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Abstract

We study contracting and costly renegotiation in settings of complete but
unverifiable information, using the mechanism-design approach. We show how
renegotiation activity is best modelled in the fundamentals of the mechanism-
design framework, so that noncontractibility of renegotiation amounts to a con-
straint on the problem. We formalize and clarify the Renegotiation-Proofness
Principle (RPP), which states that any state-contingent payoff vector that is im-
plementable in an environment with renegotiation can also be implemented by
a mechanism in which renegotiation does not occur in equilibrium. We observe
that the RPP is not generally valid. However, we prove a general monotonicity
result that confirms the RPP’s “renegotiation is bad” message. Our monotonic-
ity theorem establishes that the set of implementable state-contingent payoffs
increases with the costs of renegotiation.

1 Introduction

In a real contractual relationship, the contracting parties may write a contract that
directs an external enforcer (the court, for example) on how to interact with them
later. However, the parties may not be jointly committed to their initial contract,
to the extent that technology and the legal system allow them to renegotiate it be-
fore the external enforcer intervenes. For example, the initial contract may specify
an externally-enforced outcome that is ex post inefficient in some contingency. If
this contingency arose, the parties would then have the incentive to renegotiate the
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contractually-specified outcome. This “ex post” renegotiation can have important
implications for the attainment of the parties’ contractual goals.

On the theoretical side, researchers have studied renegotiation by finding ways of
incorporating it into the standard mechanism-design framework, which has become an
important tool for studying contract.! The typical mechanism-design model specifies
sets of states and outcomes as well as the parties’ preferences over the outcomes in
each state. For contractual settings of complete but unverifiable information, the
state is interpreted as an event that the contracting parties jointly observe (but the
external enforcer does not observe) and the outcome is interpreted as verifiable items
that the external enforcer compels. A contract is then a game form (mechanism)
that the external enforcer forces the parties to play after they observe the state. To
represent ex post renegotiation, theorists commonly embed it into the specification
of preferences; that is, they define payoffs in terms of what renegotiation would yield.

In the mechanism-design literature, the effect of renegotiation on contracting is
represented by the Renegotiation-Proofness Principle (RPP), which states that any
state-contingent outcome that can be implemented in an environment with renego-
tiation can also be implemented by a mechanism in which renegotiation does not
occur in equilibrium. The RPP plays two roles in the literature. First, it helps
simplify the analysis of implementation by allowing theorists to focus on so-called
“renegotiation-proof” mechanisms. Second, the RPP captures the idea that the op-
portunity for parties to renegotiate imposes a constraint on the set of implementable
state-contingent outcomes. In other words, the RPP conveys the message that rene-
gotiation is bad for contracting. Unfortunately, the RPP is an ambiguous “result.”
It is applied in various modeling exercises, but it has not been stated or validated
in a general form.? Further, it is usually invoked without any formal modeling of
renegotiation.

In this paper, we clarify the Renegotiation-Proofness Principle by explicitly mod-
eling renegotiation in settings of complete but unverifiable information. We study
general renegotiation costs, which includes the cases of free renegotiation and barred
renegotiation (the two cases commonly studied in the literature) and everything be-
tween. In particular, we are motivated by the observation that, in reality, renegotia-
tion can be moderately costly. For example, to alter a contract, parties may require
the services of an attorney who charges them a fee.

Our modeling exercise has three components. First, we develop a method of in-
corporating costly renegotiation into the mechanism-design framework. In our model,

1See Maskin and Moore (1999) for the basic “mechanism design with ex post renegotiation”
methodology. The mechanism-design approach is used in applied settings by, among others, Bern-
heim and Whinston (1998), Che and Hausch (1999), Jackson and Palfrey (2001), Noldeke and
Schmidt (1995), Rubinstein and Wolinsky (1992), Segal and Whinston (2002), and Watson (2002).

?Hart and Tirole (1988) and Dewatripont (1988) utilize the RPP in models with incomplete
information. The RPP fails in Reiche’s (1999) model.



renegotiation activity is defined as a component of the “outcome.” That renegotia-
tion cannot be controlled by the external enforcer is represented as a constraint on
the outcomes that may be specified in a mechanism. In other words, renegotiation
activity and its costs are designated in the fundamentals of the mechanism-design
program, so that noncontractibility of renegotiation translates into a constraint on
the class of mechanisms.?

Our formulation reveals that commonly-heard statements about “whether a mech-
anism can replicate what the players could achieve by renegotiating” lack meaning.
When renegotiation is properly incorporated into the mechanism-design framework,
it is trivially true that a mechanism can replicate renegotiation; this is because rene-
gotiation activity is specified in the outcome. Rather, the important issue is whether
the effects of renegotiation can be achieved using some other available technology. For
example, suppose the contracting parties would throw away resources in the renego-
tiation process. Then one must ask whether they could arrange to throw away the
same resources without renegotiating, perhaps by an externally-enforced penalty.

Second, we provide a formal statement of the Renegotiation-Proofness Principle
and we develop the conditions under which it holds. In essence the RPP involves
a comparison between the renegotiation technology and other technologies. Most
importantly, we show that the RPP is generally invalid in settings of moderate rene-
gotiation costs. That is, in many settings, implementation necessarily involves rene-
gotiation in equilibrium. We show that the RPP does hold when renegotiation is free,
which is the common case that theorists have studied but is not necessarily the most
realistic case. These results highlight the “free-renegotiation” intuition that underlies
the literature’s current understanding of the RPP.

Third, we prove a general monotonicity result: that higher renegotiation costs
imply a larger set of implementable state-contingent payoffs. This result elucidates
the “renegotiation is bad” intuition that lies at the heart of the RPP. We thus argue
that, although the RPP is not always valid, it does suggest a general and useful result
about the effect of renegotiation costs.

Our analysis complements the work of Schwartz and Watson (2001), who study
the implications of costly contracting and renegotiation and who identify real costs
associated with the legal system. Further, it complements the work of Watson (2002),
who demonstrates the importance of explicitly modeling the technology of trade in a
mechanism-design framework, and the work of Bull and Watson (2001), who take a
similar line in the analysis of evidence disclosure.

Before indulging in the details of our modeling exercise, we provide a graphical

3In a related paper, Watson (2002) explains why models of mechanism design with ex post
renegotiation are invalid if they do not explicitly account for the technology of trade. The points
we make here are tangential to Watson’s critique. While we do not explicitly model productive
decisions, our model is consistent with Watson’s methodology.
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Figure 1: Renegotiation in payoff space for a given state.

illustration of our results. For a given state, we can imagine that the set of feasible
payoff vectors is the area below the diagonal line in Figure 1(a). Suppose that, given
the parties’ initial contract, the external enforcer is poised to make a “public decision”
that would, in the absence of renegotiation, lead to the payoff vector labeled A in
Figure 1(a). Since this public decision is not ex post efficient, the parties would like
to renegotiate their contract and specify a different decision for the external enforcer.
If renegotiation is free, then they would presumably select a public decision that puts
them on the efficient frontier at, say, point B. Anticipating this renegotiation, the
parties could have designed their initial contract to achieve B without renegotiation.
The RPP will be valid in such an environment, because, with the redesigned contract,
the players will not renegotiate away from payoff vector B (otherwise, at least one
player would fare worse and would therefore be unwilling to renegotiate).

The story changes if renegotiation entails some moderate cost. The parties would
like to renegotiate away from the public decision that would yield payoff A, but the
cost of renegotiation may keep them from achieving payoff B. Instead, they obtain
a payoff vector such as that labeled C in Figure 1(a). To be concrete, suppose that
recontracting requires paying an attorney, who charges a fraction of the surplus that
would be created by altering the public decision. Anticipating that their initial con-
tract will be renegotiated, the parties expect payoff C in the given state. Interestingly,
the RPP does not hold in this case, because the only way of achieving payoff vector C
is with renegotiation. For example, consider what would happen if the parties wrote
a contract that instructed the external enforcer to take the efficient public decision
and also force the parties to throw away some resources, so that the final payoff vector
is C. The parties would renegotiate this contract to avoid throwing away resources;
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Figure 2: Illustration of the monotonicity result.

but renegotiation requires a payment to the attorney and so, in the end, the parties
realize the payoff vector C' shown in Figure 1(b).

Figure 2 portrays our monotonicity result. The shaded region in Figure 2(a) de-
picts the set of possible payoff vectors that can be achieved in a given state. These
payoffs include the effect of renegotiation. Specifically, the parties’ initial contract
may specify a public decision that would achieve a payoff labelled A; the parties
renegotiate to obtain payoff C. This diagram represents, in payoff terms, a fixed
renegotiation technology—which determines what the parties will do in the renego-
tiation phase (including paying an attorney) in each state. Figure 2(b) depicts a
costlier renegotiation technology than that shown in Figure 2(a). For example, the
attorney’s fee in case (b) is a larger fraction of the surplus than it is in case (a). The
higher cost is represented by shorter arrows from points A to points C. As illustrated,
the set of achievable payoff vectors is larger in case (b), which implies a wider scope
for implementing state-contingent payoff vectors.

The rest of this paper provides the details of our modeling exercise. Section 2
describes the contractual setting and develops our method of incorporating ex post
renegotiation into a mechanism-design model. Section 3 states the Renegotiation-
Proofness Principle and characterizes the conditions under which it is valid. Section 4
presents our monotonicity result. Section 5 contains a novel example that illustrates
the failure of the RPP and shows that, to align investment-incentives, inefficient
values may be required in some states.



2 The Contract Environment

We analyze a class of contractual relationships with external enforcement and com-
plete, but unverifiable, information. Two players interact over four phases of time,
as follows. In Phase 1, the players write a contract. The contract directs an external
enforcer (a court, for example) on how to intervene in the fourth phase, as a function
of verifiable information.

In Phase 2, the state of the relationship is realized and is commonly observed by
the players. The state may be determined by actions that the players take and/or it
may be influenced by random events; we do not model how the state is determined.
The state is not verifiable to the external enforcer. The set of possible states is
denoted ©.

In Phase 3, the players make decisions that are verifiable but are not payoff rel-
evant. For example, the parties may send messages to the external enforcer; the
messages have no direct effect on the players’ payoffs.

In Phase 4, productive decisions and external enforcement occur. Interaction in
this third phase defines the physical outcome, which is denoted d. Let D be the set of
feasible physical outcomes; we assume D is independent of the realized state. Fourth-
phase interaction is constrained by technology and the institutional environment, as
discussed later in this section.

The player’s payoffs from contractual interaction are defined by the function u :
D x © — R?. We write u(d|f) as the payoff vector of physical outcome d in state
0 € O. In forming their contract in the first phase, the players’ goal is to implement
a particular physical outcome—and thus a payoff vector—as a function of the state.

In much of our analysis, it will be convenient to work with physical outcomes in
terms of their implied state-contingent payoffs. That is, instead of dealing with d
directly, we deal with the function u(d|-), which gives the payoff vector from d as a
function of the state. Thus, we use the term payoff outcome (outcome, for short) for
any mapping from the set of states to the set of payoff vectors. Let W be the set of
payoffs outcomes associated with the set of physical outcomes:

W = {w:0 — R?| there exists d € D
such that w(0) = u(d|#) for all 6 € ©}.

2.1 Standard Mechanism Design Analysis

To this point, our description of contractual relationships has not indicated the precise
structure of interaction in the third and fourth phases. A fully-specified model of any
particular contractual relationship requires a more detailed account. In the standard
mechanism-design approach to studying contract, theorists simplify the analysis by
making (sometimes implicitly) three assumptions. First, theorists assume that all of
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the payoff relevant aspects of D are either directly verifiable to the external enforcer or
are directly controlled by the external enforcer. Second, whenever they assume that
an aspect of D is not directly controlled by the external enforcer, theorists assume
that the external enforcer can compel fines or transfers that can be used to levy
arbitrarily harsh punishments on individual players. For example, it is common in
the literature to assume that, in Phase 4, the parties make verifiable decisions about
(a) whether to trade an intermediate good and (b) a monetary transfer from one
party to the other. After these decisions, the external enforcer can compel transfers
or fines.*

These two assumptions motivate theorists to treat d as a “public decision”—that
is, made by the external enforcer. In other words, the players’ verifiable actions are
modelled, for all intents and purposes, as alienable (taken out of the players’ hands).
This assumption is commonly justified by noting that “forcing contracts” can be used
to compel the players to take any particular verifiable action as a function of other
verifiable events, such as messages sent to the external enforcer in the Phase 3.

The third assumption theorists usually make is that the technology of interaction
in Phase 3 is unrestricted. To be more precise, it is assumed that players have the
opportunity to send and receive messages sequentially and simultaneously. It will
be enough to assume that, in Phase 3, the players simultaneously and independently
send messages to the external enforcer. Let M = M; x M, be the set of possible
message profiles.

These assumptions justify treating the players’ Phase 1 contracting problem as
a standard mechanism-design problem, with fundamentals given by (0, D,u). The
contract formed by the players in Phase 1 specifies a game form (M, g), which is
defined by a message space M and an externally enforced mapping g : M — D. The
game form can be equivalently written in terms of payoff outcomes, as (M, f), where
f: M — W is defined by f(m) = u(g(m)|-) for every m € M. Then, for every state
6, the game form defines an induced game (M, f(-)(#)) that is played in Phase 3. The
game form is called a mechanism. Note that we focus on static mechanisms.

Behavior in the Phase 3 is modelled by Nash equilibrium, so the players’ contract-
ing problem is one of “Nash implementation” (Maskin 1999). A mechanism, along
with a selection of equilibrium in each state, implies a state-contingent value function
v : © — R? that gives the resulting payoff vector as a function of the state.® The
revelation principle (Green and Laffont 1977; Myerson 1979) justifies constraining
attention to (a) direct revelation mechanisms, where players send reports of the state
(so M = ©2?), and (b) truthful reporting equilibrium, where each player honestly

4In the literature, the specific mechanics of trade and enforcement are usually not explicitly
studied. See Watson (2002) regarding the appropriate modeling of trade and enforcement.

SWhere there are multiple equilibria in an induced game, the players’ contract specifies which
equilibrium they will play. Jackson (1999) discusses the issue of multiple equilibria and describes
several general definitions of implementability.



reports the state.

For a direct revelation mechanism (02, f), we write f(6;,0,) = w?? for the payoff
outcome of the message game when player 1 sends message ¢, and player 2 reports
0. Thus, when the players send reports ; and 6 in state 0, the payoff is w?% ().
Whether truthful reporting is a Nash equilibrium in every state is captured by:

Definition 1: A mechanism (02, f) is incentive-compatible if, for each 6§ € ©
and all 6,,6, € ©, w?(6) > wi’(0) and wi(6) > w) *(A).

Implementation of a state-contingent value function is defined by:

Definition 2: A mechanism (02, f) implements value function v if it is incentive-
compatible and v(0) = w®(0) for all 6 € ©.

Furthermore, we say that a value function v is implementable if a mechanism exists
that implements it. We let V' denote the set of all implementable value functions.®
That is:

V ={v:0 — R?| there is a mechanism (602, f) that implements v}.

2.2 The Standard Model of Mechanism Design
with Ex Post Renegotiation

A key ingredient of the standard mechanism-design model is that the parties are
committed to their chosen mechanism, and thus to the public decision their messages
prescribe. However, most real enforcement institutions do not allow such commit-
ment. For example, it is not technologically feasible for a public court to administer
an arbitrarily chosen mechanism.” In addition, public courts do not enforce contracts
verbatim, so, even if full enforcement of mechanisms were possible, institutional con-
straints limit the contracts that parties can choose.

Recognizing the real commitment problem, theorists have been led to study rene-
gotiation of contracts. The following story illustrates the possibility of “ex post
renegotiation.”® Suppose the players agree to a mechanism (02, g) in Phase 1; the
state 6 is realized in Phase 2; and, in Phase 3, the parties send reports of the state, 6;
and 6y. Then, just after the reports are sent and assuming that the players each know
the other’s report, the players realize that the external enforcer is poised to make the

6The set V is well-defined in any contractual environment, because any mechanism that prescribes
a constant physical outcome, regardless of messages, will trivially implement some value function.

"See Watson (2002) regarding the appropriate theoretical approach to modeling trade technology
and external enforcement.

8Papers in the “mechanism design with ex post renegotiation” literature include Maskin and
Moore (1999) and Segal and Whinston (2002).



public decision d = g(61,6s) in Phase 4. However, if d is inefficient in the realized
state—that is, there is another public decision d' such that u(d’|¢) > u(d|€) (in the
vector sense’)—then the players have an incentive to alter what their mechanism
prescribes, instructing the external enforcer to make a different public decision than
d. That is, the players can substitute some d’' for g(6;,6s) just before the external
enforcer makes the public decision. If the players can renegotiate in this way, then
they cannot commit to their original mechanism; instead, the original mechanism sets
the default point for possible renegotiation contingent on the state.'’

To model ex post renegotiation, theorists have used the following clever trick
(following Maskin and Moore 1999). They specify a “renegotiation function” h :
D x © — D, which gives the renegotiated public decision d' as a function of the
actual state # and the decision d that the original mechanism prescribes. That is, d’ =
h(d|f). Assuming that the players rationally anticipate renegotiation, this changes
the induced game that they play in Phase 3. Rather than the message profile (6, 65)
yielding the payoff vector

u(g(01,62)|0)

in state 6, as would be the case without renegotiation, this message profile instead
yields the payoff

u(h(g(61,0)10)|0).

Accordingly, one can redefine the utility function to incorporate the renegotiation
activity h. For every state 6 and every public decision d, define

a(d|8) = u(h(d|)]9).

Then, a setting of mechanism design with ex post renegotiation, given by (©

) D7 u? h>7
is equivalent to the standard mechanism-design problem defined by (©, D, 4).

2.3 A More General Approach

The analytical method described in the previous subsection is shorthand for explic-
itly modeling renegotiation activity. Although it has been useful in the literature,
this shorthand method is not well-suited for studying settings in which renegotiation
entails a cost. For example, suppose renegotiation requires payments to an attorney.

9Note that “>” means weakly greater for both coordinates and strictly greater for at least one
coordinate.

10When trade decisions are explicitly modelled, it is more appropriate to call this “interim rene-
gotiation;” see Watson (2002). There may also be “ex ante renegotiation”—occuring before players
send messages—which we discuss in the Conclusion but do not study here.



To study this setting using the literature’s trick, one would have to define utility func-
tion u to embody these payments. However, then we have a payoff-relevant aspect
of strategic interaction (transfers made to a third party) that is not specified in the
fundamentals of the mechanism-design problem. To some extent, this contradicts the
mechanism-design ideal—that all payoff-relevant aspects of interaction are included
in the “outcome.” As a result, we cannot represent formally, for example, whether
the external enforcer can take an action that achieves the same payoffs that could be
reached with renegotiation. This is critical because we need to compare, in payoff
terms, the renegotiation technology with other technologies. Note as well that the
renegotiation activity cannot be put in terms of the literature’s “h” function without
including its payoff-relevant aspects in the definition of the “outcome.” Thus, it is
not obvious even how to define whether renegotiation occurs.

The proper way of analyzing renegotiation while adhering to the mechanism-design
framework is to represent renegotiation activity in the fundamentals of a mechanism-
design problem and to represent noncontractibility of renegotiation behavior as a
constraint on mechanism design. For example, we could define the “outcome” to
include, in addition to those things that the external enforcer can compel, any pay-
ments made to an attorney. The contracted game form would then describe (a) how
the players are to send messages and (b) the manner in which the players will renego-
tiate. To capture the idea that the opportunity to renegotiate is noncontractible, we
should restrict attention to game forms that contain a fixed “ex post” renegotiation
phase, whereby the outcome is a particular function of the renegotiation behavior.
With this theoretical foundation, it is trivially true that “a mechanism can replicate
renegotiation,” because renegotiation is defined as a component of the mechanism.

Rather than modeling renegotiation as a component of the game form, we follow
Watson’s (2002) lead and develop a variation of this modeling approach in which the
renegotiation activity is a component of the outcome. That renegotiation activity is
noncontractible will imply a constraint on the set of outcomes that can be specified in
a mechanism. This approach lends itself more easily to standard mechanism-design
analysis (as does the literature’s current trick for the costless renegotiation setting)
than does the tack described in the preceding paragraph.

To represent the renegotiation opportunity, we suppose that interaction in Phase 4
of the contractual relationship can be divided into two sub-phases, the resolution of
which are given by x and y. The variable z represents what the external enforcer
can compel; that is, the external authority either directly controls z, or at least x
is verifiable and can be compelled by the threat of external punishment. From this
point on, we call x the public decision. Think of the public decision as representing
trade and transfers. Let X be the set of possible public decisions.

The variable y represents the players’ renegotiation activity.!! It is noncon-

10ne can think of y as a strategy profile in some non-cooperative renegotiation game that is
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tractible, due to either technological or institutional limitations, and, therefore, the
external enforcer does not control y. Let Y be the set of all possible renegotiation ac-
tivity. An element of Y, for instance, may be “Each player pays $200 to an attorney,
who modifies their contract so that ‘trade nothing’ is put in place of ‘trade 68 bushels
of wheat at $15 per bushel.”” Since the players know the state when they renegotiate,
y is conditioned on #. We let the function v : ©® — Y represent the renegotiation
activity as a function of the state, and we let I" be the set of all such functions.

We next add structure to the z and y components of interaction in Phase 4.
Specifically, we assume that there is a default public decision x that the players know
will be chosen by the external enforcer if they fail to renegotiate it. Furthermore,
we summarize the (perhaps complicated) renegotiation activity in terms of (a) the
renegotiated public decision and (b) transfers and expenditures made by the players
during the renegotiation process. Thus, we define Y = X x R2, where

Rz_ = {(tl,tg) € R2 ’ t1+ 1ty < 0}
Here, t; is the transfer to player :. We assume that the total transfer is nonpositive;
if it is negative then this is the players’ joint renegotiation expenditure. We write
y = (z,t). Also, given a state-contingent schedule of renegotiation activity -y, we
write ¥(0) = (7.(0),7:(0)), where v, : © — X and v, : © — R2.

We use the term minimal renegotiation activity to mean that the default public
decision is not renegotiated. Specifically, if x is the default public decision, then
minimal renegotiation activity is y = (z,t), where t = (0,0). This concept will be
important for stating the Renegotiation-Proofness Principle in Section 3.

The physical outcome in Phase 4 is defined by a default public decision z and
a specification of renegotiation activity «v. Thus, we have D = X x I'. We assume
that payoffs are additive in renegotiation expenditures. That is, there is a function
@ : X x © — R? such that, in every state § € © and for each outcome d = (z,7), the
payoff vector is

u(d|f) = u(y2(0)|0) + 7:(6).

Thus, the players’ payoffs depend only on the state, the public decision, and any
transfers and expenditures made during renegotiation.

We make the following assumption jointly on the set of public decisions and the
payoff function:

Assumption 1 (Comprehensiveness): Take any state § € O, any default public
decision x € X, and any renegotiation activity (x,t) € Y such that u(x|0)+t > u(z|0).
Then there ezists a public decision ' € X such that (z'|0) = u(z|0) + t.

played after messages are sent. We use a simpler “cooperative game theory” representation.
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This assumption means that, for every state, any payoff vector that can be achieved
through renegotiation can also be achieved with minimal renegotiation activity (with
a suitably chosen default public decision). This is assumed for every payoff vector that
weakly exceeds (in the vector sense) the payoff from some arbitrary public decision.!?

As an example, suppose the default public decision z is “trade 50 units of the
intermediate good at $20 per unit” and the decision z* is “trade 62 units of the
intermediate good at $19 per unit.” Further suppose that z* is an efficient public
decision in state #, meaning that z* maximizes @ (z|6) + @a(x|€) by choice of z. Let
u(z|f) = (240, 350) and u(z*|f) = (300,410). Imagine that z is specified as the de-
fault public decision. In state 6, the players may renegotiate to select z*, with each
player making an expenditure of 30, yielding the payoff vector (270,380). The ex-
penditures may be money paid to an attorney whose services are required to alter a
contract. Comprehensiveness requires the existence of another public decision 2’ such
that @(z'|0) = (270, 380), a payoff which then could be achieved with minimal rene-
gotiation activity (2, ). For instance, ' might be “trade 62 units of the intermediate
good at $19 per unit and each donate 30 to charity.” As this example demonstrates,
comprehensiveness relies on a fairly broad range of contractible items; the assumption
is essential for the Renegotiation-Proofness Principle.

Standard mechanism-design analysis can be employed for the setting (O, D, u),
except that there are now constraints on 7. These constraints fall into two categories.
First, there may be institutional constraints. We represent these as feasibility restric-
tions on the renegotiation activity, as a function of the state. Specifically, in state 0
and with default public decision z, the players’ renegotiation activity is restricted to
some set Y(a:\@) CY. We are espemally interested in how Y represents restrictions
that are due to intrinsic costs of renegotiation—time spent bargaining and modifying
the contract, payments made to attorneys, and so on. For example, renegotiating
the default decision “sell 600 bushels of wheat at $10 per bushel” to another public
decision “sell 500 bushels at $11 each” may require a nonneglible expenditure.

The second constraint on v is behavioral: v must be consistent with an appropriate
theory of bargaining behavior. In other words, the selection of an element in Y
depends on one’s theory of negotiation. At this point, we will not adopt any particular
bargaining theory. However, we do assume that the bargaining theory identifies a
single element of Y (z|@) for every state # and every default public decision z. We let
y*(z|0) denote the prediction of the bargaining theory in state 6, given default public
decision z.

Our analysis hereinafter takes y*(:|-) as fundamental. That is, we suppose there
is a function y* : X x © — Y that gives the renegotiation activity as a function

12Tt may be natural to require that any default public decision may be renegotiated to any other
public decision, for a sufficient renegotiation expenditure. Though intuitively appealing, this is not
necessary for our analysis.
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of the default public decision and the state. This function implicitly represents the
constraints of Y as well as the theory of negotiation. We call y* the renegotiation
function. Where we need to separate the x and ¢ components of y, we write y*(z|6) =
(yi(z|0), y;(z]0)). Also, with regard to a specific default decision z and a state 6, we
speak of u(z|0) as the disagreement payoff and we call

U(y,(]0)|0) + y; (x|0)

the renegotiated payoff.
The institutional and behavioral restrictions imply that the physical outcome in
Phase 4 must be an element of the subset of D given by

D" ={(z,7) € D | v(0) = y"(z|0) for every § € ©}.

The set D* gives precisely the set of contractible physical outcomes for the setting
of mechanism design with ex post renegotiation. Thus, a setting of mechanism de-
sign with ex post renegotiation, given by (0, D, u,y*), is equivalent to the standard
mechanism-design problem defined by (0, D* u). In words, because some aspects of
interaction in Phase 4 are not controlled by the external enforcer, implementation is
constrained by the theory of how these aspects are resolved. The physical outcomes
that are consistent with the renegotiation theory are simply a subset of the set of all
possible physical outcomes.

2.4 Assumptions on the Renegotiation Function

We make five straightforward assumptions on the renegotiation function y*. We start
by assuming that, whenever the renegotiated payoff equals the payoff vector that the
players would have gotten with minimal renegotiation, then the function specifies
minimal renegotiation.

Assumption 2: For every 6 € © and everyx € X, if u(y:(x|0)|0)+y; (z|6) = a(x|6)
then it is the case that y*(z|0) = (z, ).

This assumption clarifies “minimal renegotiation activity;” players do not engage in
non-minimal renegotiation unless it is to alter payoffs.

Next, we assume that the renegotiation function y* implies a functional relation
between the disagreement payoff and the renegotiated payoff in any state.

Assumption 3: Fiz any state 0. If a(z|0) = u(2'|f), then

Uy, (z|0)10) + y; (z]0) = a(y;(2']0)|0) + y; (2']0).

13



We next define a function H to represent this relation. Let
Q(0) = {2z € R? | there exists z € X with z = @(z|d)},
which is the set of possible disagreement payoffs in state 6. For every z € Q(0), let
H(216) = a(y;(2710)16) + vi (°16),

where z* is such that @(z*|#) = z. Thus, if z is the disagreement payoff in state
then H(z|6) is the renegotiated payoff.!3
The rest of our assumptions are stated using the function H.

Assumption 4 (Individual Rationality): In every state 0 € © and for every dis-
agreement payoff z € Q(0), it is the case that H(z|0) > z (in the vector sense).

Assumption 4 is the standard assumption that the players would not accept less than
they could get by refusing to renegotiate.

Assumption 5 (Continuity): For every state 6, H(-|0) is continuous (in z).

Our final assumption is monotonicity of the renegotiated payoff with respect to the
disagreement payoff.

Assumption 6 (Monotonicity): Fiz any state 6 € © and any two disagreement
payoff vectors z,2' € Q(0). For anyi = 1,2 and j # i, if z > z; and z; = 2}, then
H;(2|0) < H;(Z'|0).

In words, Assumption 4 states that, if the disagreement payoff shifts in player i’s
favor, then player j’s renegotiated payoff weakly decreases. See Thomson (1987) for
a discussion of this type of assumption in bargaining theory.

2.5 A Class of Costly Renegotiation Functions

In this subsection, we describe a parameterized class of renegotiation functions to
represent the idea that the players cannot extract all of the potential surplus from
changing the contractually-specified public decision. For example, suppose that public
decision z is about to be enforced in state . If there is another public decision z € X
for which

U (z]0) + t2(2|0) > 1 (2|0) + ta(2]0),

13 Assumption 3 simplifies the analysis, but versions of our results would hold if we relaxed this
assumption.

14



then the players would like to renegotiate the default public decision. However, this
may require an expenditure. We suppose that the players must jointly pay « in
order to re-specify the public decision. Further, they must pay a fraction § of the
surplus created by changing the public decision. A transfer between the players is
unrestricted. The costs impose constraints on the feasible renegotiation activity which
are given by:

?(g]@; a, ) = {(a:,t)

t1+ta < —p [Z (ai(x]0) — '&2@]9))] — alx\(z} } , (1)

i=1,2

Here, I'x\ (. is the indicator function that equals 0 when x = z and equals 1 otherwise.

Facing Y in state # and with default public decision z, the players’ available
renegotiation surplus is

2

r(z|0) = max Z [a;(z|0) + t; — a;(x|0)] . (2)

($7t) GY(£|9§0@,3) i=1

We suppose that the players choose x to achieve this surplus and that they select
transfers to split the surplus according to fixed bargaining weights m; and 7y, where
m,me > 0 and m + m = 1. That is, y*(z|€) solves (2) and gives player i the payoff
@;(z|0) + m;r(x|@). The assumptions stated in the previous subsection all hold.

The renegotiation theory embodied in Equations 1 and 2 is quite flexible. For
example, we obtain the standard “free-renegotiation” case (equivalent to the setting
described in Subsection 2.2) by specifying « = § = 0. We also use the term “costless
renegotiation” to describe this case. If 3 =0 but a > 0, so that

Y(z]6;0,0) = {(z,t) €Y |z =z or ty + 1, < —a},

then we have the case in which the players only must pay a lump sum «a to make any
change in the specified public decision. In the extreme, we could have a = oo, which
means renegotiation is not possible. Finally, when o = 0 but 8 > 0, then there are
only proportional costs of renegotiation activity. In this case, the players renegotiate
to the ex post efficient public decision, but they lose some fraction of the surplus to
transaction costs.

In practical terms, o and 3 may represent transaction costs that are inherent in
the process of negotiation or expenditures that must be paid to third parties. As an
illustration, consider the example that follows the comprehensiveness assumption in
Subsection 2.4. The default public decision x is “trade 50 units of the intermediate
good at $20 per unit;” the public decision z* is “trade 62 units of the intermediate
good at $19 per unit.” In state 6, a(z|0) = (240, 350), whereas u(x*|6) = (300, 410).
Suppose that, to change their contractually-specified public decision, the players must
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obtain the services of an attorney who (because of his bargaining power) extracts
50 percent of the gain. If the default public decision is x, then the players would
renegotiate to select £* and, subtracting the attorney’s share, they obtain the payoff
vector (270,380). Further, consider the public decision z’: “trade 62 units of the
intermediate good at $19 per unit and each donate 30 to charity.” If 2’ were specified
as the default public decision, then renegotiation would entail selection of z* with
attorney’s fees of 15 for each player. In other words, the attorney helps strike the
“charity” line from the players contract, at a fee of 15 per player.

3 The Renegotiation-Proofness Principle

In this section, we use the concept of minimal renegotiation to formally evaluate
the Renegotiation-Proofness Principle. Our definitions are written in terms of payoft
outcomes. Recall that an arbitrary mechanism-design problem with renegotiation
function y*, (©, D, u,y*), is equivalent to an unconstrained mechanism-design prob-
lem (O, D*,u), where D* is a subset of D. Incorporating the D* constraint, the set
of payoff outcomes is:

W = {w:0 — R?| there exists z € X such that
w(8) = H(u(z|0)]0) for all 6 € ©}.

We let W9 be the set of payoff outcomes that have minimal renegotiation activity in
state 0:

A

W? = {w:0 — R?| there exists z € X such that
w(f') = H(u(z]0")|0) for all &' € O,
and w(0) = u(z|f)}.

Note that, in the definition of W?, H(@(x|0)|0) = @(z|d) means that y*(z|0) = (z, 1).

The following is our formal definition of “renegotiation-proof.” Recall that, for
any mechanism (02, f), we let w?% = f(,,6,) denote the payoff outcome when the
players send reports ¢; and 6s.

Definition 3: We say that a mechanism (©2, f) does not necessitate renegoti-
ation if w’ € W for every 6 € ©.

A mechanism necessitates renegotiation if there is a state # in which truthful reports
lead to a payoff outcome that requires non-minimal renegotiation activity in state 6.

Recall that V' denotes the set of implementable value functions. Let VNE be
the set value functions that are implemented by mechanisms that do not necessitate
renegotiation. We express the Renegotiation-Proofness Principle in terms of V' and
VR,
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Definition 4: The Renegotiation-Proofness Principle (RPP) is said to be valid
if V. =VNR M

Our first theorem characterizes the conditions under which the RPP is valid. Note
that comprehensiveness and individual rationality (Assumptions 1 and 4) imply that,

for every 0 € ©, H(Q(0)|0) C Q(0).

Definition 5: We say that Sobel’s Condition'® is satisfied if, for every 6 € ©
and every z € Q(0), H(H(z|0)|0) = H(z|0).

This condition has a simple interpretation. Consider any state #. From a given
disagreement payoff z, renegotiation would lead to the payoff 2’ = H(z|0). We know,
from the comprehensiveness assumption, that there is a public decision 2’ € X such
that 2/ = @(2’|#). When Sobel’s condition is satisfied, the default public decision
2’ would not be renegotiated in state #. The condition is essential to the RPP
because, if payoff outcome 2’ were desired in state 6, it could be achieved with minimal
renegotiation activity.

Theorem 1: The Renegotiation-Proofness Principle is valid if and only if Sobel’s
Condition is satisfied.

To prove Theorem 1, we use the following result.

Lemma 1: If Sobel’s Condition is satisfied then, for every w € W and every 6 € ©,
there is a payoff outcome w° € W such that 0% (6) = w(6).

Proof: That w € W implies the existence of some z € X such that w(f) =
H(u(x|0)|#). Comprehensiveness implies the existence of some z’ € X such that
u(z'|0) = w(f) = 2’. Sobel’s condition then implies that H(z2'|#) = 2z’. From Assump-
tion 2, we know that y*(2'|0) = (2,t). Define payoff outcome @’ by

W’ (0') = H(a(z'0)]¢")
for every ¢ € ©. Clearly, ©%(0) = w(f) and @ € W?. Q.E.D.

Proof of Theorem 1: First we prove that Sobel’s condition implies V = VIR,
Clearly, VI® C V. Take any v € V. We must show that v € VNR, Let (6%, f) be a
mechanism that implements v and define w?%2 = f(6,, 6,) for all §;,0, € ©. For each
f € ©, Lemma 1 implies the existence of @° € W such that w?(9) = w?(f). Define

14This notion of renegotiation-proofness requires only that minimal renegotiation activity follow
truthful reports. One can imagine a stronger version of renegotiation-proofness that extends this
requirement to out-of-equilibrium contingencies. Rubenstein and Wolinsky (1992), for example,
work with a stronger version.

15We thank Joel Sobel for suggesting that we formulate the condition in this way.
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a function f’: ©2 — W so that, for every 6 € ©, f'(6,60) = w’(0) and, for each pair
01,05 € © with 0, # 0y, f'(01,02) = f(61,05). By construction, (62, f) implements v
and does not necessitate renegotiation.

Next we prove that V' = V™R implies Sobel’s condition. Presuming that Sobel’s
Condition is not satisfied, we will find a value function that is an element of V' but
not an element of VNE, Because Sobel’s Condition is not satisfied, there is a state 6
and a payoff vector z € Q(#) such that

H(H(2|0)|0) # H(z0).
Let z satisfy 4(z|0) = z and define w* by
w*(6') = H(u(z]0")]6"),

for every ' € ©. Let z’ satisfy u(z'|6) = H(z|f). We then have w*(0) = H(z|6) but
y*(2'10) # (2/,t), so non-minimal renegotiation activity occurs in state 6 with default
public decision z’. (We are justified in focusing on one public decision z’ because of
Assumptions 2 and 3.) Define a mechanism by f(6y,02) = w* for all 6,,0, € ©. This
mechanism implements the value function v* = w*, which is not an element of VNE,

Q.E.D.
We next provide two corollaries that add to the intuition of Theorem 1. Define

VEE = {y € V| there is no state § € © for which
u(z|f) > v(0) for some z € X.}.

Value functions in VF# yield efficient payoffs in all states.
Corollary 1: VEf ¢ VNR,

In words, any value function that specifies an efficient payoft vector in every state can
be implemented with minimal renegotiation in every state. This follows from the fact
that, if z € Q(0) is efficient in state 6 then, by individual rationality (Assumption 4),
H(z|0) = z. Of course, in many important settings, theorists and practitioners are
interested in achieving inefficient payoffs in some states. The example we provide in
Section 5, which demonstrates the failure of the RPP, has this flavor.

Our second corollary is useful for discussing the class of renegotiation functions
introduced in Subsection 2.5. We use the following definition.

Definition 6: We say that Condition PR is satisfied if, for every state 6 € ©
there is a set Z° C Q(0) such that (i) no two elements of Z° are Pareto-ranked and
(ii) for every z € Q(0), H(z|0) € Z9 U {z}.

By “Pareto ranked” we mean that there are vectors z, 2’ € Z? such that z > 2.
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Corollary 2: Condition PR implies Sobel’s Condition and, hence, validity of the
Renegotiation-Proofness Principle.

To understand this corollary, consider any state 6 and a vector z € Q(6). Condition
PR implies that either H(z|0) = z or H(z|0) € Z°. In the former case, Sobel’s
Condition clearly holds at the point z. In the latter case, part (i) of Condition PR
and individual rationality (Assumption 4) imply Sobel’s Condition at point z.

Returning to the class of renegotiation functions described in Subsection 2.5, first
consider the special case of @« = 3 = 0, where renegotiation is frictionless (there are
no institutional or technological constraints). In this case, all implementable value
functions belong to V¥, so the RPP is valid. In other words, the RPP is valid in
the free-renegotiation setting that is popular in the contract theory literature. This
case illustrates the importance of the comprehensiveness assumption, which states
that every payoff vector that can be achieved via non-minimal renegotiation can also
be reached with minimal renegotiation (by specifying an appropriately chosen public
decision).

Next consider the case of & > 0 and 8 = 0. Here, Condition PR holds and thus
the RPP is again valid. To see this, first note that the players only pay a fixed joint
expenditure to alter the default public decision in any way. In a given state 6, the
players will pay the renegotiation cost if and only if it does not exceed the joint value
of changing the public decision. It follows that every default decision yielding a payoft
that is sufficiently close to the Pareto frontier will not be renegotiated. In this range,

= H(z|0). On the other hand, public decisions that would yield lower payoffs will
be renegotiated, leading to payoffs in the set

2= {66

$1+ ¢ = HlaX[ul(:BW) + o (z]0)] — a}

Clearly, Z% has no Pareto-ranked points and H(z|0) = z for every z € Z%. In the
special case of & = oo (where renegotiation is not possible), we have z = H(z|6) for
every z € (), and so the RPP trivially holds.

Finally, suppose that a = 0 and § > 0. In this important case, Sobel’s Condition
fails and so the RPP is not valid. Here is the intuition behind failure of Sobel’s Con-
dition. Suppose that a default public decision z is specified and that it is inefficient
in state 6. Let z* be an efficient public decision, which maximizes @ (z|0) + 2 (z|0)
by choice of x. With the proportional renegotiation cost, the players will renegotiate
to select * and they will obtain the payoff vector 2z’ given by

7 = i(|0) + mi(1 = B)[w:(2"]0) — @i(xl6)],

for ¢ = 1,2. The comprehensiveness assumption implies the existence of another
public decision z’ satisfying @(z'|#) = 2’. If 2’ were specified as the default public
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decision, the players would renegotiate to select z* and, factoring in the proportional
cost, player 7 obtains

;(z'|0) + mi(1 — B)[:(2*]0) — u:(z']0)],

which exceeds 2], for ¢ = 1,2. Thus, a mechanism that yields payoff 2’ in state 6
necessitates renegotiation.

4 Monotonicity

In this section, we evaluate the RPP’s underlying theme that renegotiation opportu-
nities constrain the set of implementable value functions. We show that this insight
is more general than is the RPP itself. In particular, in the contracting environments
we study, the set of implementable value functions is always increasing in the cost of
renegotiation.

To formally state our result, we compare different renegotiation functions on the
basis of their implied renegotiation cost. Because the renegotiated payoft depends on

the renegotiation function, we now explicitly identify the parameter y* in the function
H.

Definition 7: Renegotiation function §* represents higher renegotiation costs
than does function y* if, for every state 0 € © and every z € Q(0), it is the case that
H(z|0;y*) > H(z|6;9").

In words, one renegotiation function is costlier than is another if, in every state and
for every public decision, the renegotiated payoff vector is weakly lower under the
costlier renegotiation activity.

To state our main result, we write the set of implementable value functions as
V (y*), which makes explicit the dependence of the implementable set on the renego-
tiation function.

Theorem 2: If §* represents higher renegotiation costs than does y*, then V(y*) C
V().

That is, any increase in the cost of renegotiation widens the scope of implementability.

To illustrate Theorem 2, we use the class of renegotiation functions developed in
Subsection 2.5. It is easy to verify that, for this class of renegotiation functions, the
renegotiated payoff decreases in the parameters o and (3. More formally, suppose y*
is defined by parameters o and (3, §* is defined by parameters & and B, and & > «
and B > (. Then y* represents higher renegotiation costs than does y* and thus

V(y*) C V(9.
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Figure 3: Components of the monotonicity proof.

We prove Theorem 2 with the help of two lemmas. Note that we shall now
write the set of payoff outcomes as W (y*), to make explicit its dependence on the
renegotiation function.

Lemma 2: If y* represents higher renegotiation costs than does y* then, for every
w € W(y*), there exists W € W(§*) such that w(f) > w() for each § € O.

Proof: Define w using the same default public decisions that are specified to define
w. In each state, every default public decision leads to lower renegotiated payoffs
under ¢* than under y*, by the definition of “higher renegotiation cost.” Q.E.D.

Lemma 3: If y* represents higher renegotiation costs than does y*, then

H(Q(0)|6;y") € H(Q(0)|0;9) for every 6 € ©.

Proof: Fix a state § and a vector of renegotiated payoffs z* € H(Q(0)|0;y*), and
let the vector of disagreement payoffs z € Q(0) satisfy H(z|0;y*) = z*. We will show
that there is another disagreement payoff vector zZ € Q(#) such that H(2|6;7*) = z*.
Figure 3 illustrates our construction. Let

S={zneR|z <z <z}
and let
T={zxneR |z, <2 <z}

Note that S x T C Q(f) by the comprehensiveness assumption. Also define the
correspondence o : S = T as:

po(21) = {22 € T | Ha((21, 22)[0;9%) = 23}
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Define py : T = S analogously. It is easy to verify that the correspondences p; and
e are well-defined and compact-valued. (Both facts rely on continuity of H and the
individual-rationality and monotonicity assumptions.) Next, define oy : T — S and
o9 : S — T by 01(22) = max y1(22) and 0y(21) = max p9(21). Both are well-defined
given the properties of p; and po.

Construct a sequence of disagreement payoffs {z*} as follows. First, let 2! =
(21,02(2;)) and let 22 = (01(22),21). Proceeding inductively, for any odd k, let
2F = (571 0y (2871)) and, for any even k, let 2* = (o1 (2571), 257 1). The right picture
in Figure 3 depicts the first three elements of the sequence {z¥}. Since S x T is
compact and since {z*} is increasing—that is, the sequences {2} and {25} are each
increasing—we know that {z*} converges to some point 2 € S x T

Consider the subsequences {0"} = {21, 23,2°%,27,...} and {e"} = {22, 24,25, 28, ...}.
Note that, since they are subsequences of {2*}, {o"} and {e"} converge to 2. Fur-
thermore, by continuity of H, {H(0"|0;y*)} and {H(e"|0;y*)} must converge to
H(2|0;9*). In addition, we have that {H(0"(0;7*)} C S x {23} and {H (e"]0;35*)} C
{2z} x T. Because sets S x {z3} and {27} x T are closed, we know that H(Z|0;y*) is
in the intersection of these two sets, which means that H(2|0;3*) = z*. We conclude
that z* € H(Q(0)|0;9*). Q.E.D.

Proof of Theorem 2: For any v € V(y*) and any mechanism (02, f) that imple-
ments it, we can easily find another mechanism (6?2, f) that implements v when y*
is the renegotiation function instead. Letting w?% = f(6;,6,) for all 6;,0, € O,
define f as follows. First, note that w® () € H(Q(0)|0;y*) for every #, which fur-
ther implies (using Lemma 3) the existence of another outcome @ € W(y*) such
that % (0) = w?(#). Define f(0,0) = w?. Second, consider any pair 81,0, € ©
such that 0; # 6,. For this message profile, define f (01,605) = w for that outcome
w identified in Lemma 2 with w = f(6y,65). Clearly, honest reporting is an equilib-
rium in every state, with mechanism (62, f) under renegotiation function y*. This
mechanism implements v by construction. Thus, V(y*) C V(3*). Q.E.D.

5 An Example

In this section, we present an example to illustrate how the RPP fails in some settings.
The example involves a hold-up problem in a bilateral contractual relationship, where
the parties’ ability to renegotiate interferes with their incentives to make relationship-
specific investments.'® We show that, with moderate renegotiation costs, there is a

6Notable early papers in the hold-up literature include Klein, Crawford, and Alchian (1978),
Williamson (1979), Grout (1984), Grossman and Hart (1986) and Hart and Moore (1988). Our
example here is along the lines of the example in Schwartz and Watson (2000).
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contractually-specified mechanism that induces investment and implements a partic-
ular value function. Importantly, this value function can only be implemented by a
mechanism that necessitates renegotiation.

Two risk-neutral parties, a buyer (player 1) and a seller (player 2), contract to
trade one unit of an intermediate good. After forming their initial contract, the
players simultaneously and independently make private investment decisions—each
choosing between high and low effort. Contingent on their investment choices, the
players pay private effort costs or obtain private benefits. To be precise, if both
parties choose high effort then each pays 3 immediately. If both choose low effort,
then each pays nothing. Finally, if player ¢ exerts high effort while player j exerts
low effort, then player ¢ pays 3 whereas player j obtains a private gain of 4.2. Think
of high effort as a reliance investment. The cost of 3 measures a party’s opportunity
cost of making this investment, whereas the gain of 4.2 reflects the benefit of selfishly
using the other party’s investment. The players do not observe each others’ effort
choices.

The investments influence the state of the relationship, which is the buyer’s value
of the intermediate good. In particular, if both parties exert high effort, then the
buyer’s value will be 20 with probability .9 and it will be 10 with probability .1.
If either party exerts low effort, then the buyer’s value will be 10 for sure. The
realization of the buyer’s value, #, is commonly observed by the players, though it is
not verifiable to the enforcement authority (the court). We assume that the seller’s
cost of delivery is zero.”

The public decision = has two components, k& and ¢, with £ € {T,N} and ¢ =
(c1,¢2) € R2. The variable k indicates whether the intermediate good is traded; “T”
means trade. For ¢ = 1,2, ¢; is a court-enforced transfer to player ¢. If ¢; + ¢ < 0,
then the court imposes a penalty. The payoffs from the public decision are given
by u(z|6), which is defined as follows: @(T|20) = (20,0) + ¢, a(N|20) = (0,0) + ¢,
@(T|10) = (10,0) +¢, and @(N|10) = (0,0) +c. Note that player 1 (the buyer) obtains
his value of the intermediate good if trade occurs, plus his transfer; player 2 obtains
his transfer. The costs and benefits incurred at the investment phase are sunk and
not included here.

We assume that renegotiation is costly. More precisely, the parties must employ
an attorney to alter the public decision. The attorney charges them a fee equal to the
minimum of 10 and six-tenths of the gain from changing the default public decision.
In other words, if the gain of changing the default decision exceeds 50/3, then the
attorney charges a flat fee of 10; if the gain is less than 50/3, then the attorney charges
.6 times the gain. In technical terms, if in state 6 the players want to renegotiate

"Thus, player 1’s investment is an “own investment,” whereas player 2’s is a “cross investment”
(which Che and Hausch (1999) call “cooperative”).
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from default decision z = (k,c) to public decision = = (k, ¢), then they must pay
n(x, 2|0) = min{10, (.6)[a: (x[0) + a2(2|0) — @1(2]0) — 2(z]0)]}-
The set of feasible renegotiation activity is thus
Y(2l8) = {(2.8) | t1 +t2 < nlx, z/6)}.

Regarding the renegotiation function y*, we suppose that the players maximize their
joint value and equally divide the surplus of renegotiation; that is, they have equal
bargaining weights.!8

Clearly, efficiency requires both players to exert high effort in the investment phase
and for the intermediate good to be traded. If the parties do not give any money
away, this would yield to them a joint payoff of

—3— 3+ (.9)(20) + (.1)(10) = 13.

Note that the players can get no more than 11.2 if only one of them invests high, and
they get only 10 if neither invests high.

The value function v : © — R? gives the payoff vector from the public decision
and renegotiation activity; it does not include the private costs and benefits incurred
in the investment phase. The players’ contractual objective is to implement a value
function v that achieves the highest joint payoff, once the investment-phase gains and
losses are factored in.

For example, suppose the players select a mechanism that implements the value
function defined by v(20) = (10, 10) and v(10) = (5,5). Then, if both players exert
high effort in the investment phase, they each expect a total payoft of

—3+(.9)(10) + (.1)(5) = 6.5.

Interestingly, this value function does not give the players the incentive to invest high;
in particular, anticipating that the other player will invest high, a player obtains

42+5=92

by exerting low effort. For the players to each have the incentive to invest high, they
must implement a value function that satisfies

=3+ (.9)v;(20) + (.1)v;(10) > 4.2 + v;(10)
for i = 1,2. Rearranging terms, this is

180ne can easily verify that our technical assumptions are satisfied in this example.
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Clearly, no efficient value function has this property.

High effort can only be achieved with a value function that represents an inefficient
outcome in state 10. Define function v* by v*(20) = (10, 10) and v*(10) = (2,2). It
is easy to verify that the following contractual mechanism implements value function
v*. The players send to the court reports of the buyer’s value. If the message profile
is (20,20)—that is, both players report value 20—then the default decision is trade
(k =T) and a transfer of 10 from the buyer to the seller (¢; = —10, co = 10). Note
that this would not be renegotiated. For the other three message profiles, the default
decision is no trade (kK = N) and no transfer (¢; = ¢ = 0). Note that, in state
10, this would be renegotiated to specify trade; however, attorney’s fees reduce the
renegotiation surplus from 10 to 4, so each player gets 2.

By writing the contract just described, and thus implementing value function v*,
the players achieve a joint payoft of

—3— 3+ (.9)(20) + (.1)(4) = 12.4,

which is the highest payoff that can be reached. Importantly, v* is the optimal value
function; increasing v;(10) would annul investment incentives, whereas decreasing
v;(10) just reduces joint value. Furthermore, there is no way of implementing v*
without renegotiation. That is, there is no mechanism that implements v* and does
not necessitate renegotiation.

6 Conclusion

We have developed a modelling framework to explicitly capture the constraints on
implementation imposed by the noncontractible opportunity for parties to renegoti-
ate. Our framework has allowed us to rigorously characterize conditions under which
the Renegotiation-Proofness Principle is valid. We have demonstrated that the RPP
generally will not apply in settings of moderate renegotiation costs. However, our
monotonicity result authenticates the “renegotiation is bad” intuition that underlies
the RPP. Our result establishes that the implementable set increases with the cost of
renegotiation. Our results emphasize the need to properly incorporate institutional
and technological constraints into mechanism-design analysis, which we unabashedly
refer to as “Watson’s program” (as this paper continues the line of Watson 2002; see
also Bull and Watson 2001). We encourage further research in this direction.

We wish to point out that our analysis can be applied in a straightforward manner
to the case of ex ante renegotiation, where the players have the opportunity to rene-
gotiate following realization of the state but before messages are sent to the external
enforcer. One could easily restate the RPP for ex ante renegotiation, which would be
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valid if and only if an “ex ante Sobel Condition” holds.!® Likewise, our monotonic-
ity result applies in the ex ante case.? An ex ante version of comprehensiveness is
required.

We encourage researchers to study real renegotiation costs and further the theory
of contract under institutional and technological constraints.

198pecifically, this requires defining a new renegotiation mapping to select a renegotiated mech-
anism, given the state and the “default mechanism,” with the possibility of expenditures at the
ex ante stage. Then, the RPP will be valid whenever the ex ante renegotiation function has the
appropriate fixed-point property.

20Holding the ex post renegotiation technology and environment—defined by states, preferences
and physical outcomes—fixed, if the costs of ex ante renegotiation activity increase, then so must
the set of implementable value functions.

26



References

[1] Bernheim, B.D. and M. Whinston, “Incomplete Contracts and Strategic Ambigu-
ity,” American Economic Review 83 (1998): 902-932.

2] Bull, J. and J. Watson, “Evidence Disclosure and Verifiability,” manuscript, 2001.

[3] Che, Y.-K. and D. Hausch, “Cooperative Investments and the Value of Contract-
ing,” American Economic Review 89 (1999): 125-147.

[4] Dewatripont, M., “Commitment Through Renegotiation-Proof Contracts with
Third Parties,” Review of Economic Studies 55 (1988): 377-389.

[5] Green, J., and J.-J. Laffont, “Characterization of Satisfactory Mechanisms for the
Revelation of Preferences for Public Goods.” Econometrica 45 (1977): 427-438.

[6] Grossman, S. and O. Hart, “The Costs and Benefits of Ownership: A Theory of
Vertical and Lateral Integration,” The Journal of Political Economy 94 (1986):
691-719.

[7] Grout, P.A. “Investment and Wages in the Absence of Binding Contracts: A Nash
Bargaining Approach,” Econometrica 52 (1984): 449-460.

[8] Hart, O. and J. Moore, “Incomplete Contracts and Renegotiation,” Econometrica
56 (1988): 755-785.

[9] Hart, O. and J. Tirole, “Contract Renegotiation and Coasian Dynamics,” Review
of Economic Studies 55 (1988): 509-540.

[10] Klein, B., R.A. Crawford, and A. Alchian, “Vertical Integration, Appropriable
Rents, and the Competitive Contracting Process,” Journal of Law and Economics
21 (1978): 297-326.

[11] Jackson, M., “A Crash Course in Implementation Theory,” manuscript, July
1999.

[12] Jackson, M. and T. Palfrey, “Voluntary Implementation,” Journal of Economic
Theory 98 (2001): 1-25.

[13] Maskin, E., “Nash Equilibrium and Welfare Optimality,” Review of Economic
Studies 66 (1999): 23-38.

[14] Maskin, E. and J. Moore, “Implementation and Renegotiation,” Review of Eco-
nomic Studies 66 (1999): 39-56.

27



[15] Myerson, R., “Incentive Compatibility and the Bargaining Problem,” Economet-
rica 47 (1979): 61-73.

[16] Noldeke, G. and K. Schmidt, “Option Contracts and Renegotiation: A Solution
to the Hold-Up Problem,” RAND Journal of Economics 26 (1995): 163-179.

[17] Reiche, S., “Foundation of Incomplete Contracting in a Model of Asymmetric
Information and Renegotiation,” manuscript, 1999.

[18] Rubenstein, A. and A. Wolinsky, “Renegotiation-Proof Implementation and
Time Preferences,” American Economic Review 82 (1992): 600-614.

[19] Schwartz, A. and J. Watson, “Economic and Legal Aspects of Costly Recon-
tracting,” UC San Diego Economics Working Paper 2000-05, April 2000.

[20] Schwartz, A. and J. Watson, “The Law and Economics of Costly Contracting,”
UC San Diego Economics Working Paper 2001-20, December 2001.

[21] Segal, I. and M. Whinston, “The Mirrlees Approach to Mechanism Design with
Renegotiation (with Applications to Hold-Up and Risk-Sharing),” Econometrica
70 (2002): 1-45.

[22] Thomson, W., “Monotonicity of Bargaining Solutions with Respect to the Dis-
agreement Point,” Journal of Economic Theory 42 (1987): 50-58.

(23] Watson, J., “Contract and Game Theory: Basic Concepts for Settings of Com-
plete Information,” manuscript, June 2001.

[24] Watson, J., “Contract, Mechanism Design, and Technological Detail,” UC San
Diego Economics Working Paper 2002-04, February 2002.

[25] Williamson, O., “Transactions-Cost Economics: The Governance of Contractual
Relations,” Journal of Law and Economics 22 (1979): 233-61.

28



