos-
sessed a momentum of its own and culminated in the Indian-Chinese border
war of October-November 1962”(Hoffmann (2006) p. 183).

We study a simple two-player bargaining game that captures the idea of a
strategic move as a “voluntary but irreversible sacrifice of freedom of choice”
(Schelling (1960)). Each player may challenge the status quo by demanding
an increased share of a contested territory. A costly conflict occurs if both
players challenge (since this implies mutually incompatible commitments), or
if only one player challenges but the other refuses to concede. In the latter
case, the challenger may have a first-mover advantage.
As the optimal challenge is the largest demand the opponent would con-

cede to, the game can be represented as a two-by-two coordination game
with actions Hawk (optimal challenge) and Dove (no challenge). The cost of
choosing Hawk is a player’s privately known type. We show how the payoffs
in this game can be derived from primitives (such as costs of conflict, relative
military strength and endowments, first-mover advantages and risk-aversion),
and study how these primitives determine the outcome of the strategic in-
teraction. We also characterize conditions under which actions are strategic
complements or strategic substitutes. This characterization is important,
as the two scenarios generate dramatically different predictions and policy
recommendations.3 It provides a rigorous foundation for Schelling’s ((1960),
(1966)) informal discussion of coordination failure amplified by uncertainty
as a source of conflict, and Jervis’s (1978) discussion of stag hunt (strategic
complements) and chicken (strategic substitutes) as canonical conflict games.
An increase in the first-mover advantage increases the probability of con-

flict in our model. More surprisingly, an increase in the cost of conflict can
have the same effect. It encourages the players to challenge the status quo,
knowing that the opponent will be willing to make larger concessions to avoid
a costly conflict. This logic may explain why many provocations, challenges
and proxy wars (Korea, Vietnam...) occurred during the Cold War. For

3For example, Baliga and Sjöström (2012) found that with strategic complements,
hawkish third parties (“extremists”) can trigger conflicts by sending messages that create
“fear spirals”. With strategic substitutes, hawkish extremists cannot do this — instead
dovish third parties (“pacifists”) can prevent conflicts by persuading one side to back down.
The current model provides a micro foundation which makes it possible to characterize
the two scenarios in terms of deeper parameters.

3



example, Khrushchev assisted the Cuban revolution in 1960, in defiance of
the “Truman doctrine”. Apparently, he was convinced that the U.S., if faced
with a fait accompli, would back down rather than risk a major war.4

Allison (2015) warned that the rise of China may lead to a “Thucydides
trap”, with an increased risk of conflict. Even the Chinese leaders are con-
cerned.5 In Section 5, we assume a “rising power” is militarily weaker and
controls a smaller share of the disputed territory than the opponent (the
“status quo power”). As the rising power becomes stronger it becomes more
hawkish, while the status quo power becomes more dovish. The net effect is
ambiguous in general, but if the status quo power is much stronger initially,
or if the share of territory it controls corresponds to its greater strength,
then the risk of conflict increases when the rising power’s military strength
increases slightly. However, when the rising power become suffi ciently strong
then the status quo power becomes suffi ciently dovish that the risk of conflict
decreases.

When actions are strategic complements, aggression is triggered by fear
of the opponent, as in Schelling’s (1960) analysis of the reciprocal fear of sur-
prise attack. With strategic substitutes, aggression is instead due to a lack of
fear. Our game has strategic substitutes if the cost of conflict is high.6 This is
consistent with the notion that the Cold War was a sequence of chicken races.
But if the cost of conflict is low, then the game has strategic complements if
utility functions are strictly concave and there is a significant first-mover ad-
vantage. This result is not obvious, because there are two opposing effects:
when the first-mover advantage increases, the cost of choosing Dove when
the opponent chooses Hawk increases, but so does the benefit from choosing

4During the Berlin crisis, Khrushchev told an American visitor that Berlin was not
worth a war to the US. Khrushchev was then asked whether it was worth a war to the Soviet
Union. “No”, he replied, “but you are the ones that have to cross a frontier” (Schelling
(1966), p. 46) —implying that it would be the West’s decision to risk a war by entering
East Germany after the Soviets had already occupied it. More recently, Pakistan has
employed militants and terrorists to attack the Indian Parliament, Jammu and Mumbai,
despite the high potential cost of a conflict between nuclear powers.

5“We all need to work together to avoid the Thucydides trap —destructive tensions
between an emerging power and established powers” (Presidient Xi Jinping as reported
by Valencia (2014)).

6This result depends on the assumption that, as in a game of chicken, a dovish player
never risks a conflict. If the players were afraid of surprise attacks that automatically lead
to conflict, rather than of strategic moves in Schelling’s sense, then a high cost of conflict
and large first-mover advantages could produce strategic complements.
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Hawk when the opponent chooses Dove. The first effect tends to generate
strategic complements, while the second effect does the opposite. As long as
the marginal utility of land is decreasing, the cost of losing territory exceeds
the benefit of acquiring the same amount, so the first effect dominates and
the game has strategic complements. If instead the marginal utility of land
had been increasing (perhaps due to the contested territory being considered
largely indivisible), then the game would have had strategic substitutes. This
shows how the primitives determine whether actions are strategic substitutes
or complements. The primitives in turn depend on the properties of the con-
tested resource and on the technology of war, which has changed throughout
history (see the concluding section).

A controversial Cold War issue was whether investments in defensive sys-
tems that reduce the cost of conflict (by protecting US cities against a mis-
sile attack) would be destabilizing (Rothstein (1968)). Eventually, President
Reagan went ahead with his “Star Wars”program. In Section 7 we show that
such investments have two effects familiar from the work of Schelling (1960).
First, the US will look tougher (less restrained by fear of conflict), making
the Soviets more fearful of US strategic moves. But second, Soviet strategic
moves become less profitable as the US becomes less willing to make conces-
sions. If actions are strategic substitutes, as suggested by the interpretation
of the Cold War as a sequence of chicken races, the two effects reinforce each
other, and the model predicts over-investment (in the sense of Fudenberg
and Tirole (1984)) in the defensive technology.
The model also predicts that a player with a low cost of conflict will

over-invest in defensive systems, regardless of whether actions are strategic
substitutes or complements. For example, if the Palestinians do not have
access to sophisticated weaponry, Israel will over-invest in defensive walls.
A more subtle strategic investment is to raise the value of one’s territory
by, for example, building settlements on it. Intuition may suggest that this
investment is just another way to “look tough”, but in our model this in-
tuition is quite misleading. Since a conflict may lead to the loss of all the
(divisible) territory, the settlements make the investor more willing to give
up some part of it to avoid a conflict. This encourages the opponent to
challenge the status quo. Building settlements may therefore be strategically
disadvantageous, even if the game has strategic substitutes.

Our basic bargaining game is one-shot, with no “shadow of the future”.
However, we would also like to answer questions such as: “When will force

5



create a spiral of hostility? When will concessions lead to reciprocations and
when will they lead the other side to expect further retreats?”(Jervis (1976),
p. 96). To see how such questions can be addressed in our framework, in Sec-
tion 8 we consider a dynamic extension. Actions have long-run consequences
because today’s outcome becomes the new status quo, and an opponent who
loses territory today may try to recapture it tomorrow. Farsighted players
must therefore trade off the short-run gain from a strategic move against the
long-run cost of facing a more aggressive opponent.

2 Related Literature

The game-theoretic literature on commitment in bargaining traces its ori-
gins to Nash’s (1953) demand game and Schelling’s (1960) seminal discus-
sion. The well-known ultimatum game is the simplest model of one-sided
commitment. With complete information it has an effi cient equilibrium, but
Fearon (1995) showed how asymmetric information and various forms of non-
transferable utility can lead to ineffi ciencies. His seminal discussion inspired
a large literature (see Baliga and Sjöström (2013) for a survey). This liter-
ature does not study the coordination problem that arises when both sides
may try to commit. The two-sided commitment problem was discussed by
Schelling (1960), using a metaphor of haggling over the price of a house.7

Another type of coordination problem, involving a reciprocal fear of surprise
attack, was illustrated by Schelling’s (1960) metaphor of a night-time bur-
glary.8 Jervis (1978) suggested that chicken and stag-hunt games are useful

7Schelling (1960) argued that either side could benefit by delivering an ultimatum:
“If each party knows the other’s true reservation price, the object is to be first with a
firm offer. Complete responsibility rests with the other, who can take it or leave it as he
chooses (and who chooses to take it). Bargaining is all over; the commitment (that is, the
first offer) wins” (Schelling (1960), p. 26). He then described the coordination problem:
“Interpose some communication diffi culty. They must bargain by letter; the invocation
becomes effective when signed but cannot be known to the other until its arrival. Now
when one person writes such a letter the other may already have signed his own or may
yet do so before the letter of the first arrives. There is then no sale; both are bound to
incompatible positions”(Schelling (1960), p. 26).

8 “If I go downstairs to investigate a noise at night, with a gun in my hand, and find
myself face to face with a burglar who has a gun in his hand, there is a danger of an
outcome that neither of us desires. Even if he prefers to leave quietly, and I wish him
to, there is a danger that he may think I want to shoot, and shoot first. Worse, there is
danger that he may think that I think he wants to shoot. Or he may think that I think
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lenses through which different kinds of conflicts can be viewed. Intuition sug-
gests that Schelling’s haggling and burglar scenarios correspond to chicken
(strategic substitutes) and stag-hunt (strategic complements), respectively.
We will pinpoint the distinction between the two scenarios in a bargaining
model with two-sided commitment, and show how intuition can be enhanced
by a formal analysis.
Crawford (1982) provided a formal model of two-sided commitment. In

his model, there is symmetric information when demands are made; if the
demands are incompatible then the players learn their cost of backing down
in a second stage. Crawford’s model will typically have multiple equilib-
ria, but Ellingsen and Miettinen (2008) showed that if it is costly to make
a commitment then the number of equilibria can be reduced. Specifically,
if commitment costs are small enough, and if commitment attempts only
succeed with probability q < 1, then there is a unique equilibrium where
both parties attempt to make the maximum commitment with probability
1. Their model has complete information, yet if the parties have access to
effi cient commitment technologies, so that q is close to 1, then the probabil-
ity of an ineffi cient conflict is also close to 1 (an agreement is almost never
reached). In our model, a player’s decision to make a commitment depends
on his private information. This leads to a unique equilibrium where an ineffi -
cient conflict occurs with some probability. But, depending on the primitives,
this probability can be small even though the parties have effi cient commit-
ment technologies (commitments are irrevocable). More recently, Ellingsen
and Miettinen (2014) studied an infinite horizon complete-information model
with a unique Markov perfect equilibrium. The equilibrium takes the form
of a war of attrition: an agreement is always reached, but only after a com-
mitment has decayed (implying an ineffi cient delay).
Several papers have studied incomplete-information coordination games

with a reduced-form payoff matrix, assuming strategic complements (see
Ramsay (2017) for a recent survey). Chassang and Padro i Miquel (2010)
showed that increasing weapons stocks can increase the probability of con-
flict by increasing preemption rather than deterrence. Acharya and Ramsay
(2013) showed that communication might not defuse tensions in a global
game model. Bueno de Mesquita (2010) studied a coordination model of
revolution, where a vanguard group might try to mobilize citizens. In con-
trast to these papers, our model is founded on bargaining over divisible ter-

he thinks I want to shoot. And so on”(Schelling (1960), p. 207).
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ritory as in Fearon (1995), which allows us to study a host of different issues.
Meirowitz, Morelli, Ramsay and Squintani (2019) adopted a rather different
approach, where a private arming decision is followed by communication and
bargaining. Finally, Abreu and Gul (2000) and Kambe (1999) found a unique
equilibrium in an infinite horizon war of attrition with a positive probability
that a player might be a “commitment type”. By considering conflict to be
a war of attrition, this line of research could perhaps be unified with ours.

3 The Bargaining Game

There are two players, A and B. In the status quo, player i ∈ {A,B}
controls a share ωi ∈ (0, 1) of a disputed territory, his endowment, where
ωA + ωB = 1. Player i’s utility of controlling a share σi is ui(σi), where ui is
an increasing, strictly concave and differentiable function on [0, 1]. Without
loss of generality we normalize so that ui(1) = 1 and ui(0) = 0. If a conflict
occurs, then player i suffers a cost φi > 0.
The bargaining game has two stages. In stage 1, player i ∈ {A,B} can

either make a claim σi, where ωi < σi ≤ 1, or make no claim. A claim
is a challenge (to the status quo) which incurs a cost ci for the challenger.
We interpret player i’s challenge as a non-revokable instruction to player
i’s military to cross the status quo demarcation and occupy a fraction σi
of the contested territory. Aside from the direct material cost (manpower,
physical resources), the incursion may be condemned by the international
community, leading to a loss of reputation and goodwill, possible sanctions
and embargoes, etc.9 A challenge may also generate benefits that reduce
ci. Such benefits may come from “looking tough” to a domestic audience,
or simply from diverting attention from diffi cult domestic issues (c.f. foot-
note 2). In addition, recent work on fairness and reciprocity suggests that
players who consider the status quo unjust may derive an intrinsic benefit
from attempting to correct the perceived injustice (e.g., de Quervain et al.
(2004)). These economic, political (international or domestic) and psycho-
logical costs/benefits jointly determine ci.10

9We assume ci is independent of whether player j also makes a challenge. In reality,
censures may be more severe if only one player challenges the status quo. We show
in Appendix A how the model can be generalized in this and other directions without
changing the main insights.
10Note that ci < 0 if the benefits exceed the costs.
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Let λi be a parameter that represents player i’s relative military strength,
where λA + λB = 1. Let θ be a parameter that measures the first-mover
advantage or disadvantage (to be explained below).
The game ends after stage 1 if either no player makes a claim, or both

make claims. Stage 2 is reached if only one player makes a claim, in which
case the other player (having observed the claim) chooses to concede or not
to concede. The final outcome is determined by three rules.

Rule 1. If nobody challenges in stage 1, then the status quo remains in
place.
Rule 2. If only player i challenges, and claims σi > ωi in stage 1, then

we move to stage 2. In stage 2, if player j 6= i concedes to player i’s claim
then player i gets σi and player j gets 1 − σi. If player j does not concede,
there is a conflict: with probability λi + θ, player i (the challenger) wins and
takes all of the territory; with probability λj − θ = 1− (λi + θ) player j wins
and takes all of the territory.
Rule 3. If both players challenge the status quo in stage 1 then there is

a conflict. Player i wins, and takes all of the territory, with probability λi.

We interpret these rules as follows. If neither player challenges the status
quo, then there is no reason why either player should retreat from his initial
position, so the status quo remains in place. If only player i makes a chal-
lenge then he becomes the first-mover and player j the second-mover. The
challenge is a strategic move in the sense of Schelling (1960): an irrevocable
commitment to start a conflict unless player j concedes and lets player i in-
crease his share of the territory to σi. If player j does not concede then there
is a conflict which player i wins with probability λi + θ; player i cannot back
down and avoid a conflict at this point.11 Finally, if both players challenge
the status quo, a conflict occurs because they have made mutually incompat-
ible commitments. Neither player has a first-mover advantage in this case,
so the conflict is won by player i with probability λi.12

11As discussed in the Introduction, a player who backs down after making a strategic
move would incur an intolerable loss of pride, honor and reputation.
12A more general formulation would be that if both decide to challenge, there is some

probability α > 0 that player i ∈ {A,B} can commit first, in which case player j must
decide whether or not to concede. Thus, each player would have a probability α of getting
the first-mover advantage. With probability 1 − 2α, both become committed and there
is a conflict where neither has the first-mover advantage. Similarly, like Ellingsen and
Miettinen (2008) we could assume that a challenge only leads to a successful commitment
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The parameter θ represents the increase in the probability of player i
winning when he is a first-mover, compared to the “baseline” of λi. We
allow θ to be positive (a first-mover advantage) or negative (a second-mover
advantage). Since λi + θ is a probability, we assume 0 < λi + θ < 1 for
i ∈ {A,B}. Note that this implies θ < 1/2.

Suppose stage 2 is reached. If player i is the second-mover and concedes
to the claim σj he gets ui(1 − σj). If he doesn’t concede, he gets expected
payoff

(λj + θ)ui(0) + (1− (λj + θ))ui(1)− φi = λi − θ − φi, (1)

since λi = 1− λj, ui(1) = 1 and ui(0) = 0. Thus, player i prefers to concede
if

ui(1− σj) ≥ λi − θ − φi. (2)

This is satisfied for σj = 1 if

φi ≥ λi − θ. (3)

If (3) holds then when player i is the second-mover he would rather concede
the whole territory than have a conflict. If (3) is violated, i.e., if

φi < λi − θ, (4)

then the maximum claim σj player i will concede to satisfies (2) with equality,
that is,

1− σj = u−1
i [λi − θ − φi] . (5)

Thus, in general, the maximum claim player i would concede to in stage
2 is the claim σj = 1− ηi, where

ηi ≡
{
u−1
i [λi − θ − φi] if φi + θ < λi,

0 if φi + θ ≥ λi.
(6)

Notice that if (4) holds then ηi is defined implicitly by

ui(ηi) = λi − θ − φi (7)

and satisfies ηi > 0. Equation (7) says that player i is indifferent between
the share ηi and a conflict when he is the second-mover (c.f. equation (1)).
Notice that ηi is decreasing in φi. The more costly a conflict would be, the
more territory the second-mover is willing to concede.
To make the problem interesting, we will assume:

with probability q < 1. Since these generalizations do not add any significant insights, we
set α = 0 and q = 1 for simplicity.
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Assumption 1 ηi < ωi for i ∈ {A,B}.

Assumption 1 implies that if the first-mover’s claim is suffi ciently “mod-
est”, i.e., close to the status quo, then the second-mover prefers to concede.
Assumption 1 rules out the less interesting case where the second-mover
would never concede (even to an arbitrarily small change in the status quo).
Assumption 1 is equivalent to the inequality

ui(ωi) > λi − θ − φi. (8)

The left-hand side of (8) is player i’s payoff from the status quo, and the right
hand side is his expected payoff from Rule 2 when he is the second-mover
and does not concede. Assumption 1 can also be re-written as

λj + θ > 1− ui(ωi)− φi. (9)

This reveals that if the cost of conflict is high enough, specifically if φi >
1−ui(ωi), then Assumption 1 is automatically satisfied. Note also that strict
concavity implies ui

(
1
2

)
> 1

2
ui(1) + 1

2
ui(0) = 1

2
. Therefore, in the symmetric

case where ωi = 1/2 the right-hand side of (9) is less than 1/2, so Assumption
1 is satisfied whenever λj + θ ≥ 1/2, i.e., as long as the first-mover has at
least an even chance of winning.

Games such as chicken and stag-hunt, which are often used as metaphors
for conflicts, have multiple equilibria when the true payoffs are common
knowledge. This raises the diffi cult issue of equilibrium selection. For exam-
ple, who backs down in a chicken race? But common knowledge of payoffs is
an unrealistic assumption. For example, Mao and Nehru could probably not
fully understand each other’s domestic concerns prior to the India-China war
(see footnote 2). If there is significant uncertainty about payoffs, the indeter-
minacies disappear. The following assumption leads to a particularly simple
analysis. We assume all parameters of the game are commonly known, with
one exception: player i’s cost of making a challenge is not known to player
j. Formally, for each i ∈ {A,B}, the cost ci is independently drawn from a
distribution F with support [c, c] and density f(c) = F ′(c). Player i ∈ {A,B}
knows ci but not cj. We refer to ci as player i’s type.
If the support of F is small, or if the support is large but the density

is highly concentrated around one point, then the players are fairly certain

11



about each others’types, and there can be multiple equilibria. We rule this
out by assuming that (i) the support of F is quite large, and (ii) the density
is quite “flat”. To simplify the expressions, define

Ωi ≡ λi − φi − ui(ηi)− ui(1− ηj) + ui (ωi) . (10)

Assumption 2 (Suffi cient uncertainty about types) (i)

c < min{ui(1− ηj)− ui(ωi), λi − φi − ui(ηi)}

and
c̄ > max{ui(1− ηj)− ui(ωi), λi − φi − ui(ηi)}

for i ∈ {A,B}. (ii)
f(c) <

1

|Ωi|
for all c ∈ [c, c] and i ∈ {A,B}.

If F is uniform, then (ii) is redundant because (i) implies (ii). Indeed,
the uniform distribution is maximally “flat”. However, we do not restrict
attention to the uniform distribution. In the non-uniform case, (ii) guarantees
that the density is not highly concentrated at one point.13

4 Equilibrium, First-Mover Advantage and
the Costs of War

If player i challenges and player j doesn’t, then player j will concede if and
only if player i’s claim σi satisfies σi ≤ 1−ηj.14 Let pj denote the equilibrium
probability that player j challenges.

Lemma 1 Consider a perfect Bayesian equilibrium such that pj < 1. If
player i challenges in equilibrium, then he will claim σi = 1− ηj.

13The significant uncertainty distinguishes our approach from Harsanyi (1973), who in-
troduced uncertainty concentrated on a very small interval [−ε, ε] in order to provide an
interpretation of mixed-strategy equilibria. His approach does not eliminate the indeter-
minacies of multiple equilibria.
14Sequential rationality forces player j to concede whenever σi < 1 − ηj . It is without

loss of generality to assume that player j concedes when equality holds (see footnote 15).
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Proof. The size of player i’s claim only matters if player j does not challenge.
Therefore, to find player i’s optimal claim we may restrict attention to this
event, which by hypothesis happens with probability 1− pj > 0.
Thus, suppose only player i makes a challenge. If player i claims σi >

1 − ηj then player j will reject the claim and there is conflict. By Rule 2,
this conflict gives player i expected payoff

(λi + θ)ui(1) + (1− (λi + θ))ui(0)− φi = λi + θ − φi (11)

using our normalizations. If instead player i claims σi ≤ 1− ηj then player j
will concede. Clearly, claiming strictly less than 1− ηj is strictly worse than
claiming 1− ηj. If player i claims 1− ηj then his payoff is ui(1− ηj) which is
strictly greater than (11). To see this, note that it certainly holds if ηj = 0.
If instead ηj > 0 and player i claims 1 − ηj then player j’s payoff is uj(ηj)
whether there is a conflict or not (see (7)). But conflicts are ineffi cient (since
the players are risk-averse and φi > 0), so player i strictly prefers to not have
a conflict and get 1−ηj for sure. Thus, (11) is strictly smaller than ui(1−ηj),
so claiming σi = 1 − ηj is strictly better than claiming σi > 1 − ηj. Hence,
if player i makes a challenge in equilibrium, he must claim σi = 1− ηj.15

We now show that the probability that player i challenges must be strictly
less than one, because he will not challenge if ci is too high.

Lemma 2 In perfect Bayesian equilibrium, pi < 1 must hold for each i ∈
{A,B}.

Proof. By challenging, player i can get at most

−ci + pj (λi − φi) + (1− pj)ui(1− ηj), (12)

using the fact that if pj < 1 then his optimal challenge is 1−ηj. His expected
payoff from not challenging is at least

pjui(ηi) + (1− pj)ui(ωi), (13)

using the fact that if player j challenges then player i gets at least ui(ηi).
Assumption 2(i) implies that (13) is strictly greater than (12) when ci = c̄.
Thus, if ci is suffi ciently close to c̄ then player i will not challenge.
15If player j does not concede when indifferent, i.e., when σi = 1 − ηj , then player i

would like to claim strictly less than, but arbitrarily close to 1 − ηj (as such claims will
necessarily be accepted). This would be incompatible with equilibrium. This standard
argument implies that player j must concede when indifferent.
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Combining Lemmas 1 and 2, we find that in any perfect Bayesian equilib-
rium, each player i will either not challenge, or choose the optimal challenge
σi = 1− ηj (which the opponent will concede to, if he did not himself make
a challenge). We label the optimal challenge Hawk (or H). To not make any
challenge is to choose Dove (or D). Thus, the two-stage bargaining game
can be reduced to the following 2× 2 payoff matrix. Player i chooses a row,
player j a column, and only player i’s payoff is indicated.

Hawk (claim σj = 1− ηi) Dove (no challenge)
Hawk (claim σi = 1− ηj) λi − φi − ci ui(1− ηj)− ci

Dove (no challenge) ui(ηi) ui(ωi)
(14)

The payoff matrix reveals that, under the reasonable assumption that
θ ≥ 0 (so there is no second-mover advantage), player i wants player j to
choose Dove, whatever action player i himself chooses.16

Lemmas 1 and 2 imply that the set of perfect Bayesian equilibria of
the two-stage game of Section 3 is isomorphic to the set of Bayesian Nash
equilibria (henceforth “equilibria”) of the simultaneous-move Hawk-Dove
game (where player i is privately informed about ci). Hence, we turn to
an analysis of the Hawk-Dove game. A strategy for player i is a function
gi : [c, c] → {H,D} which specifies an action gi(ci) ∈ {H,D} for each type
ci ∈ [c, c]. In equilibrium, all of player i’s types maximize their expected
payoff. Type ci is a dominant strategy hawk if Hawk (H) dominates Dove
(D) for this type.17 Type ci is a dominant strategy dove if D dominates H.18

Assumption 2(i) implies that the support of F includes dominant strategy
types of both kinds.
Suppose player i thinks player j will choose H with probability pj. Player

i’s expected payoff from playing H is

−ci + pj (λi − φi) + (1− pj)ui(1− ηj),
while his expected payoff from D is

pjui(ηi) + (1− pj)ui(ωi).
16To see this, first note that ωi > ηi implies ui(ωi) > ui(ηi). Second, we showed above

that ui(1− ηj) > λi + θ− φi so if θ ≥ 0 then ui(1− ηj)− ci > λi − φi − ci. Even if θ < 0,
it can be checked that player i prefers player j to choose Dove if ωi ≥ 1/2 and λi ≤ 1/2.
17Formally, H (interim) dominates D if ci ≤ ui(1−ηj)−ui(ωi) and ci ≤ λi−φi−ui(ηi)

with at least one strict inequality. For strict domination, both inequalities must be strict.
18Formally, D (interim) dominates H if ci ≥ ui(1−ηj)−ui(ωi) and ci ≥ λi−φi−ui(ηi)

with at least one strict inequality. For strict domination, both inequalities must be strict.

14



Thus, if he chooses H instead of D, his net gain is

−ci + pj (λi − φi − ui(ηi)) + (1− pj)
(
ui(1− ηj)− ui(ωi)

)
. (15)

Therefore, gi(ci) = H if (15) is positive, and gi(ci) = D if (15) is negative.
If (15) is zero then type ci is indifferent, and for convenience we assume he
chooses H in this case.
Player i uses a cutoff strategy if there is a cutoff point x ∈ [c, c] such that

gi(ci) = H if and only if ci ≤ x. Because the expression in (15) is monotone
in ci, all equilibria must be in cutoff strategies. Therefore, we can without
loss of generality restrict attention to cutoff strategies. Any such strategy is
identified with its cutoff point x ∈ [c, c]. If player j uses cutoff point xj, the
probability he plays H is pj = F (xj). Therefore, using (15), player i’s best
response to player j’s cutoff xj is the cutoff xi = Γi(xj), where

Γi(x) ≡ F (x) (λi − φi − ui(ηi)) + (1− F (x))
(
ui(1− ηj)− ui(ωi)

)
. (16)

The function Γi is the best-response function for cutoff strategies.
Assumption 2(i) rules out corner solutions, where all types do the same

thing. Indeed, Assumption 2(i) implies that Γi(x) ∈ (c, c̄) for all x ∈ [c, c̄] so
the equilibrium cutoff point will lie strictly between c and c. Since the
function (ΓA(xB), (ΓB(xA)) : [c, c̄]2 → (c, c̄)2 is continuous, a fixed-point
(x̂A, x̂B) ∈ (c, c̄)2 exists. This is an equilibrium (where player i uses cutoff
x̂i). Thus, an equilibrium (x̂A, x̂B) exists, where x̂i = Γi(x̂j) for i, j ∈ {A,B},
i 6= j. The slope of the best response function is Γ′i(x) = Ωif(x), where Ωi is
defined by (10). A standard suffi cient condition for the existence of a unique
equilibrium is that the absolute value of the slope of each player’s best re-
sponse function is less than 1. Assumption 2(ii) implies this. Thus, while
Assumption 2(i) guarantees that every equilibrium is interior, Assumption
2(ii) guarantees that there is a unique equilibrium:

Proposition 1 The Hawk-Dove game has a unique Bayesian Nash equilib-
rium.

The unique equilibrium can be reached via iterated deletion of strictly
dominated strategies. The precise argument depends on whether actions are
strategic complements or substitutes. Strategic complements (substitutes)
means that the incentive to choose Hawk is greater (smaller), the more likely
it is that the opponent chooses Hawk. If player j chooses Hawk, then if
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player i switches from Dove to Hawk player i’s net gain, from the payoff
matrix (14), is

λi − φi − ci − ui(ηi). (17)

If instead player j chooses Dove, then if player i switches from Dove to Hawk
player i’s net gain is

ui(1− ηj)− ci − u(ωi). (18)

Actions are strategic complements for player i if (17) is strictly greater
than (18), which is equivalent to Ωi > 0, where Ωi is defined by (10). They
are strategic substitutes for player i if Ωi < 0. The game has strategic sub-
stitutes (resp. complements) if the actions are strategic substitutes (resp.
complements) for both players.
For the rest of this section, assume the players are (ex ante) symmetric

in the sense that they have the same utility function, uA = uB = u, the same
cost of conflict, φA = φB = φ, the same military strength, λA = λB = 1

2
, and

the same initial endowment of territory, ωA = ωB = 1
2
. Then ηA = ηB = η.

The unique equilibrium must be symmetric, and the equilibrium cutoff x̂ is
the same for both players and implicitly defined by the equation

x̂− ΩF (x̂) = u(1− η)− u
(

1

2

)
(19)

where

Ω ≡ 1

2
− φ− u(η)− u(1− η) + u

(
1

2

)
. (20)

Now consider the iterated deletion of strictly dominated strategies, start-
ing with the case of strategic substitutes, Ω < 0. If ci > u(1 − η) − u(1

2
)

then H is strictly dominated and can be deleted for type ci. Similarly, if
ci <

1
2
− φ− u(η) then D is deleted. This completes the first round of dele-

tion; it makes no use of player i’s beliefs about player j. Next, note that
type ci = 1

2
− φ− u(η) is willing to choose D if and only if he thinks player

j chooses H with probability 1. However, under Assumption 2(i), the first
round of deletion eliminated H for a set of types that has strictly positive
probability. This makes D strictly dominated for type ci = 1

2
− φ − u(η).

The same must be true for “almost dominant strategy hawks”with ci slightly
above 1

2
−φ− u(η), so D is eliminated for such types as well. Similarly, H is

eliminated for “almost dominant strategy doves”. This completes the second
round; it utilizes player i’s beliefs about player j’s dominant strategy types.
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The third round utilizes player i’s beliefs about player j’s beliefs about player
i’s dominant strategy types to delete strategies for “almost-almost dominant
strategy types”, etc. Eventually, under Assumption 2, this iterative process
will completely resolve the uncertainty about what any type will do.19

With strategic complements, Ω > 0, the fear of dominant strategy hawks
causes “almost dominant strategy hawks”(ci slightly above u(1− η)− u(1

2
))

to play H, which in turn causes “almost-almost dominant strategy hawks”
to play H, etc. This “hawkish cascade”causes higher and higher cost-types
to choose H. Meanwhile, “almost dominant strategy doves”(ci slightly below
1
2
− φ − u(η)) will play D, knowing that the opponent may be a dominant

strategy dove. The “dovish cascade”causes lower and lower types to choose
D. Again, the iterative process will completely resolve the uncertainty about
what any type will do. In asymmetric scenarios with strategic complements
for one player and strategic substitutes for the other, the iterative process
uses a combination of the arguments in this and the previous paragraph.

Turning to comparative statics,20 consider first how η depends on φ and
θ. If φ + θ > 1/2 then η = 0 and dη/dθ = dη/dφ = 0. But if φ + θ < 1/2
then (7) holds, and the second-mover concedes more if θ or φ increases:

dη

dθ
=
dη

dφ
= − 1

u′(η)
< 0. (21)

An increase in the first-mover advantage θ allows the first-mover to ex-
tract a larger concession (dη/dθ ≤ 0), which makes it more tempting to
choose H. Thus, a conflict becomes more likely. A perhaps more surpris-
ing result concerns the cost of conflict φ. When φ increases there are two
19The mathematics requires that a non-negligible fraction of types is removed in each

round; Assumption 2(ii) guarantees this. Note the importance of two-sided incomplete
information. For suppose there is significant uncertainty only about player B’s type,
while player A is commonly known to be an “opportunist”such that 12 −φ− u(η) < cA <
u(1−η)−u( 12 ). Thus, player A prefers to play H against D and D against H. Since player
A has no dominant strategy types, there is nothing to eliminate for him in the first round.
Even after player B’s first-round elimination, there may be nothing to eliminate for player
A. In this case, there will be multiple equilibria: one where player A surely plays D and
player B plays H unless he is a dominant strategy dove, another where player A surely
plays H and player B plays D unless he is a dominant strategy hawk, and a third where
player A plays H with some probability.
20If Assumption 2 is relaxed then uniqueness is lost, but we can still obtain comparative

statics of the “highest”and “lowest”equilibria (Milgrom and Roberts (1990)). However,
for the results to be interesting, at least one of these equilibria must be interior, which
requires that at least one dominant strategy type is in the support of F .
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opposing effects. On the one hand, it becomes worse to choose H when the
opponent chooses H. But on the other hand, when one player chooses H
and the other D, the former may now extract a larger concession from the
latter (dη/dφ ≤ 0). When φ is low, the second effect dominates, so the
incentive to choose H increases with φ. When φ becomes high enough, how-
ever, η = 0 and the second effect vanishes. Any further increases in φ will
reduce the incentive to choose H. This non-monotonicity is consistent with
the “stability-instability”paradox (Hart (1960), Snyder (1965)): increasing φ
from an initially low level first causes “instability”as each player tries to ex-
ploit the first-mover advantage, but then “stability”as φ becomes suffi ciently
large to make the players more cautious. We state this result formally.21

Proposition 2 Suppose the players are ex ante symmetric. An increase in φ
increases the probability of conflict if φ+ θ < 1/2, but reduces the probability
of conflict if φ+ θ > 1/2.

Proof. If φ + θ < 1/2 then totally differentiate (19) with respect to φ and
use (21) to obtain

dx̂

dφ
=

1

1− Ωf(x̂)

u′(1− η)

u′(η)
(1− F (x̂)) > 0.

Thus, when φ increases x̂ increases, making conflicts more likely.
If φ+ θ > 1/2 then η = 0 and dη/dφ = 0. We get

dx̂

dφ
= − 1

1− Ωf(x̂)
F (x̂) < 0.

5 Power Imbalances and Conflict

We now consider the implications of (ex ante) asymmetries. For simplicity,
suppose uA = uB = u and φA = φB = φ, so the asymmetries only concern
endowments of territory and military strength. Suppose player B is a ris-
ing power who controls a smaller part of the territory (ωB < ωA), but his

21Like the other substantive results in this paper, Proposition 2 holds also in the gener-
alized model of Appendix A.
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military position is improving relative to the opponent (λB increases, with a
corresponding decrease in λA ≡ 1− λB). Using (6), player i’s best response
function (16) can be written

Γi(x) = F (x) min {λi − φ, θ}+ (1− F (x))
(
u(1− ηj)− u(ωi)

)
. (22)

Since 1− ηA is non-decreasing in λB, the increase in λB shifts ΓB up: player
B becomes “tougher”(more inclined to choose H). On the other hand, ΓA
shifts down: player A (the status quo power) becomes “softer”. Whether a
conflict becomes more or less likely depends on which of these two effects
dominates. In turn, this depends on the nature of the initial equilibrium
(x̂A, x̂B). The equilibrium probability of conflict is W = F (x̂A)F (x̂B), so a
change in x̂i has a bigger impact onW if F (x̂j) is big, i.e., if player j is likely
to choose H.
Part (i) of our next proposition shows that if the status quo power is

militarily strong (i.e., λA is large) and more likely than the opponent to
choose H (i.e., x̂A > x̂B), then an increase in λB makes a conflict more likely.
Part (ii) proves that this is also true at a balanced equilibrium, where each
player is equally likely to choose H. But part (iii) shows that if λB increases
suffi ciently, then the rising power will become more likely to choose H, and
further increases in λB make a conflict less likely.
To understand the balanced case, note that in general we have

dW

dλB
= F (x̂B)F ′(x̂A)

dx̂A
dλB

+ F (x̂A)F ′(x̂B)
dx̂B
dλB

. (23)

This expression simplifies in a balanced equilibrium where x̂A = x̂B = x̂, in
which case

dW

dλB
= F ′(x̂)F (x̂)

(
dx̂A
dλB

+
dx̂B
dλB

)
. (24)

Player i’s incentive to choose H depends on both λi and ωi. In a balanced
equilibrium, player A’s greater endowment, ωA > ωB, perfectly reflects his
greater military strength, λA > λB, so that neither side has more reason to
challenge the status quo than the other. If the rising power gains military
strength, then the status quo is no longer legitimate in this sense. The
rising power becomes more hawkish, and the status quo power becomes more
dovish. Part (ii) shows that the former effect dominates at the balanced
equilibrium, so (24) is positive and the probability of conflict increases.22

22Herrera, Morelli and Nunnari (2019) also find, in a model that is quite different from
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Concavity of utility functions plays a key role in the proof of part (ii). In-
tuitively, the rising power is weak initially and cannot extract much territory
by a strategic move (1−ηA is small). But concavity means that the marginal
value of territory to the status quo power is small, so an increase in λB has
a big effect on 1− ηA. Again by concavity, extra territory is very valuable to
the rising power, so his incentive to choose H increases significantly, making
dx̂B/dλB large. But there is a much smaller effect on 1 − ηB, and territory
is not so valuable to the status quo power, so the change in his incentive to
choose H is rather small. Accordingly, dx̂A/dλB is smaller in absolute value
than dx̂B/dλB, so that (24) is positive.

Proposition 3 Suppose uA = uB = u and φA = φB = φ. (i) If λA >
max {φ+ θ, 1− φ− θ} and x̂A > x̂B then a small increase in λB makes con-
flicts more likely. (ii) If λA > λB, ωA > ωB and x̂A = x̂B, then a small in-
crease in λB makes conflicts more likely. (iii) If λB > max {φ+ θ, 1− φ− θ}
and ωA > ωB then a small increase in λB makes conflicts less likely.

The proof is in Appendix B. Parts (i) and (ii) suggest the existence of
a “Thucydides trap”. But when λB increases, the trap itself implies F (x̂B)
will become bigger than F (x̂A), so increases in x̂B start to have less impact
on W than reductions in x̂A. Eventually, conflicts become less likely (part
(iii)). Thus, the Thucydides trap contains the seeds of its own destruction,
and the probability of conflict is a non-monotonic function of λB. Intuitively,
once player B is strong enough, player A has little incentive to challenge the
status quo or to fight over territory. If player B makes a challenge, the likely
outcome is (D,H), resulting in a peaceful transfer of territory from A to B.
Even if the Thucydides trap no longer operates, the status quo power is made
worse off as the rising power gets increasingly aggressive and the status quo
power backs down.

6 Escalation and Deterrence: Strategic Com-
plements and Substitutes

We begin by showing that actions are strategic substitutes if there is no
military advantage to being the first-mover.

ours, that conflicts may be due to a mismatch between military capabilities and the allo-
cation of resources.
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Proposition 4 The game has strategic substitutes if θ ≤ 0.

Proof. Recall that actions are strategic substitutes for player i if Ωi < 0. If
ηi > 0 then (7) holds so

Ωi = θ − ui(1− ηj) + ui (ωi) < θ

since 1− ηj > ωi. If ηi = 0 then (3) holds so

Ωi = λi − φi − ui(1− ηj) + ui (ωi) < λi − φi ≤ θ

where the first inequality is due to 1− ηj > ωi.
To simplify the exposition, for the remainder of this section we again as-

sume the two players are symmetric ex ante. We therefore drop the subscripts
on ui, φi and ηi and observe that ωA = ωB = 1/2 and λA = λB = 1/2. We
have ΩA = ΩB = Ω as defined by (20). The game has strategic substitutes if
Ω < 0 and strategic complements if Ω > 0. Totally differentiating Ω yields

dΩ

dθ
= − (u′(η)− u′(1− η))

dη

dθ
≥ 0 (25)

with strict inequality when φ+ θ < 1/2, in view of (21) and strict concavity
(note that η < 1− η). Also,

dΩ

dφ
= − (u′(η)− u′(1− η))

dη

dφ
− 1 < 0. (26)

If φ + θ > 1/2 then (26) follows from dη/dφ = 0. If φ + θ < 1/2 then (21)
implies

dΩ

dφ
= (u′(η)− u′(1− η))

1

u′(η)
− 1 = −u

′(1− η)

u′(η)
< 0.

Thus, actions are more likely to be strategic complements the bigger is θ and
the smaller is φ.
It is intuitive that if φ is large, then the most important consideration

is to avoid a conflict —just as in the classic chicken race, where a collision
would be disastrous. Thus, we have the following result.

Proposition 5 Suppose the players are symmetric ex ante. If φ > u(1/2)−
1/2 then the game has strategic substitutes.
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Proof. By concavity,

u(η) + u(1− η) ≥ u(0) + u(1) = 1.

Therefore, φ > u(1/2)− 1/2 implies

Ω =
1

2
− u(η)− u(1− η) + u (1/2)− φ < 0.

If φ is small, however, then the players will be more concerned about ter-
ritorial gains and losses than about avoiding a conflict, and actions become
strategic complements if θ is large. Intuitively, a large θ has two effects: it
will be very costly to be caught out and play Dove against Hawk, but it
will be very rewarding to play Hawk against Dove. The first effect tends
to make actions strategic complements, while the second effect does the op-
posite. It can be seen in (25) that the first effect dominates: intuitively,
concavity means that it is more important to preserve your own territory
than to acquire the opponent’s territory. Thus, we have:

Proposition 6 Suppose the players are symmetric ex ante and φ < u(1/2)−
1/2. There exists θ∗ ∈ (0, 1/2) such that the game has strategic substitutes if
θ < θ∗ and strategic complements if θ > θ∗.

Proof. Fix φ such that φ < u(1/2) − 1/2. Then φ < 1/2 since u(1/2) <
u(1) ≡ 1. From Proposition 4, we have Ω < 0 if θ ≤ 0. Now define

θ̄ ≡ 1

2
− φ ∈ (0, 1/2).

From (6) it follows that η = 0 if and only if θ ≥ θ̄. When η = 0 we have

Ω = u

(
1

2

)
− 1

2
− φ > 0

so that Ω > 0 when θ ≥ θ̄. Thus, there exists θ∗ ∈ (0, θ̄) such that if θ = θ∗

then Ω = 0 and η > 0. It follows from (25) that Ω < 0 if θ < θ∗ and Ω > 0 if
θ > θ∗.
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Note that θ∗ from Proposition 6 depends on φ, so we can write θ∗ = θ∗(φ).
It is easy to check that the function θ∗(φ) is decreasing in φ.23 Hence, the
parameter range where the game has strategic complements is decreasing in
the cost of conflict.
Note also the key role played by (25) in the proof of Proposition 6. This in-

equality comes from the maintained assumption of strict concavity (decreas-
ing marginal utility of land). The concavity assumption would be violated
if the contested territory were considered (more or less) indivisible, perhaps
because controlling it is a matter of national prestige, so that players are
willing to gamble on a territorial expansion. With convex utility functions,
the game would surely have strategic substitutes. To see this, note first that
the proof of Proposition 4 does not use concavity, so the game has strate-
gic substitutes if θ ≤ 0. If θ increases, the marginal gain from choosing H
against D (which is u(1 − η) − u(1/2)) increases faster than the marginal
gain against H (which is 1

2
− φ− u(η)). This is true because dη/dθ ≤ 0, and

u′(1 − η) > u′(η) under convexity. This means Ω cannot increase (the in-
equality in (25) is reversed), and actions remain strategic substitutes also for
θ > 0.24 Intuitively, the inequality in (25) is reversed because with increasing
marginal utility of land, it is more important to acquire the opponent’s ter-
ritory than to preserve your own territory. Thus, strategic complementarity
is impossible when utility functions are convex. This confirms the intuition
that risk-seeking leads to chicken races, while stag hunts are for risk-averse
players only.

23Since η depends on φ and θ, we can write η = η(φ, θ). The function θ∗ = θ∗(φ)
identified in Proposition 6 is such that Ω = 0 when η = η(φ, θ∗). Substitute η = η(φ, θ∗(φ))
in (10) to get

1

2
− u(η(φ, θ∗(φ))))− u(1− η(φ, θ∗(φ))) + u

(
1

2

)
− φ ≡ 0

for all φ < u(1/2)−1/2. The proof of Proposition 6 implies that θ∗ < 1−φ, so η(φ, θ∗(φ)) >
0 satisfies (7). Using this fact, totally differentiating the identity above yields

dθ∗(φ)

dφ
=

−u′(1− η)

u′(η)− u′(1− η)
< 0.

24We assume Lemma 1 obtains even with convex utility functions. This is true if the
cost of conflict is high enough.
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7 Strategic Investments

Suppose player A can make an ex ante move (before types are drawn) that
changes the parameters of his payoff function in the bargaining game. For
example, player A might invest in defensive technology, such as a defensive
wall, an anti-missile system or cybersecurity software, to reduce the cost of
conflict. Allowing businesses or settlements to develop on contested land
might make the land more worth fighting for. Alternatively, player A might
announce that his endowment is sacred (losing territory then becomes more
costly, as it implies loss of face), or delegate decision-making to an agent who
is less conflict-averse than he is, or who values territory more. These tactics
influence the resolve to fight for territory and shift the best response curves.
Borrowing terminology from Fudenberg and Tirole (1984), we say that

player A over-invests if he derives a strategic advantage from an ex ante
investment, i.e., if player B becomes more likely to choose D. (If the invest-
ment makes player B more likely to choose H, then player A under-invests).
The familiar logic of Fudenberg and Tirole (1984) (see also Tirole (2016))
suggests that if actions are strategic substitutes, then player A benefits by
becoming tougher (shifting ΓA up); with strategic complements, he benefits
by becoming softer (shifting ΓA down).25 There is, however, a complicating
factor: player A’s investment may change the minimum amount ηA he would
be willing to accept if he is challenged, which shifts ΓB. Thus, player A’s
investment can shift both best-response functions. For example, an invest-
ment which reduces φA tends to make player A tougher and player B softer
(as player A becomes less inclined to make concessions). Both effects must
be taken into account when determining if the investment is strategically
advantageous.
To simplify the exposition, assume λA = λB = 1/2 and ωA = ωB = 1/2.

Moreover, assume utility functions are piecewise linear. There are constants
vi > 0 and gi > 0 such that each unit of player i’s own endowment is worth
vi to him, but each unit of player j’s endowment is worth only gi < vi to
player i. Normalizing the status quo utility to zero,26 we obtain the utility

25This is true in their model when entry is accommodated, which is the relevant case
for our comparison.
26Thus, to simplify formulas, here we do not normalize ui(1) = 1 and ui(0) = 0.
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function

ui(σi) =


vi (σi − 1/2) if σi − 1/2 ≤ 0

gi(σi − 1/2) if σi − 1/2 ≥ 0

This utility function is concave but not strictly concave. However, strict
concavity is only important in as much as it guarantees that each unit of
player i’s own endowment is strictly more valuable to him than each unit
of player j’s endowment.27 This property holds here, because gi < vi. The
payoff matrix of the row player, player i, is now

H D
H gi/4− vi/4− φi − ci gi(1/2− ηj)− ci
D vi(ηi − 1/2) 0

(27)

Actions are strategic complements for player i if

vi − gi
4
− viηi + giηj − φi > 0 (28)

and strategic substitutes if the opposite inequality holds. Player i’s best-
response function is

Γi(x) = F (x)

(
vi + gi

4
− φi − viηi

)
+ (1− F (x)) gi

(
1

2
− ηj

)
(29)

where

ηi =

{
(1− 2θ) vi+gi

4vi
− φi

vi
if φi < (1− 2θ) vi+gi

4

0 if φi ≥ (1− 2θ) vi+gi
4

(30)

We consider the strategic effects of ex ante moves (investments) that
either reduce φA, the cost of conflict, or increase vA, player A’s valuation of
his own endowment (in each case by a small amount).28

Suppose player A’s investment reduces φA by a small amount (say, by
installing defense systems). First, suppose actions are strategic substitutes

27That is, all the results of the paper go through if strict concavity of ui is replaced by
the weaker assumption: if 0 < x < ωi < y < 1 then u′i(x) > u′i(y).
28To simplify, we disregard what Fudenberg and Tirole (1984) call direct effects of the

investment (including any ex ante costs of investing), as these are irrelevant to the analysis
of under- versus over-investment.
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for player B. There are two cases; both lead to the conclusion that A will
over-invest, but for quite different reasons. The first case occurs when φA >
(1− 2θ) vA+gA

4
so ηA = 0 and dηA

dφA
= 0. From (29), player A’s investment

causes ΓA to shift up: player A becomes tougher. It has no effect on ΓB.
Since actions are strategic substitutes for player B, player A over-invests
to persuade player B to choose D. This is the traditional interpretation of
Schelling’s commitment tactic —become tough in order to deter aggression.
The second case occurs when φA < (1− 2θ) vA+gA

4
, so ηA > 0. Substitut-

ing from (30) into ΓA(x), we find

ΓA(x) = F (x)θ
vA + gA

2
+ (1− F (x)) gA

(
1

2
− ηB

)
. (31)

Thus, reducing φA has no effect on ΓA. However, ΓB shifts down because
ηA increases, as player A is less willing to concede territory without a fight.
There is an unambiguous strategic advantage for player A in making player B
less likely to choose H. Hence, player A again over-invests in cost-reduction
—not to make himself tough, but to make the opponent soft.
Next, suppose actions are strategic complements for player B. Now

the two cases lead to different conclusions. The first case occurs when
φA > (1− 2θ) vA+gA

4
so ηA = 0. Again, the investment shifts ΓA up. By

strategic complements, player B becomes more likely to choose H, which is
disadvantageous for player A. Therefore, player A will under-invest, to make
B feel less threatened and more likely to choose D. The second case occurs
when φA < (1− 2θ) vA+gA

4
. As ηA > 0 in this case, as discussed above player

A’s investment has no effect of ΓA but shifts ΓB down. Player A benefits
from making player B soft, and hence will over-invest.
We summarize the discussion so far:

Proposition 7 Suppose investment by player A reduces φA. If actions are
strategic complements for player B and φA > (1− 2θ) vA+gA

4
, then player A

under-invests. Otherwise, he over-invests.

Thus, if φA is low then player A will surely over-invest in defensive tech-
nology. But if φA is high, then player A will over-invest or under-invest
depending on whether actions are strategic substitutes or complements for
player B, following the usual logic of Fudenberg and Tirole (1984).
Now consider an investment that increases vA by a small amount (say,

building settlements on the disputed territory, making it more valuable).
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Suppose first that φA > (1− 2θ) (vA + gA)/4 so ηA = 0. In this case the
increase in vA has no effect on ΓB. But it makes it more costly for player A
to lose all of the territory, as he will do when he is the second-mover. By
choosing H, he may avoid this bad outcome, so ΓA shifts up. The usual
logic of “looking tough”means player A over-invests in settlements when
actions are strategic substitutes for player B, but under-invests when they
are strategic complements.
The logic is more subtle when φA < (1 − 2θ)(vA + gA)/4. Again, the

investment which increases vA causes ΓA to shift up. Whether ΓB shifts
down or up depends on whether ηA increases or decreases. Now, from (30),

∂ηA
∂vA

= −
(1− 2θ)gA

4
− φA

v2
A

(32)

so ΓB shifts down if φA > (1− 2θ)gA/4, but shifts up if φA < (1− 2θ)gA/4.
To understand this, note that a small change dvA > 0 has two effects

on player A’s incentive to concede. On the one hand, if player A concedes
to player B’s demand 1 − ηA then player A must give 1

2
− ηA units of his

endowment to player B. Thus, increasing vA by dvA increases player A’s cost
of conceding by

(
1
2
− ηA

)
dvA. On the other hand, if player A does not con-

cede, he will lose all of his endowment (which is of size 1/2) with probability
θ+ 1/2. Thus, increasing vA by dvA increases player A’s expected cost of not
conceding by (1/2)(θ + 1/2)dvA. The first effect dominates, making player
A less willing to concede (∂ηA/∂vA > 0), when ηA < (1− 2θ)/4. From (32)
this inequality is equivalent to φA > (1− 2θ)gA/4. But if φA < (1− 2θ)gA/4
then the second effect dominates and therefore ∂ηA/∂vA < 0.
Intuitively, since a conflict may lead to the loss of all the territory, set-

tlements can make player A more willing to give up some part of the ter-
ritory in order to avoid a conflict. This makes player B tougher (shifts ΓB
up), which tends to make settlements a strategic disadvantage for player A.
On the other hand, ΓA also shifts up, which tends to make settlements a
strategic advantage for player A if actions are strategic substitutes. Thus, if
φA < (1− 2θ)gA/4 then the net effect of an increase in vA is ambiguous; it is
possible that the shift of ΓB dominates, so that player A under-invests in set-
tlements even if the game has strategic substitutes. Similarly, the net effect
is ambiguous if φA > (1− 2θ)gA/4 and the game has strategic complements.
The remaining cases are unambiguous. The results can be summarized as
follows:
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Proposition 8 Suppose investment by player A increases vA. (i) Suppose
φA > (1 − 2θ)(vA + gA)/4. Player A over-invests if actions are strategic
substitutes for player B, and under-invests otherwise. (ii) Suppose φA <
(1 − 2θ)(vA + gA)/4. Player over-invests if φA > (1 − 2θ)gA/4 and actions
are strategic substitutes for player B, but under-invests if φA < (1− 2θ)gA/4
and actions are strategic complements for player B.

8 The Shadow of the Future

Suppose bargaining takes place both today (period 1) and in the future (pe-
riod 2), in each period following the rules of Section 3. The two periods
are linked because today’s outcome may change the status quo, which will
influence tomorrow’s negotiations. A player who loses territory today will in
the future become more aggressive as he tries to recapture what he lost. This
leads to a strong tendency for actions to be dynamic strategic complements,
which tempers the incentive to make challenges today.
Suppose the cost of making a challenge is independently drawn at the

beginning of each period. At the beginning of period 1, the status quo
allocation is (ωA, ωB) = (1/2, 1/2). Period 1 bargaining will either lead to a
conflict, in which case the game ends, or it will generate some new division
of the territory, say (ω̂A, ω̂B). Then (ω̂A, ω̂B) becomes the new status quo,
the starting point for the period 2 bargaining.
If there is no conflict in period 1, then in period 2 the players must behave

exactly as in the one-shot game, given endowments (ω̂A, ω̂B), because period
2 is the last period. Therefore, before nature has determined the cost of
challenging in period 2, player A’s expected period 2 payoff is

F (x̂A)F (x̂B)

[
1

2
uA(1) +

1

2
uA(0)− φA − E {cA : cA ≤ x̂A}

]
+F (x̂A) (1− F (x̂B)) [uA(1− ηB)− E {cA : cA ≤ x̂A}]
+ (1− F (x̂A))F (x̂B)uA(ηA)

+ (1− F (x̂A)) (1− F (x̂B))uA(ω̂A). (33)

Here x̂i and 1−ηj are player i’s continuation equilibrium cutoff and opti-
mal challenge in period 2, calculated as in a one-shot game with endowments
(ω̂A, ω̂B). E {cA : cA ≤ x̂A} is player A’s expected cost of making a challenge
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in period 2, conditional on a challenge being made. Note that with proba-
bility (1− F (x̂A)) (1− F (x̂B)) neither player will challenge in period 2, so
player A will hold on to the share ω̂A and get payoff uA(ω̂A).
In period 1, the “shadow of the future”must be taken into account. If

by challenging the initial status quo, player A manages to increase his share
from ωA = 1/2 to ω̂A > 1/2 in period 1, then player B will be a tougher
opponent in period 2. Indeed, as player B’s territory shrinks, he will have
more to gain, and less to lose, from challenging the new status quo (ω̂A, ω̂B)
in period 2. This is verified by the following proposition.

Proposition 9 Suppose uA = uB = u, φA = φB = φ, and λA = λB = 1/2.
Consider equilibrium of a one-shot game with initial endowments (ω̂A, ω̂B)
such that ω̂A > ω̂B. Player B is more likely to choose H, the bigger is ω̂A.
That is, dx̂B/dω̂A > 0.

The proof is in Appendix B. The increase in player B’s period 2 cutoff
x̂B reduces player A’s expected future payoff, given by (33). Thus, when
contemplating a period 1 challenge, player A must trade off the short-term
benefit of additional territory against the long-run cost of a more aggressive
opponent.
Since space constraints prevent a comprehensive analysis, we will illus-

trate in a simple example. There is no discounting: each player wants to
maximize the sum of his payoffs in the two periods. Also, θ = 0, the distrib-
ution F is uniform on [0, 1], and φA = φB = 1

2
. Finally, each ui(xi) is piecewise

linear as in Section 7, with gi = 1/2 and vi = 3/2. Thus, ui(xi) = 3
2

(
xi − 1

2

)
if xi ≤ 1/2, ui(xi) = 1

2
(xi − 1

2
) if xi ≥ 1/2.

The optimal challenge in period 2 turns out to be to demand all of the
territory (ηA = ηB = 0). We obtain the period 2 cutoffs (x̂A, x̂B) by solving
x̂A = ΓA(x̂B) and x̂B = ΓB(x̂A) as in the one-shot game; the best response
functions are given by (16) with initial endowments (ω̂A, ω̂B). Player A’s
expected total payoff if he is the first-mover in period 1, and player B con-
cedes to ω̂A, is the period 1 payoff (uA(ω̂A)− cA) plus the expected period 2
payoff in (33). It is easy to show numerically that this expected total payoff
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is strictly decreasing in ω̂A on the interval [1
2
, 1].29 Therefore, claiming more

than half of the disputed territory cannot be optimal in period 1, since if
player A makes such a claim, he will strictly gain by reducing it. The same
goes for player B. Thus, in equilibrium no challenges are made in period
1. Knowing that a successful strategic move today will make a conflict more
likely tomorrow, the farsighted players become cautious, preferring to leave
the status quo intact rather than going for temporary advantages.
If no challenges are made, nobody will wish to challenge: it is better to

leave the initial status quo in place, since as we know, taking more than a
half will reduce one’s total expected payoff.30 Thus, the unique equilibrium
path is as follows. In period 1, there are no challenges, so the probability of
a conflict is zero. In period 2, each player i uses the cutoff x̂i = 0.2, just as
in a one-shot game with equal endowments. The path would be the same if
future payoffs were discounted by δ < 1 suffi ciently close to 1. As δ falls the
shadow of the future becomes less important. If δ = 0 then the future casts
no shadow and each myopic player challenges with 20 percent probability in
period 1 (as in the one-shot game), implying a four percent chance of conflict
in period 1.
The situation is more complicated when the initial status quo is asymmet-

ric. Even a very farsighted player may challenge the status quo in period 1 if
he is militarily strong but his initial endowment is very small, making the sta-
tus quo highly unbalanced. Moreover, it would clearly become more tempting
to challenge the status quo today if, following Fearon (1996), we modify the
model so that gaining territory today increases one’s military capabilities
tomorrow. The message from the dynamic model is not that strategic moves
are irrational when the future casts a shadow over the present. It is rather
that farsighted players must take into account the long-run as well as the
short-run implications of a strategic move.31

29In this example, (33) becomes:

−x̂Ax̂B
(

3

4
+
x̂A
2

)
+ x̂A (1− x̂B)

(
1

4
− x̂A

2

)
− (1− x̂A) x̂B

3

4

+ (1− x̂A) (1− x̂B)
1

2
(ω̂A −

1

2
).

30This is true even without considering the cost ci of making a challenge. After taking
this cost into account, it becomes even less profitable to challenge.
31Herrera, Morelli and Nunnari (2019) study a dynamic model where there is no bar-
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9 Concluding Comments

A key distinction in the theory of conflict is whether actions are strategic
substitutes or complements. In this paper we have tried to answer Jervis’s
((1976), p. 96) question: “What are the conditions under which one model
rather than the other is appropriate?”Our simple bargaining game has strate-
gic complements when first-mover advantages are big and conflicts are not
too costly, and strategic substitutes otherwise. Mapping the technology of
war onto the parameters of our model helps us understand which scenario
is at play in a given environment. For example, McNeil (1982) discusses
how first-mover advantages changed over time. During the era when forts
could withstand a siege for many years, the offensive advantage was not
large. Then, mobile and powerful siege cannon, developed in France in the
late 1400s, gave the advantage to the attacker. This was later neutralized by
the trace italienne, a fort design that combined wide ditches reinforced with
soft earth and a star-shaped structure that facilitated counter-attack (Duffy
(1997)). By the end of the nineteenth century, Napoleon’s use of trained
mass armies and Prussia’s rapid, well-planned attacks with breech-loading,
long range guns led to short wars and a significant offense dominance (Bueno
de Mesquita (2013)). By World War I, trench warfare instead made defense
dominant, and wars were long and costly. But in Germany and Great Britain,
it was believed that offense was still dominant (Jervis (1978)). The ensuing
conflict shows how policies can backfire, if based on an incorrect identifi-
cation of the scenario at play. In the current era, nuclear warfare with its
destructiveness and second-strike capability may be closer to trench warfare
than to the Napoleonic mass army.32

Our analysis focussed on “small”changes in parameters, but large changes
can also be analyzed using this framework. Consider the introduction of a
powerful missile defense. If the main effect is a large reduction in the cost of
conflict, actions may go from being strategic substitutes to strategic comple-

gaining over resources, so going to war is the only way the status quo can be changed, but
a war also changes future military capabilities. They find that the dynamic incentives to
start a war may amplify the static incentives.
32For the analogy between nuclear war and World War I, and the lack of foresight of

policymakers, see Clark (2014): “In the 1950s and 1960s, decision-makers and the general
public alike grasped in a visceral way the meaning of nuclear war - images of mushroom
clouds over Hiroshima and Nagasaki entered the nightmares of ordinary citizens....[T]he
protagonists of 1914 were sleepwalkers, watchful but unseeing, haunted by dreams, yet
blind of the reality of the horror they were about to bring to the world.”
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ments. This could have dramatic implications: with strategic complements,
confidence-building diplomacy can enhance cooperation; with strategic sub-
stitutes, deterrence is key and looking weak is dangerous. On the other
hand, if the main effect is a large reduction in first-mover advantages, ac-
tions may go from being strategic complements to strategic substitutes, with
equally dramatic (but very different) implications. Note also that if the cost
of conflict is very high to begin with, a small reduction in this cost will make
challenges more likely, but if the cost falls suffi ciently then further reduc-
tions will make challenges less likely. Again, our model helps to elucidate the
possible equilibrium effects and the risks and rewards of new technologies of
conflict.
Gurantz and Hirsch (2017) studied deterrence with one-sided challenges

and incomplete information about the challenger’s type. Dovish types are
deterred from challenging if challenges are resisted, so a challenge signals
that the challenger is a Hawkish type who, most likely, will start a war in
the future. This renders it credible to resist challenges, even if the contested
territory is not very valuable to the defender, as a war is anyway expected
to occur sooner or later. Thus, incomplete information can facilitate credible
deterrence. It would be interesting to explore similar issues in our model
with two-sided challenges. If we modify the dynamic model of Section 8 by
assuming types are positively correlated over time, then beliefs about future
types (and hence about future actions) may depend on past actions, as in
Gurantz and Hirsch (2017). A player who chooses H today signals that he
is likely to also choose H tomorrow. This will influence both the incentive
to choose H today and the incentive to concede if stage 2 is reached.
Our model predicts a peaceful transfer of territory if only one player chal-

lenges the status quo. Following Fearon (1995), the model could be modified
to make unilateral challenges riskier. There could be uncertainty about what
concession the opponent is willing to make, say because his cost of conflict
is his private information. A player with a high cost of conflict would get
information rents, as the opponent modulates his demand to reduce the risk
of rejection. In a dynamic model, a concession might lead to an increase
in the opponent’s military strength (“shifting power”), making appeasement
costlier. These forces would reduce the expected payoff from a unilateral
challenge, influencing comparative statics, whether the game has strategic
complements or substitutes, etc. Future work may show how different theo-
ries of conflict can be distinguished along these dimensions.
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10 Appendix A

Our model can be generalized in various directions without changing the
essential insights. For example, it is plausible that the cost of choosing H
depends on what happens subsequently. In particular, a player who chooses
H may suffer harsher sanctions and greater loss of reputation if the opponent
chooses D than if the opponent chooses H. To account for this, let each
player’s expected cost of choosingH be his private information. To be specific,
suppose if stage 2 is reached because player j is the only one to challenge,
then player j suffers an additional cost aj ≥ 0 while player i derives a benefit
bi ≥ 0 (perhaps player i receives some international support in this case).
Assume aj and bi are commonly known. The maximum claim player i would
concede to in stage 2 is again xj = 1 − ηi, where ηi is defined by (6). The
new payoff matrix is

Hawk Dove
Hawk λi − φi − ci ui(1− ηj)− ci − ai
Dove ui(ηi) + bi ui(ωi)

Assumption 1 remains unchanged (ηi < ωi), but to ensure that there is a
unique (interior) equilibrium, Assumption 2 must be modified as follows:

Assumption 2 (i)

c < min{ui(1− ηj)− ai − ui(ωi), λi − φi − ui(ηi)− bi}

and

c̄ > max{ui(1− ηj)− ai − ui(ωi), λi − φi − ui(ηi)− bi}

for i ∈ {A,B}. (ii)
f(c) <

1

|Ωi|
for all c ∈ [c, c] and i ∈ {A,B}.

Whether we have strategic substitutes or complements depends on the
sign of

Ωi ≡ λi − φi − ui(ηi)− bi − ui(1− ηj) + ai + ui (ωi) . (34)

It is straightforward to check that all the substantive results of the paper
remain qualitatively the same in this more general model. The model can be
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generalized further so that the additional cost of making a unilateral challenge
depends on whether or not the opponent concedes. It could also depend on
the challenger’s privately known type. After appropriate modifications to
Assumption 2, the basic insights again go through.

11 Appendix B

11.1 Proof of Proposition 3

(i) Suppose λA > max {φ+ θ, 1− φ− θ} . Then λB = 1− λA < φ+ θ, so the
two best response functions can be written

ΓA(x) = F (x)θ + (1− F (x)) ∆A (35)

and
ΓB(x) = F (x)(λB − φ) + (1− F (x)) ∆B (36)

where ∆i ≡ u(1 − ηj) − u(ωi). Differentiating the equilibrium conditions
x̂i = Γi(x̂j), using (35), (36) and the fact that d∆A/dλB = 0 when λB < φ+θ,
yields

dx̂A
dλB

= F ′(x̂B) (θ −∆A)
dx̂B
dλB

(37)

and
dx̂B
dλB

=
F (x̂A) + (1− F (x̂A))d∆B

dλB

1− F ′(x̂A)F ′(x̂B) (θ −∆A) (λB − φ−∆B)
> 0. (38)

The inequality is due to d∆B/dλB = u′(1− ηA)/u′(ηA) > 0 by Equation (7),
and the denominator is positive by Assumption 2(ii). Plugging (37) into (23)
yields

dW

dλB
= F ′(x̂B) [F (x̂A) + F (x̂B)F ′(x̂A) (θ −∆A)]

dx̂B
dλB

. (39)

Since F (x̂B) < F (x̂A) by hypothesis, Assumption 2(ii) implies that the ex-
pression in square brackets is positive (note that θ − ∆A = ΩA). Since
dx̂B/dλB > 0, we have dW/dλB > 0.
(ii) It suffi ces to show that the expression in parenthesis in (24) is positive.

Suppose λB > φ+ θ. Then also λA > φ+ θ so (7) holds for both players, and
we can write each player i’s best-response function as

Γi(x) = F (x)θ + (1− F (x)) ∆i. (40)
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Differentiating the equilibrium conditions yields, using (40),

dx̂A
dλB

= F ′(x̂B)
dx̂B
dλB

(θ −∆A) + (1− F (x̂B))
d∆A

dλB
(41)

and
dx̂B
dλB

= F ′(x̂A)
dx̂A
dλB

(θ −∆B) + (1− F (x̂A))
d∆B

dλB
. (42)

Equation (40) implies that∆A = ∆B = ∆ at a balanced equilibrium. Adding
equations (41) and (42) yields

dx̂A
dλB

+
dx̂B
dλB

= (1− F (x̂))

d∆A

dλB
+ d∆B

dλB

1− F ′(x̂) (θ −∆)
. (43)

Assumption 2(ii) implies the denominator on the right-hand side of (43) is
strictly positive. The numerator is also strictly positive. To see this, note
that Equation (7) implies

d∆A

dλB
= −u

′(1− ηB)

u′(ηB)
< 0 (44)

and
d∆B

dλB
=
u′(1− ηA)

u′(ηA)
> 0. (45)

As λB < λA we have ηA > ηB, and since u is strictly concave, (45) is
greater in absolute value than (44). Thus, (43) is strictly positive, and so is
(24). This proves part (ii) for the case λB > φ + θ. The proof for the case
λB ≤ φ+ θ is similar, and is omitted.
(iii) Suppose λB > max {φ+ θ, 1− φ− θ} so λA = 1−λB < φ+θ. Since

λA < λB and ωA > ωB it is obvious that player B is more likely to challenge,
x̂B > x̂A. A similar argument to part (i) implies dW/dλB < 0.

Remark 1 In the proof of part (ii), the condition for a balanced equilibrium
is ∆A = ∆B. Intuitively, player i’s incentive to challenge the status quo
depends on how much increasing his territory from ωi to 1 − ηj would be
worth to him. Thus, if player A controls more territory (ωA > ωB), in a
balanced equilibrium this perfectly reflects his greater military strength (1 −
ηB > 1− ηA), so the status quo is in this sense legitimate.
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Remark 2 If the game has strategic complements, then (37) and (38) imply
that both x̂A and x̂B start to fall when the rising power gets suffi ciently strong.
With strategic substitutes, x̂A and x̂B move in opposite directions. But even
then, the proof of part (ii) uses F (x̂B) > F (x̂A) to show that the expression
in square brackets in (39) is positive. That is, the decrease in x̂A dominates
the increase in x̂B, reducing the probability of conflict.

11.2 Proof of Proposition 9

Player i’s best-response function is

Γi(x) = ΩiF (x) + u(1− η)− u(ω̂i) (46)

where
Ωi =

1

2
u(0) +

1

2
u(1)− u(η)− u(1− η) + u (ω̂i)− φ. (47)

Notice that ΩA > ΩB as ω̂A > ω̂B. Differentiating the equilibrium conditions
x̂i = Γi(x̂j), using the fact ω̂B = 1− ω̂A, yields

dx̂A
dω̂A

= ΩAF
′(x̂B)

dx̂B
dω̂A

− (1− F (x̂B))u′(ω̂A)

and
dx̂B
dω̂A

= ΩBF
′(x̂A)

dx̂A
dω̂A

+ (1− F (x̂A))u′(ω̂B).

We solve to obtain

dx̂A
dω̂A

=
ΩAF

′(x̂B) (1− F (x̂A))u′(ω̂B)− (1− F (x̂B))u′(ω̂A)

1− ΩAΩBF ′(x̂A)F ′(x̂B)
(48)

and

dx̂B
dω̂A

=
(1− F (x̂A))u′(ω̂B)− ΩBF

′(x̂A) (1− F (x̂B))u′(ω̂A)

1− ΩAΩBF ′(x̂A)F ′(x̂B)
. (49)

We have

dx̂B
dω̂A

− dx̂A
dω̂A

(50)

=
(1− F (x̂A)) [1− ΩAF

′(x̂B)]u′(ω̂B) + (1− F (x̂B)) [1− ΩBF
′(x̂A)]u′(ω̂A)

1− ΩAΩBF ′(x̂A)F ′(x̂B)
> 0
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as |ΩAF
′(xA)| < 1 and |ΩBF

′(xB)| < 1 by Assumption 2(ii). Because x̂A =
x̂B when ω̂A = ω̂B, (50) implies than x̂B > x̂A when ω̂A > ω̂B. That is,
since his endowment is smaller, player B is more likely to choose H (whether
actions are strategic complements or substitutes). Moreover, (49) is strictly
positive, as F (x̂A) < F (x̂B), |ΩBF

′(x̂A)| < 1 and u′(ω̂B) ≥ u′(ω̂A) by con-
cavity.
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