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Abstract

Stag hunt and chicken games are canonical representations of two kinds of
strategic interactions. In stag hunt, aggression feeds on itself, and mutual
fear escalates into conflict. Chicken is a model of preemption and deter-
rence. With complete information, these games have multiple Nash equil-
bria. We find suffi cient conditions under which payoff uncertainty generates
a unique equilibrium. These conditions encompass information structures
ranging from independent types (as in our previous work) to highly corre-
lated types (as in global games). We use simple, standard arguments from
the industrial organization literature to prove uniquness. Keywords: conflict,
global games, strategic complements, strategic substitutes.



1 Introduction

Simple two-by-two games are frequently used to represent strategic interac-
tions in political science and international relations (see, for example, Jervis
[11]). In this literature, the prisoner’s dilemma plays a prominent role. But
in many instances, stag hunt and chicken games seem more useful metaphors.
Stag hunt captures Hobbes’s “state of nature”, where conflict is caused by
lack of trust. Chicken is a model of preemption and deterrence. The promi-
nence of prisoner’s dilemma games in the literature may be due to analytical
convenience: the prisoner’s dilemma has a unique Nash equilibrium, while
stag hunt and chicken have multiple equilibria.
The prisoner’s dilemma can be thought of as a degenerate stag hunt or

chicken game, where extreme levels of hostility have made “war”a dominant
strategy. And even if this scenario is not very likely, a player who is himself
not intrinsically hostile may be unable to completely rule out the possibility
that the opponent is extremely hostile, or that the opponent thinks he is
very hostile... As is well known, this type of reasoning may produce “spirals”
of fear and aggression. The most useful way to think about these spirals
is to formally introduce payoff uncertainty. This not only makes the model
more realistic, but it may also generate a unique equilibrium, whether the
underlying game is stag hunt or chicken.
Consider a two-player game, where each player must choose either hawk

(H) or dove (D). The hawkish action H might represent an act of war,
accumulation of weapons, or some other aggressive action. In the payoff
matrix, the row represents the choice of player i, and the column the choice
of player j. Only player i’s payoff is indicated.

H D
H hi − c hi
D −d 0

(1)

The payofffrom the peaceful outcome (D,D) is, without loss of generality,
normalized to zero. The parameter hi is incorporates player i’s costs and
benefits from choosing H. If the opponent chooses H then player i suffers a
cost. This cost is c if player i also chooses H, and d if player i chooses D.
We assume, for convenience, that the two parameters c and d are the same
for both players. However, in general, we will have h1 6= h2. We refer to hi
as player i’s hostility parameter or type.
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Suppose, for the moment, that there is no payoff uncertainty: the play-
ers know everything about the game, including each others types. If hi >
max{c− d, 0} for each i ∈ {1, 2} then the game is a prisoner’s dilemma with
a unique Nash equilibrium: (H,H). If c − d < hi < 0 for each i ∈ {1, 2}
then the game is a stag-hunt with two Nash equilibria: (H,H) and (D,D).
If 0 < hi < c − d for each i ∈ {1, 2} then it is a game of chicken with two
Nash equilibria: (H,D) and (D,H). In games with multiple Nash equilibria,
the criterion of risk-dominance is sometimes used to select a unique out-
come. In the stag-hunt game, the risk-dominant Nash equilibrium is (H,H)
if h1 + h2 > c − d and (D,D) if h1 + h2 < c − d. That is, if the combined
hostility levels are not too big, a conflict can be avoided. In chicken, the
risk-dominant Nash equilibrium is (H,D) if h1 > h2 and (D,H) if h1 < h2.
That is, the most hostile player is aggressive, the other backs down.
Carlsson and van Damme [7] showed that if each player is uncertain about

the opponent’s type, but types are very highly correlated, then the players
coordinate on the risk-dominant outcome. This insight triggered a large lit-
erature on global games. In reality, it is surely impossible to be certain about
the opponent’s payoff function. However, if the types are highly correlated,
as in the global games literature, then each player is almost perfectly in-
formed about the opponent’s type. This is not a plausible assumption for
many applications. In reality, payoff uncertainty can be large. Therefore,
unlike the global games literature, we do not focus only on “small”pertur-
bations of the payoff matrix (1). We will derive conditions under which a
unique equilibrium exists even when there is a significant amount of payoff
uncertainty.
Realistically, any parameter in the payoff matrix (1) could be uncertain.

For convenience, we will assume the uncertainty only relates to the hostility
parameters, while c and d are common knowledge. We consider two possi-
bilities. If c < d, then actions are strategic complements, as in a stag-hunt
game: each player is more inclined to choose H, the more likely it is that
that his opponent will choose H. If c > d, then actions are strategic sub-
stitutes, as in a chicken game: each player is more inclined to choose H,
the more likely it is that the opponent will choose D. Regardless of whether
c < d or c > d, players with very big hostility parameters are “dominant
strategy hawks”who behave as in a prisoner’s dilemma, with “war”(H) as
a dominant strategy. Conversely, players with very small hostility parame-
ters are “dominant strategy doves”for whom “peace”(D) is dominant. The
remaining “moderate”types, who do not have any dominant strategy, must
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form beliefs about the opponent’s action before deciding what to do. With
strategic complements, these moderates are coordination types who want to
match the action of their opponent. With strategic substitutes, moderates
want to choose the opposite of their opponent.
In Industrial Organization, the contrast between strategic complements

and strategic substitutes organizes the way we think about strategic interac-
tion (e.g., Bertrand versus Cournot competition). But these concepts serve
equally well for the study of international relations and conflict. Two kinds
of conflicts are often distinguished in the literature: those where aggression
feeds on itself in a cycle of fear, as in stag hunt; and those where toughness
forces the opponent to back down, as in chicken.1 In stag hunt, actions are
strategic complements: the incentive to choose H is increasing in the prob-
ability that the opponent chooses H. This can trigger an escalating spiral
of aggression as in the classic work of Schelling [18] and Jervis [11]. In a
chicken game, actions are strategic substitutes: the incentive to choose H is
decreasing in the probability that the opponent chooses H. This captures
a scenario where players will back down in the face of aggression. For ex-
ample, suppose the hawkish action represents sending soldiers to a disputed
territory. If only one country sends soldiers, then it will control the territory
at little cost. But it both countries send their soldiers, a war could easily
break out. If the value of the territory is not large enough to justify the risk
of war, it is a game of chicken.
By using the standard approach from the Industrial Organization litera-

ture, we obtain rather general conditions for a unique equilibrium to exist.
The conditions are stated in terms of properties of the distribution of types.
But they are equivalent to the well-known condition that the slopes of (ap-
propriately defined) reaction functions should be less than one in absolute
value. The conditions are satisfied if types are independently drawn but
diffuse - “large idiosyncratic uncertainty”. For example, even if the ordinal
payoffs are those of a stag hunt game with probability close to one, but there
is a large amount of uncertainty about idiosyncratic cardinal payoffs, then
there is a unique equilibrium. However, independence is not always a reason-
able assumption. For example, in a conflict over a common resource, types
are determined not only by idiosyncratic preferences, but also by the value

1“World Wars I and II are often cast as two quite different models of war.. World
War I was an unwanted spiral of hostility... World War II was not an unwanted spiral of
hostility-it was a failure to deter Hitler’s planned aggression.”Joseph Nye (p. 111, [17]).
Understanding International Conflict (6th Edition).
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of the contested resource. In this case, a player’s type contains information
about his opponent’s type, so types are affi liated. Our conditions cover this
case as well.
In a stag-hunt game, the fear of dominant strategy hawks triggers “almost

dominant strategy hawks” to play H, which triggers “almost-almost domi-
nant strategy hawks”to play H etc. This process is akin to Schelling’s [18]
“reciprocal fear of surprise attack”and Jervis’s [11] “spiral model”. A sim-
ilar but more benign logic causes “almost dominant strategy doves”to play
D, followed by “almost-almost dominant strategy doves”etc. In Section 3,
we derive a suffi cient condition for these spirals to produce a unique equilib-
rium. In particular, this is the case when types are independent but diffuse,
or are determined by a common shock and small noise as in the global games
literature. Adding affi liation has an ambiguous effect on these spirals. On
the one hand, affi liation makes “almost dominant strategy hawks”think it is
quite likely that the opponent is a dominant strategy hawk, which intensifies
their fear, and so on. In this sense, affi liation promotes uniqueness when
actions are strategic complements. However, if types are strongly affi liated,
then there is not much (interim) payoff uncertainty. In this case, multiple
equilibria cannot be ruled out.
A different kind of spiral leads to a unique equilibrium in games with

strategic substitutes. This spiral is created by types who back down in the
face of aggression triggering more aggression which causes more types to back
down, etc. In Section 4, we derive a suffi cient condition for uniqueness in such
games. With strategic complements, the fear of dominant strategy hawks
causes “almost dominant strategy doves” to play D. This in turn triggers
“almost dominant strategy hawks”to play H etc. Again, with independently
drawn diffuse types there is a unique equilibrium. Affi liation prevents this
type of spiral from gaining ground, because “almost dominant strategy doves”
will think it is quite unlikely that the opponent is a dominant strategy hawk,
which mitigates their fear, and so on. Therefore, affi liation always works
against uniqueness when actions are strategic substitutes.
We have previously studied the logic of mutual fear and escalation un-

der the assumption that types are independent (Baliga and Sjöström [5],
[6], Baliga, Lucca and Sjöström [4]). In complementary work, Chassang and
Padro-i-Miguel [8], [9] use the theory of global games and the concept of risk-
dominance to formalize the logic of mutual fear. In this article, we consider
a more general model of affi liated types, where both independent types and
highly correlated types are special cases. Morris and Shin ([15]) study games
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with strategic substitutes and a broader class of information structures than
global games. They argue that uniqueness results from either large idio-
syncratic uncertainty (as in Baliga and Sjöström [5], [6], Baliga, Lucca and
Sjöström [4]) or from highly correlated types (as in global games). We offer
a similar conclusion for the case of strategic complements. As we exploit
connections with the Industrial Organization literature, our arguments are
different, more familiar and much simpler. Unlike Morris and Shim [15],
we also study the case of strategic substitutes. Via the leading example in
Carlsson and van Damme [7], we show that our theory of payoff uncertainty
and uniqueness differs from global games.

2 The Model

As discussed above, the payoff matrix is

H D
H hi − c hi
D −d 0

The two parameters c and d are fixed and the same for both players. However,
player i’s true hostility parameter (or “type”) hi is his private information.
The hostility parameter hi has a fixed publicly observed component ki as

well as a random privately observed component ηi. Thus, player i’s type is

hi = ki + ηi.

The game of incomplete information is played as follows. First η1 and η2

are drawn from a symmetric joint distribution with support [η, η̄] × [η, η̄].
Then player 1 is informed about η1, but not about η2. Similarly, player 2 is
informed about η2 but not about η1. Finally, each player makes his choice
simultaneously (H or D).
When the players make their choices, everything except η1 and η2 is

commonly known. In particular, there is no uncertainty about the fixed
parameters k1 and k2. The introduction of k1 and k2 is a convenient way to
allow for ex ante asymmetries in the distribution of hostilities. If k1 = k2

then the two players are ex ante symmetric (and it would be without loss of
generality to assume k1 = k2 = 0). But if k1 6= k2 then there is a publicly
known ex ante asymmetry.
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If η1 and η2 are correlated, then player i’s knowledge of ηi can be used
to update his beliefs about ηj. Formally, the cumulative distribution of
ηj conditional on ηi = y (where i 6= j) is denoted F (·|y). We assume F (x|y)

is continuously differentiable, with partial derivatives F1(x|y) ≡ ∂F (x|y)
∂x

and
F2(x|y) ≡ ∂F (x|y)

∂y
. Notice that F1(·|y) is the density of ηj conditional on

ηi = y. Since player j’s hostility is hj = kj +ηj, uncertainty about ηj directly
translates into uncertainty about player j’s type. The types h1 and h2 are
correlated if and only if η1 and η2 are correlated. If player i’s type is hi = y,
then player i assigns probability F (x − kj|y − ki) to the event that hj ≤ x.
Indeed, hi = y if and only if ηi = y−ki, and hj ≤ x if and only if ηj ≤ x−kj.
The least (resp. most) hostile type of player i has hostility parameter hi =
ki + η (resp. h̄i = ki + η̄). Notice that, for any y,

F (hj − kj|y − ki) = F (η|y − ki) = 0

and
F (h̄j − kj|y − ki) = F (η̄|y − ki) = 1

since it is impossible for player j to have hostility parameter below hj or
above h̄j.
We make the following assumption:

Assumption 1 (i) F1(x|y) > 0 for all x, y ∈
(
η, η̄
)
and (ii) F2(x|y) ≤ 0 for

all x, y ∈ (η, η̄).

Part (i) says there is positive density everywhere. Part (ii) says that
F (x|y) is not increasing in y. Therefore, as a player becomes more hostile,
he becomes no less pessimistic about his opponent’s hostility. Part (ii) holds
if η1 and η2 are affi liated (Milgrom, 2004, Theorem 5.4.3). Affi liation is a
natural assumption if the conflict is over some resource such as oil. Of course,
Part (ii) also holds if η1 and η2 are independent. Independence is a natural
assumption if the uncertainty is over the innate attitude towards conflict.
For future reference, we note that Assumption 1 implies that if y > x then
F (y|x)− F (x|y) ≥ F (y|y)− F (x|y) > 0.
We classify types into four categories.

Definition 1 Player i is a dominant strategy hawk if hi − c ≥ −d and
hi ≥ 0 with at least one strict inequality. Player i is a dominant strategy
dove if hi − c ≤ −d and hi ≤ 0 with at least one strict inequality. Player i
is a coordination type if c − d ≤ hi ≤ 0. Player i is an opportunistic type
if 0 ≤ hi ≤ c− d,.

6



Notice that coordination types exist only in games with strategic com-
plements. For them, H is a best response to H and D a best response to
D. Opportunistic types exist only in games with strategic substitutes. For
them, D is a best response to H and H a best response to D

2.1 Bayesian Nash Equilibrium

Suppose player i is of type hi, and thinks player j will chooseD with probabil-
ity δj(hi). (This probability can depend on hi if types are not independent).
Type hi’s expected payoff from H is hi − (1 − δj(hi))c, while his expected
payoff from D is −(1− δj(hi))d. Thus, if type hi chooses H instead of D, his
net gain is

hi + (d− c)(1− δj(hi)) (2)

A strategy for player i is a function σi : [hi, h̄i] → {H,D} which specifies
an action σi(hi) ∈ {H,D} for each type hi ∈ [hi, h̄i]. In Bayesian Nash
equilibrium (BNE), all types maximize their expected payoff. Therefore,
σi(hi) = H if the expression in (2) is positive, and σi(hi) = D if it is negative.
(If expression (2) is zero then type hi is indifferent and can choose either H
or D.) We say that player i uses a cutoff strategy if there is a cutoff point
x ∈ [hi, h̄i] such that σi(hi) = H for all hi > x and σi(hi) = D for all hi < x.
A cutoff equilibrium is a BNE in cutoff strategies. Cutoff equilibria seem
very natural. They capture the intuition that when a player becomes more
hostile he becomes more likely to show aggression.
If player j uses a cutoff strategy with cutoff point x, then δj(y) = F (x−

kj|y− ki), so player i’s net gain from choosing H instead of D when his type
is hi = y is

Ψi(x, y) ≡ y + (d− c) (1− F (x− kj|y − ki)) . (3)

For a cutoff strategy to be a best response, player i should be more
inclined to choose H the more hostile he is. That is, Ψi(x, y) should be
increasing in y :

Ψi
2(x, y) = 1− (d− c)F2(x− kj|y − ki) > 0 (4)

Figure 1 illustrates this property.
In view of Assumption 1, (4) holds if d > c. It also holds if d < c and

the two types are not very highly correlated. However, if c is much bigger
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Figure 1: Ψi(x,y)

0

hi +(dc)(1F(xkj| hi –ki)

hi

βi(x)

Ψi(x,y)

Ψi(x,y) = 0

than d and the two types are highly correlated, then (4) may be violated.
The intuition is that, if types are highly correlated and the players use cutoff
strategies, then a very hostile type thinks it is very likely that the opponent
chooses H. If in addition c is much bigger than d, then the (H,H) outcome is
very costly. In this situation, the very hostile type may be inclined to choose
D rather than H..
If condition (4) holds then player i’s best response to player j’s cutoff x

is to use a cutoff point denoted βi(x). The best-response function βi(x) is
defined as follows. (i) If Ψi(x, hi) ≥ 0 then βi(x) = hi (so player i plays
H with probability one). (ii) If Ψi(x, h̄i) ≤ 0 then βi(x) = h̄i (so player i
plays D with probability one). (iii) Otherwise, βi(x) ∈

(
hi, h̄i

)
is the unique

solution to the equation Ψi(x, βi(x)) = 0 (all types above βi(x) play H, and
all types below βi(x) play D). As long as Ψi(x, y) is increasing in y, βi(x)
is a well-defined continuous function (by the implicit function theorem), and
the slope of βi is obtained by totally differentiating Ψi(x, βi(x)) = 0. Thus,

β′i(x) = −Ψi
1(x, βi(x))

Ψi
2(x, βi(x))

= − (c− d)F1(x− kj|βi(x)− ki)
1− (d− c)F2(x− kj|βi(x)− ki)

. (5)
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A cutoff equilibrium is an intersection of the two best response curves. That
is, the two cutoffs x1 and x2 must satisfy x1 = β1(x2) and x2 = β2(x1).
Notice that β′i(x) > 0 if d > c (strategic complements) and β′i(x) < 0 if d < c
(strategic substitutes).

Proposition 2 If Ψi(x, y) is increasing in y for each i ∈ {1, 2} and all
x ∈ [hi, h̄i], then a cutoff equilibrium exists.

Proof. Since the functionΨ2(β1(x), x) is continuous in x, one of the following
three cases must occur:
(i) Ψ2(β1(h2), h2) ≥ 0. In this case the cut-off points (β1(h2), h2) form a

BNE.
(ii) Ψ2(β1(h̄2), h̄2) ≤ 0. In this case the cut-off points (β1(h̄2), h̄2) form a

BNE.
(iii) there is x ∈ [h2, h̄2] such that Ψ2(β1(x), x) = 0. In this case the

cut-off points (β1(x), x) form a BNE.

3 Strategic Complements

Actions are strategic complements when d > c. In this case, (4) holds, so
a cutoff equilibrium exists by Proposition 2. We first derive a suffi cient
condition for this to be the unique BNE.

3.1 The uniqueness result

Our main result for the case of strategic complements is the following.

Theorem 3 Suppose d > c and for all s, t ∈
(
η, η̄
)
,

F1(s|t) + F2(s|t) < 1

d− c. (6)

There is a unique BNE. This BNE is a cutoff equilibrium.

In the appendix, we prove that all BNE must be cutoff equilibria. At
least one cutoff equilibrium exists by Proposition 2. To complete the proof
of Theorem 3, we only need to show that there cannot be more than one
cutoff equilibrium.
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It suffi ces to show that the slope of the best response function βi is less
than one in absolute value. As is well known, this guarantees that the two
best response curves can intersect only once (for example, Vives [21]). Equa-
tion (5) can be manipulated as follows:

β′i(x) =
(d− c)F1(x− kj|βi(x)− ki)

1− (d− c)F2(x− kj|βi(x)− ki)

= 1− 1− (d− c) {F1(x− kj|βi(x)− ki) + F2(x− kj|βi(x)− ki)}
Ψi

2(x, β(x))
< 1.

The inequality is due to (4) and (6). Since we already know that β′i(x) > 0
when d > c, we conclude that 0 < β′i(x) < 1. Thus, the cutoff equilibrium is
unique.2

3.2 Diagrammatic illustration

We will illustrate Theorem 3 diagrammatically. Consider the function Q :
[η, η̄]→ [0, 1] defined by Q(η) ≡ F (η|η). Notice that Q(η) = 0 and Q(η̄) = 1.
By calculus,

η̄ − η
d− c =

∫ η̄

η

(
1

d− c

)
dη >

∫ η̄

η

{F1(η|η) + F2(η|η} dη =

∫ η̄

η

Q′(η) dη = Q(η̄)−Q(η) = 1

where the inequality is due to (6). Therefore, for each i ∈ {1, 2},

h̄i − hi = η̄ − η > d− c.

This implies that either h̄i > 0 or hi < c− d (or both). That is, the support
includes dominant strategy types.
Suppose hi < c− d < 0 < h̄i for each i ∈ {1, 2} so each player’s possible

types include both both dominant strategy hawks and dominant strategy
doves. Notice that Ψi(hj, y) = y + d − c, so βi

(
hj
)

= c − d. That is,
if player j plays H with probability 1 (his cutoff point is hj) then player

2It is possible to show, generalizing the results in Baliga and Sjostrom, that another
suffi cient condition for a unique equilibrium in cut off strategies is that φ is concave. To
prove this, define the modified best response function β̂ by using the function Ψ̂(x, y) ≡
y + (d − c) (1− φ(x)) instead of the function Ψ. If φ is concave, then β̂ intersects the 45
degree line exactly once. Moreover, β coincides with β̂ on the 45 degree line, so β intersects
the 45 degree line in a unique point.
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Figure 2: Equilibrium for Strategic Complements

0

cd

hi

x= y

βi(x)

Equilibrium

cd 0

βj(x)

hj

hi

hj

i’s best response is to choose H whenever he is not a dominant strategy
dove. Similarly, Ψi(h̄j, y) = y, so βi

(
h̄j
)

= 0. That is, if player j plays H
with probability 0 (his cutoff point is h̄j) then player i’s best response is to
choose H whenever he is a dominant strategy hawk. If hj < x < h̄j, then
βi(x) ∈

[
hi, h̄i

]
is the unique solution to the equation Ψi(x, βi(x)) = 0., and

we know that 0 < β′i(x) < 1.
Notice that, if there are both dominant strategy hawks and dominant

strategy doves, then certainly some types choose H, some types choose D.
Hence, the unique equilibrium must be interior: each player i chooses a cut-
off point h∗i ∈

(
hi, h̄i

)
which solves

h∗i + (d− c)
(
1− F (h∗j − kj|h∗i − ki)

)
= 0. (7)

The equilibrium (h∗1, h
∗
2) is illustrated in Figure 2.

Now suppose some player, say player 1, can be a dominant strategy hawk
but not a dominant strategy dove: c − d < h1 < 0 < h̄1. As indicated
in Figure 3, it is now possible that in equilibrium player 1 chooses H with
probability one, but the equilibrium is still unique.
If both players can be dominant strategy hawks but not dominant strategy

doves, i.e., hi ≥ c − d for i ∈ {1, 2}, then there surely exists an equilibrium
where each player chooses H, regardless of type. This is illustrated in Figure
4. By Theorem 3, there can be no other equilibrium in this case. Thus, if
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each player can be a dominant strategy hawk, but not a dominant strategy
dove, then peaceful coexistence is impossible, and each player choosesH with
probability one. This represents an extreme case of the Schelling’s “reciprocal
fear of surprise attack”. (Conversely, if h̄i ≤ 0 for i ∈ {1, 2}, so there are no
dominant-strategy hawks, then the unique equilibrium is for each player to
choose D, regardless of type.
The arguments of Milgrom and Roberts [13] can be adapted to show

that the unique equilibrium can be obtained by iterated deletion of (interim)
dominated strategies.

3.3 The uniform independent case

Suppose η1 and η2 are independently drawn from a uniform distribution on
[η, η̄], where η̄ − η > d− c. In this case, F (s|t) =

(
s− η

)
/
(
η̄ − η

)
so

F1(s|t) + F2(s|t) =
1

η̄ − η <
1

d− c.

Theorem 3 implies there is a unique BNE. Thus, with a uniform distribution,
there is a unique equilibrium, as long as the support is big enough.
To simplify the calculations, suppose k2 = k ≥ 0 = k1. Thus, player 2 is

ex ante (weakly) more hostile than player 1. If only one kind of dominant
strategy type exists, say only dominant strategy hawks, then the unique
equilibrium is for both players to choose H regardless of type. For a more
interesting interior equilibrium, assume η̄ > 0 and η + k < c − d. This
guarantees that the support of each player’s types includes dominant strategy
types of both kinds. We solve (7) to get h∗1 = A +

(
η̄ − η

)
B and h∗2 =

A+ (d− c)B, where
A ≡ − (d− c)η̄(

η̄ − η
)
− (d− c)

and

B ≡ − (d− c)k(
η̄ − η

)2 − (d− c)2

It can be verified that η̄ > 0 and η + k < c − d guarantee h∗i ∈
(
hi, h̄i

)
.

If k > 0 then h∗1 < h∗2, since η̄ − η > d − c and B < 0. Thus, if it should
happen that both players’true types lie in the interval (h∗1, h

∗
2), then player

1 chooses H (because h1 > h∗1) but player 2 chooses D (because h2 < h∗2). In
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this sense, the ex ante less hostile player becomes ex post the most aggressive
one - because he feels more threatened by the opponent.

3.4 Discussion

Suppose the players are symmetric: k1 = k2 = 0. Now the best response
curves must intersect at the 45 degree line, and the unique equilibrium is a
symmetric cut-off equilibrium, h∗1 = h∗2 = h∗. The symmetric cut off point is
the unique solution in [hi, h̄i] to the equation

h∗ + (d− c) (1− F (h∗|h∗)) = 0 (8)

The intuition behind Theorem 3 may be brought out by a standard “sta-
bility”argument. Starting at the symmetric cutoff equilibrium h∗, suppose
both simultaneously reduce their cut-off by ε (so a few more types use H).
Then, consider type h∗ − ε. If type h∗ − ε now prefers D, the initial equi-
librium is stable, and this is what we want to verify. In fact there are two
opposing effects. First, at the original cut-offh∗, type h∗−ε strictly preferred
D, so there is reason to believe he still prefers D. However, the opponent has
now become more hostile. At the initial equilibrium, cutoff type h∗ thought
that the opponent would choose H with probability 1− F (h∗|h∗). But after
the perturbation, the new cutoff type h∗ − ε thinks that the opponent will
choose H with probability 1− F (h∗ − ε|h∗ − ε). If

F1(h∗|h∗) + F2(h∗|h∗) < 1

d− c (9)

then the first effect dominates, and type h∗−ε will strictly prefer D after the
perturbation, as required by stability. But (9) follows from (6). As usual,
the stability condition guarantees intuitive comparative statics. By (8) and
(9), an increase in d− c will lead to more aggressive behavior (a reduction in
equilibrium h∗).
If types are independent, then F2 ≡ 0 and (6) simply requires that the

density of the random variable ηi is suffi ciently spread out, i.e., that there is
“enough uncertainty”about types. Now suppose types are affi liated. This im-
pacts the stability of the equilibrium via the expression F1(h∗|h∗)+F2(h∗|h∗).
There are two contradictory effects. On the one hand, affi liation causes type
h∗ to think the opponent is likely to be similar to himself, so F1(h∗|h∗) is
large. This effect makes uniqueness less likely. On the other hand, affi li-
ation causes F2(h∗|h∗) to be negative. This effect makes uniqueness more
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likely. While the first effect is easy to understand, in terms of concentrat-
ing the density of types in a smaller area, the second effect is more subtle.
Intuitively, in the above stability argument, affi liation causes type h∗ − ε to
be less pessimistic about the opponent’s hostility than type h∗, making him
more likely to prefer D. That is, the best response curves are more likely to
have the slopes that guarantee stability and uniqueness.

4 Strategic Substitutes

Actions are strategic substitutes when d < c. In this case, we need to make
suffi cient assumptions to guarantee that (4) holds, otherwise a cutoff equi-
librium may not exist.

4.1 Existence and uniqueness

Our main result for the case of strategic substitutes is the following.

Theorem 4 Suppose d < c and for all x, s, t ∈ (η, η̄),

F1(s|t)− F2(s|t) < 1

c− d (10)

and
F1(s|x)− F2(x|t) < 1

c− d . (11)

There is a unique BNE. This BNE is a cutoff equilibrium.

In the appendix, we prove that all BNE must be cutoff equilibria. The
inequality (10) implies

(c− d)F2(x|t) > (c− d)F1(s|x)− 1 ≥ −1.

Therefore, (4) holds, so a cutoff equilibrium exists by Proposition 2. To
complete the proof of Theorem 4, we only need to show that there can be at
most one cutoff equilibrium.
It again suffi ces to show that the slope of the best response function βi is

less than one in absolute value (Vives [21]). Equation (5) implies

1 + β′i(x) = 1 +
(d− c)F1(x− kj|βi(x)− ki)

1− (d− c)F2(x− kj|βi(x)− ki)

=
1 + (c− d) (F2(x− kj|βi(x)− ki)− F1(x− kj|βi(x)− ki))

Ψi
2(x, βi(x))

> 0
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The inequality is due to (4) and (11). Since we already know that β′i(x) < 0
when d < c, we conclude that −1 < β′i(x) < 0. Thus, the cutoff equilibrium
is unique.

4.2 Diagrammatic exposition

Consider again the function Q(η) ≡ F (η|η). By calculus,

η̄ − η
c− d =

∫ η̄

η

(
1

c− d

)
dη >

∫ η̄

η

{F1(η|η)− F2(η|η} dη ≥
∫ η̄

η

{F1(η|η) + F2(η|η} dη

=

∫ η̄

η

Q′(η) dη = Q(η̄)−Q(η) = 1

where the first inequality is due to (10) and the second is due to the fact that
F2(η|η) ≤ 0. Therefore, for each i ∈ {1, 2},

h̄i − hi = η̄ − η > c− d.

This implies that either h̄i > c − d or hi < 0 (or both). That is, the
support includes dominant strategy types.

Suppose both players have dominant strategy hawks and doves means
so that if player j uses cutoff x, βi(x) is interior. Then, we must have
Ψi(x, βi(x)) = 0 and so we can use (5) to study the best-response function
β. Since Ψi

1(x, y) > 0, the best response functions are downward-sloping:
β′i(x) < 0. This implies −1 < β′i(x) < 0 for all x ∈ [hj, h̄j]. This implies
the two best-response functions cannot cross more than once, so there can
be only one cutoff equilibrium:
Now assume that at least one player has dominant strategy doves or

hawks but not both. Then, again either there is a unique equilibrium which is
interior or there is a unique equilibrium with is a corner equilibrium. Suppose
either 0 < h̄i < c − d or c − d > hi > 0 but not both. Then, both players
have dominant strategy hawks or doves and opportunistic types. In that case,
if (11) holds, there is a unique equilibrium and this equilibrium is interior.
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Figure 3: Equilibrium for Strategic Substitutes
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That is, unlike in the case of strategic complements, the presence of both
dominant strategy types is not necessary for an interior equilibrium.
The incomplete information game with strategic substitutes is a submod-

ular game. In the two player case, we can invert one player’s strategy set to
make the game supermodular. Hence, when there is a unique equilibrium,
we can again invoke the result that a supermodular game with a unique equi-
librium can be solved by iterated deletion of (interim) dominated strategies.
The suffi cient condition for uniqueness with strategic substitutes contains

one inequality that is symmetric with strategic complements (upto two neg-
ative signs). But it also contains a second condition that is used to prove the
non-existence of non-cut-offequilibria. The issue of non-cutoffequilibria does
not arise in a complete information setting where there is a full equivalence
between two player supermodular and submodular games.
As in the case of strategic complements, it is easy to characterize the

unique equilibrium. If the unique equilibrium is interior, then player i chooses
the cut-off point h∗i ∈

(
hi, h̄i

)
which solves

h∗i + (d− c)
(
1− F (h∗j − kj|h∗i − ki)

)
= 0. (12)
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In other cases, there are corner solutions.
The uniqueness conditions for the two classes of games, (11) and (6), can

be compared. If types are independent, then F (s|t) is independent of its
second argument, so (6) and (11) both reduce to the condition

F1(s|t) <
∣∣∣∣ 1

d− c

∣∣∣∣
for all s, t ∈ (η, η̄). If in addition η1 and η2 are independently drawn from
a uniform distribution with support [η, η̄], then the suffi cient condition for
uniqueness of equilibrium is

η̄ − η > |d− c| .

However, if types are affi liated, so that F2(s|t) < 0, then the uniqueness
conditions for strategic substitutes are more stringent than those for strategic
complements, because F2(s|t) enters with a negative sign in (11).
While stag hunt captured the idea of Schelling’s “reciprocal fear of sur-

prise attack,”chicken, a game with strategic substitutes captures a different
logic of “escalating fear of conflict”. Coordination types in chicken want to
mis-coordinate with the opponent’s action, particularly if he plays H. Co-
ordination types with a low hostility level h are near indifferent between H
and D if they are certain that the opponent plays D. But if there is posi-
tive probability that the opponent is a dominant strategy type, the “almost
dominant strategy doves”strictly prefer to back off and play D. This in turn
emboldens coordination types who are almost dominant strategy hawks to
play H and the cycle continues. This escalation is more powerful if there is
negative correlation between types and dovish coordination types with low
h put high probability on hawkish coordination types with high h and vice-
versa. But it is more natural to assume independence or positive correlation.
In the latter case, the uniqueness condition for chicken is less likely to hold.
We study independence and correlation in the context of the global games
model in Section 5.

4.3 The uniform independent case

Suppose the idiosyncratic shocks η1 and η2 are independently drawn from a
distribution which is uniform on [η, η̄]. The flatness condition requires “suf-
ficient uncertainty”: η̄ − η > c − d. Then, we are assured that a unique
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equilibrium exists. Notice that the flatness condition implies that player 1
either must have dominant strategy hawks or dominant strategy doves with
positive probability. We assume c− d > η, otherwise we have a trivial equi-
librium where both players play H whatever their type. We also assume
η̄ > 0, otherwise there is a trivial equilibrium where player 1 always plays D
and player 2 plays h iff h2 ≥ 0.
Let

h∗1 =
[η̄
(
η̄ − η − (c− d)

)
+ k

(
η̄ − η

)
] (c− d)(

η̄ − η
)2 − (c− d)2

> 0 and

h̃2 =
[η̄
(
η̄ − η − (c− d)

)
− k] (c− d)(

η̄ − η
)2 − (c− d)2

< c− d

where these equations solve (12). Notice that as k ≥ 0, h∗1 ≥ h̃2.
If h̃i ∈ [0, c − d] and h̃i ∈ [η + ki, η̄ + ki], then the unique equilibrium is

interior and has h∗i = h̃i. Therefore, for an interior equilibrium, we require

η̄
(
η̄ − η − (c− d)

)
+ k

(
η̄ − η

)(
η̄ − η

)2 − (c− d)2
< 1 and

η̄
(
η̄ − η − (c− d)

)
− k(

η̄ − η
)2 − (c− d)2

> 0.

This implies

k < η̄
(
η̄ − η − (c− d)

)
and

k <

(
c− d− η

) (
η̄ − η − (c− d)

)(
η̄ − η

) .

In other cases, there is a corner solution with either one or the other
player always playing the same action.

5 Global games

Following Carlsson and van Damme [7], we assume the players’ types are
generated from an underlying parameter θ as follows. First, θ is drawn
from a distribution H on Θ ≡ [θ, θ̄] ⊂ R. The density h is strictly positive,
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continuously differentiable and bounded on Θ. Then, the idiosyncratic shock
ηi is given by

ηi = θ + εEi

where (E1, E2) is independent of θ and admits a continuous, symmetric den-
sity ϕ.3 The support of Ei is [−1

2
, 1

2
]. Player i knows his own draw ηi but not

the opponent’s draw ηj. Neither player can observe θ. We set ki = kj = 0
so hi = ηi. Let F

ε(ηj|ηi) and f ε(ηj|ηi) be the distribution and density of ηj
conditional on player i’s type ηi. Denote by ϕ

ε the joint density of (εEi, εEj).
Finally, ψε is the density of εEi − εEj. Then, for i, j = 1, 2, i 6= j

f ε(ηj|ηi) =

∫
h(θ)ϕε(ηi − θ, ηj − θ)dθ∫ ∫
h(θ)ϕε(ηi − θ, ηj − θ)dηjdθ

.

Lemma 5 There is a constant k(ηi) such that for all suffi ciently small ε

|F ε(ηj|ηi)−
∫
y≤ηj

ψε(ηi − y)dy| ≤ k(ηi)ε.

Proof. The proof follows the argument of Lemma 4.1 in Carlsson and van
Damme [7] and is omitted.

5.1 Strategic Complements

We verify that (6), the suffi cient condition for uniqueness with strategic com-
plements is satisfied when ε is suffi ciently small.
Notice that F ε

1 (ηj|ηi) ≥ 0 for all ηj, ηi ∈ [η, η̄]. Also, when ε is small,
F ε

2 (ηj|ηi) ≤ 0 for all ηj, ηi ∈ (η, ηj) (see Van Zandt and Vives [20]).
Notice that∫

y′≤ηj+∆

ψε(ηi + ∆− y′)dy′ =
∫
y≤ηj

ψε(ηi − y)dy

as ψε depends only on the difference between E1 and E2. Therefore, from
Lemma 5, for a given ∆, there is constant k(ηi,∆) such that for all ε suffi -
ciently small,

|F ε(ηj|ηi)− F ε(ηj + ∆|ηi + ∆)| ≤ k(ηi,∆)ε

3We assume symmetry to make this approach consistent with our basic model.
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or
|F ε(ηj|ηi)− F ε(ηj + ∆|ηi + ∆)|

∆
≤ k′(ηi,∆)ε

where k′(ηi,∆) = k(ηi,∆)/∆. As this inequality must hold for small ∆, for
all ε suffi ciently small,

F ε
1 (ηj|ηi) + F ε

2 (ηj|ηi) ≤ ε.

And hence the global games information structure satisfies our suffi cient con-
dition for uniqueness (6). The interested reader can refer to Carlsson and van
Damme [7] and notice that this is a different approach to proving uniqueness.

5.2 Strategic Substitutes

We show that our suffi cient condition identified in Theorem 4 is not satisfied
by the global games information structure. Hence, in this case, we present an
alternative theory of uniqueness generated by payoffuncertainty. To simplify,
assume all distributions are uniform. If player i draws ηi ∈ [θ + ε, θ̄ − ε],
then his posterior beliefs about θ are given by a uniform distribution on
[ηi−ε, ηi+ε]. Player i’s beliefs about ηj are given by a symmetric, triangular
distribution around ηi with support [ηi − 2ε, ηi + 2ε]. If s, t ∈ [θ + ε, θ̄ − ε]
then

F (t|s) =


1 if t ≥ s+ 2ε

1− 1
2

(
1− t−s

2ε

)2
if s ≤ t ≤ s+ 2ε

1
2

(
1− s−t

2ε

)2
if s− 2ε ≤ t ≤ s

0 if t ≤ s− 2ε

which implies
F (t|s) + F (s|t) = 1. (13)

We also compute

F1(t|s) =


0 if t > s+ 2ε

1
4ε2

(s− t+ 2ε) if s ≤ t ≤ s+ 2ε
1

4ε2
(t− s+ 2ε) if s− 2ε ≤ t ≤ s

0 if t ≤ s− 2ε

Notice that
F1(t|s) = F1(s|t). (14)
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Differentiating (13) with respect to s yields

F2(t|s) + F1(s|t) = 0.4 (15)

For |s− t| < 2ε we have, using (14) and (15),

F1(s|t)− F2(s|t) = 2F1(s|t) =
1

2ε2
(|s− t|+ 2ε)

which reaches a maximum 2/ε when |s− t| = 2ε. Also,

F1(s|x)− F2(x|t) = F1(s|x) + F1(t|x)

by (15), which also reaches a maximum 2/ε. By Theorem 4, there is a unique
BNE if ε > 2 (c− d). Thus, “large idiosyncratic uncertainty” guarantees
uniqueness. In fact the game can be solved by iterated deletion of (interim)
dominated strategies.

Proposition 6 If c > d then there is a unique BNE for any ε > 2 (c− d).

When uniqueness obtains, it is a stark consequence of the dynamic trig-
gered by “deterrence by fear.”The chance of conflict with dominant strat-
egy hawks triggers dovish behavior among the coordination types. When
ε > 2 (c− d) , type 0 of player i puts positive probability on player j being
a dominant strategy hawk. This implies that type 0 and types just higher
play D. Similarly, type c− d of player i puts positive probability on player j
being a dominant strategy dove. This implies type c−d and types just below
play H. This process of iterated deletion of dominated strategies identifies a
unique equilibrium.

Our suffi cient conditions for uniqueness imply ε has to be big enough.
What happens if ε is small ? Then, if there is not much asymmetry between
the two players, multiple equilibria exist. Specifically, if k2 = k > 0 = k1,
then multiple equilibria exist for k small.

Proposition 7 Suppose c > d, and k2 = k > 0 = k1. If ε < (c− d)/2, then
multiple equilibria exist for k > 0 suffi ciently small, specifically, whenever
k < 2ε

(
1− 2ε

c−d
)
..

4Combining (14) and (15) yields F1(t|s)+F2(t|s) = 0 so (6) certainly holds. Therefore,
for the case of strategic complements, we have: If c < d then there is a unique BNE for
any ε > 0.
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The proof is in the appendix.
The previous two propositions show that a unique equilibrium exists for

suffi ciently large ε, but multiple equilibria can exist for small ε, if k is also
small. Fixing k, however, and taking ε → 0 must produce a unique equilib-
rium, because this is the “global games”case. Indeed, if ε is small then the
types are highly correlated. In this case, the process of iterated elimination
of interim dominated strategies selects a unique outcome, where all oppor-
tunistic types of player 1 “fold”and play D, and all opportunistic types of
player 2 play H. The process begins with the aggressive opportunistic types
of player 1 backing off as they put high probability on player 2 being a domi-
nant strategy hawk and the process continues. This is the reverse of the logic
underlying Proposition 6. Finally, since (D,H) is the risk-dominant outcome
for the complete information game with ε = 0 and k > 0, this result agrees
with the conclusion of Carlsson and van Damme [7].

Proposition 8 Suppose c > d, and k2 = k > 0 = k1. Moreover, suppose
k+ θ+ ε < 0 and θ̄− ε > c− d (so dominant strategy hawks and doves exist
for each player). If ε is suffi ciently small, specifically ε < k/2, then there is
a unique BNE, where player 1 plays H iff h1 ≥ c − d and player 2 plays H
iff h2 ≥ 0.

The proof is in the Appendix

To summarize, deterrence by fear leads to a unique equilibrium in two
cases. The chance of conflict with dominant strategy hawks triggers dovish
behavior among the opportunistic types. For this to occur, either types
must be independent and the prior diffuse or it must be common knowledge
that one player is inherently more aggressive than the other. This in turn
persuades opportunistic types to play H, as they put positive probability of
their opponent playing D, and the process continues.

6 Conclusion

We derive suffi cient conditions for uniqueness of equilibrium as “small slope”
conditions on appropriately defined best-response functions. They are related
to quite standard conditions for uniqueness of equilibrium from the Industrial
Organization literature. The connection can be explored further. Even when
there are multiple equilibria, the equilibrium set is well-behaved in games
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with strategic complementarities such as some models of Bertrand compe-
tition with product differentiation. It may be possible to use techniques
from the monotone comparative statics literature to study games with payoff
uncertainty with multiple equilibria. This is an interesting topic for future
research.
Finally, we note that while we can unify uniqueness conditions for games

with independent types and highly correlated types as in global games, there
are differences between the two models. In the global game model, the uncer-
tainty serves as an equilibrium selection device for the underlying complete
information model and the game with “small noise”is studied. The way that
uncertainty is introduced into the model can lead to a quite different selec-
tion (see Weinstein and Yildiz [22]). In the model with independent types,
the game actually studied is a game with incomplete information and “large
noise”. Adding complex higher order beliefs to this model does not affect
the Bayesian equilibrium as there is only one such underlying equilibrium
to begin and it is reached via iterated deleted of dominated strategies. In
this sense the conflict game with independent types has stronger robustness
propeorties that its global game equivalent.

7 Appendix

7.1 Proof of non-existence of non-cutoff equilibria

To complete the proofs of Theorem 3 (strategic complements) and Theorem 4
(strategic substitutes), we will show that, under the hypotheses of these the-
orems, any BNE must be a cutoff equilibrium. Since the proofs for strategic
complements and substitutes are in part parallel, it is convenient to combine
them. Recall that the hypotheses of either theorem imply that (4) holds.
It suffi ces to show that one player use a cutoff strategy, because (4) guar-

antees that the best response to a cutoff strategy must be a cutoff strategy.
Notice that a constant strategy (always D or always H) is a special case of a
cutoff strategy, so if either player uses a constant strategy we are done. From
now on, assume neither player uses a constant strategy: some types play D
and some types play H.
For i ∈ {1, 2}, define

xi ≡ inf {hi : σi(hi) = H} (16)

23



and
yi ≡ sup {hi : σi(hi) = D} (17)

By definition, xi ≤ yi. Notice that if xi = yi then player i uses a cutoff
strategy. We will show that there is always some player i such that xi = yi.
Recall that δj(hi) denotes the probability that player j 6= i plays D,

conditional on player i’s type being hi. By definition of xi, player i’s type xi
weakly prefers H, so (2) implies

xi + (1− δj(xi))(d− c) ≥ 0 (18)

Similarly, player i’s type yi weakly prefers D, so

yi + (1− δj(yi))(d− c) ≤ 0 (19)

By definition, σj(hj) = D for all hj < xj and σj(hj) = H for all hj > yj.
Therefore, for j 6= i,

F (xj − kj|xi − ki) ≤ δj(xi) ≤ F (yj − kj|xi − ki) (20)

and
F (xj − kj|yi − ki) ≤ δj(yi) ≤ F (yj − kj|yi − ki). (21)

From now on we consider the two cases separately.

Strategic complements. Without loss of generality, assume

y1 − k1 ≥ y2 − k2. (22)

We will show that y1 = x1 so player 1 uses a cutoff strategy..
Since c < d, (18) and the first inequality of (20) (with i = 1) imply

x1 + (1− F (x2 − k2|x1 − k1))(d− c) ≥ 0 (23)

Similarly, (19) and the first inequality of (21) imply

y1 + (1− F (y2 − k2|y1 − k1))(d− c) ≤ 0 (24)

Combining (23) and (24) yields

F (y2 − k2|y1 − k1)− F (x2 − k2|x1 − k1) ≥ 1

d− c (y1 − x1) (25)
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By (22), the inequality (25) implies

F (y1 − k1|y1 − k1)− F (x1 − k1|x1 − k1) ≥ 1

d− c (y1 − x1) . (26)

By the mean value theorem, there is z ∈
(
η, η̄
)
such that

(F1(z|z) + F2(z|z)) (y1 − x1) = F (y1 − k1|y1 − k1)− F (x1 − k1|x1 − k1)

and substituting this in (26) yields

(F1(z|z) + F2(z|z)) (y1 − x1) ≥ 1

d− c (y1 − x1) . (27)

But we know that y1 ≥ x1, and the hypothesis of Theorem 3 says that

F1(z|z) + F2(z|z) <
1

d− c

Therefore, (27) implies y1 = x1. Therefore, the proof of Theorem 3 is com-
plete.

Strategic substitutes. Assume without loss of generality that

x1 − k1 ≤ x2 − k2 (28)

Since c > d, (18) and the second inequality of (20) imply

xi + (1− F (yj − kj|xi − ki))(d− c) ≥ 0 (29)

By the same reasoning,

yi + (1− F (xj − kj|yi − ki))(d− c) ≤ 0 (30)

Set i = 1 in (29) and (30) and combine the two inequalities to get

F (y2 − k2|x1 − k1)− F (x2 − k2|y1 − k1) ≥ 1

c− d (y1 − x1) . (31)

Set i = 1 in (29) and i = 2 in (30) and combine the two inequalities to get

F (y2 − k2|x1 − k1)− F (x1 − k1|y2 − k2) ≥ 1

c− d (y2 − x1) . (32)
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Set i = 2 in (29) and i = 1 in (30) and combine the two inequalities to get

F (y1 − k1|x2 − k2)− F (x2 − k2|y1 − k1) ≥ 1

c− d (y1 − x2) . (33)

Now we need to consider several cases.

Case A: y1− k1 ≥ y2− k2. Using this inequality and (28), the inequality
(31) implies

F (y1 − k1|x1 − k1)− F (x1 − k1|y1 − k1) ≥ 1

c− d (y1 − x1) (34)

Applying the mean value theorem twice,

F (y1 − k1|x1 − k1)− F (x1 − k1|y1 − k1)

= [F (y1 − k1|x1 − k1)− F (x1 − k1|x1 − k1)] + [F (x1 − k1|x1 − k1)− F (x1 − k1|y1 − k1)]

= F1(t|x1 − k1) (y1 − x1) + F2(x1 − k1|s)(x1 − y1)

= (F1(t|x1 − k1)− F2(x1 − k1|s)) (y1 − x1)

for some s, t ∈
(
η, η̄
)
. Substituting this in (34) yields

(F1(t|x1 − k1)− F2(x1 − k1|s)) (y1 − x1) ≥ 1

c− d (y1 − x1)

But we know that y1 ≥ x1, so the hypothesis of Theorem 4 implies x1 = y1.
Case B: y1 − k1 < y2 − k2. In this case, the inequality (33) implies

F (y2 − k2|x2 − k2)− F (x2 − k2|y2 − k2) ≥ 1

c− d (y1 − x2) . (35)

Case B has three subcases.
Sub-case B1: y1 ≥ y2. Here, (35) implies

F (y2 − k2|x2 − k2)− F (x2 − k2|y2 − k2) ≥ 1

c− d (y2 − x2) .

This is symmetric with inequality (34), but for player 2 instead of player 1.
Applying the mean-value theorem therefore yields x2 = y2.
Sub-case B2: y2 > y1 and k2 ≥ k1. Here, from (32) we obtain

F (y2 − k1|x1 − k1)− F (x1 − k1|y2 − k1) ≥ 1

c− d (y2 − x1)
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This is symmetric with inequality (34), but with y2 replacing y1. Applying
the mean-value theorem therefore yields x1 = y2. But this contradicts y2 >
y1 ≥ x1, so sub-case B2 is impossible.
Sub-case B3: y2 > y1 and k2 < k1. Here, from (33), we obtain

F (y1 − k1|x2 − k1)− F (x2 − k1|y1 − k1) ≥ 1

c− d (y1 − x2)

This is symmetric with inequality (34), but with x2 replacing x1. Applying
the mean-value theorem therefore yields x2 = y1. Substituting this into (33),
we obtain

F (y1 − k1|y1 − k2)− F (y1 − k2|y1 − k1) ≥ 0. (36)

However, recall that y > x implies F (y|x)−F (x|y) > 0. Since y1−k2 > y1−k1,
the inequality (36) cannot hold, so sub-case B3 is impossible.

Thus, in both case A and case B, some player uses a cutoff strategy.
Therefore, the proof of Theorem 4 is complete.

7.2 Proof of Proposition 7

Suppose k < 2ε
(
1− 2ε

c−d
)
. Notice this implies 2ε < c − d to guarantee that

k > 0. Here types are not highly correlated, and the process of iterated
elimination of dominated strategies cannot achieve anything after the first
“round”. Consider type h1 = c − d. In the second “round”, he cannot rule
out the possibility that player 2 will choose D when h2 < c−d.Moreover, the
event that h2 = η2 + k < c− d has positive probability when η1 = h2 = c− d
and k < 2ε. Therefore, we cannot eliminate H for type h1 = c − d. Player
1’s type h1 = 0 cannot eliminate H, because H has not been eliminated for
h2 > 0. Since neither of the “boundary”opportunistic types can eliminate H,
no opportunistic type at all can eliminate H. Clearly, they cannot eliminate
D either. Thus, no opportunistic type of player 1 can eliminate any action
in round 2. A similar argument applies to player 2.
Let h∗ = (c−d)(2ε−k)2

8ε2
. Notice that

h∗+k−2ε =
(c− d) (2ε− k)2

8ε2
−(2ε−k) =

(
(c− d) (2ε− k)

8ε2
− 1

)
(2ε−k) > 0

as long as
(c− d) (2ε− k)

8ε2
> 1
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and

h∗ + k + 2ε =
(c− d) (2ε− k)2

8ε2
+ k + 2ε < c− d

as long as
(c− d) (2ε− k)

8ε2
<
c− d− (k + 2ε)

2ε− k
Players’strategies are as follows: player 1 plays D iff h1 ≤ h∗; player 2

plays D iff h2 ≤ 0 or h2 ∈ [h∗, c− d] .
Consider player 1 first. For player 1 of type h∗, the probability that player

2 plays H is F (h∗|h∗ − k) = (2ε−k)2

8ε2
and he is indifferent between H and D.

Higher types are more aggressive and assess a lower probability that player 2
playsH. These types strictly prefer to playH and, by a symmetric argument,
lower types prefer to play D.
We must also show player 2’s strategy is at a best-response. Assume

k < 2ε
(
1− 2ε

c−d
)
. For player 2, if he is a dominant strategy type, the specified

strategy is clearly optimal. For h2 ∈ [h∗ + k − 2ε, h∗], Pr{h1 < h∗|h2} =
1 − 1

8ε2
((h2 − k + 2ε)− h∗)2 = δ1(h2). Substituting this into (39), the net

gain from playing H rather than D becomes

h2 +
(d− c)

8ε2
(h2 − h∗ − k + 2ε)2 . (37)

This is quadratic in h2 and equals zero when h2 = h∗. It reaches a maximum
at

ĥ = h∗ + k − 2ε+
4ε2

c− d
which is interior to the interval [h∗ + k − 2ε, h∗] as long as k < 2ε

(
1− 2ε

c−d
)
.

In fact, (37) is clearly strictly positive for h2 ∈ [h∗ + k − 2ε, h∗). For h2 ∈
[0, h∗ + k − 2ε], player 2 knows his opponent plays D and then it is optimal
to play H as (39) is equal to h2 ≥ 0. There is a similar argument for h2 ∈
(h∗, c− d] and so the entire Ψ2(h∗, h2) picture is:
There is another equilibrium with the roles of players 1 and 2 reversed.5

There is also an equilibrium where player 2 plays H when h2 ≥ 0 and player
1 plays H when h1 ≥ c− d.

5Let h∗ = (c− d)
(

1− (2ε−k)2
8ε2

)
. Notice that

h∗ − k − 2ε = (c− d)

(
1− (2ε− k)

2

8ε2

)
− 2ε− k > 0
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Figure 4: Ψ2(h*,h2)
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Now suppose 2ε > c − d. Then, the above argument fails as ĥ > h∗.

as long as

(c− d)

(
1− (2ε− k)

2

8ε2

)
> k + 2ε

and

h∗ − k + 2ε = (c− d)

(
1− (2ε− k)

2

8ε2

)
+ 2ε− k < c− d

as long as

(c− d)

(
1− (2ε− k)

2

8ε2

)
< c− d− (2ε− k)

Players’ strategies are as follows: player 2 plays D iff h2 ≤ h∗; player 1 plays D iff
h1 ≤ 0 or h1 ∈ [h∗, c− d] .
Consider player 2 first. For player 2 of type h∗, the probability that player 1 plays H

is F (h∗|h∗ − k) = 1 − (2ε−k)2
8ε2 and he is indifferent between H and D. Higher types are

more aggressive and assess a lower probability that player 1 plays H. These types strictly
prefer to play H and, by a symmetric argument, lower types prefer to play D.

We must also show player 1’s strategy is at a best-response. Assume k < 2ε
(

1− 2ε
c−d

)
.

For player 1, if he is a dominant strategy type, the specified strategy is clearly optimal. For
h1 ∈ [h∗, h∗ + 2ε− k], Pr{h2 < h∗|h1} = 1

8ε2 (h∗ − k − (h1 − 2ε))
2

= δ2(h1). Substituting
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Indeed, Proposition 6 shows that a unique equilibrium exists in this case.
Large ε approximates independence and is the polar opposite of the “global
games”conclusion.

7.3 Proof of Proposition 8

We can use the triangular distribution to determine the beliefs of opportunis-
tic types.
Conditional on θ, player 1’s type h1 = η1 is uniformly distributed on

[θ − ε, θ + ε], while player 2’s type h2 = k + η2 is uniformly distributed on
[k+θ−ε, k+θ+ε]. A strategy σi : [h, h̄]→ {H,D} for player i is a measurable
function which specifies a choice σi(hi) ∈ {H,D} for each type hi. If player
i’s type hi thinks player j will choose D with probability δj(hi), then his net
gain from choosing H instead of D is

hi + (d− c)(1− δj(hi)). (39)

Remark 9 If η1 < −k − 2ε, then player 1 knows that h2 = k + η2 < 0, so
player 2 must be a dominant strategy dove. If η1 > c−d−k+2ε, then player
1 knows that h2 = k + η2 > c − d, so player 2 must be a dominant strategy
hawk. If η2 < −2ε, then player 2 knows that h1 = η1 < 0, so player 1 must
be a dominant strategy dove. If η2 > c − d + 2ε, then player 2 knows that
h1 = η1 > c− d, so player 1 must be a dominant strategy hawk.

Consider the process of eliminating (interim) dominated strategies. In
the first “round”of elimination, D is eliminated for dominant strategy hawks

this into (39), the net gain from playing H rather than D becomes

h1 + (d− c)
(

1− 1

8ε2
(h∗ − k − (h1 − 2ε))

2

)
. (38)

This is quadratic in h1 and equals zero when h1 = h∗. It reaches a minimum at

ĥ = h∗ − k + 2ε− 4ε2

c− d

which is interior to the interval [h∗, h∗ + 2ε− k] as long as k < 2ε
(

1− 2ε
c−d

)
. In fact, (38)

is clearly strictly negative for h1 ∈ (h∗, h∗ + 2ε− k]. For h1 ∈ (h∗ + 2ε− k, c− d], player
1 knows his opponent plays H and then it is optimal to play D as (39) is negative. There
is a similar argument for h1 ∈ [0, h∗).
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(hi ≥ c − d) and H for dominant strategy doves. Now consider the second
round.
Suppose ε < k/2. This is the case of highly correlated types. When

c − d − k + 2ε < η1 < c − d, player 1 knows that player 2 is a dominant
strategy hawk (by remark 9). Hence, H can be eliminated for player 1.
Indeed, even if η1 is slightly below c − d − k + 2ε, H can be eliminated,
because player 2 is highly likely to be a dominant strategy hawk. Let η′1
be the largest η1 such that H cannot be eliminated for player 1’s type η1 in
round 2. Notice that η′1 < c−d−k+ 2ε. Now if h2 = η2 +k is slightly below
c− d, then player 2 knows that player 1 has a positive probability of having
a type between η′1 and c− d. Such types of player 1 had H removed in round
2 of the elimination of interim dominated strategies. Therefore, in round 3,
D must be eliminated for types of player 2 slightly below c − d. Let η′2 be
the largest η2 such that D cannot be eliminated for player 2 in round 3. In
round 4, player 1’s types slightly below η′1 will be able to remove D, etc.
We claim that this process must eventually eliminate H for all h1 ∈

(0, c−d), and D for all h2 ∈ (0, c−d). If this were not true, then the process
cannot proceed below some h∗1 > 0 and h∗2 > 0. Now, h∗2 > h∗1 + k − 2ε,
otherwise type h∗1 knows that h2 ≥ h∗2, and all such types have eliminated D,
but then H must be eliminated for types slightly below h∗1.
Consider player 2’s type h∗2, with private component η

∗
2 = h∗2 − k. He

knows that h1 = η1 ≤ h∗2− k+ 2ε < c− d− k+ 2ε ≤ c− d. Now H has been
eliminated for all h1 ∈ (h∗1, c− d), and according to type h∗2, the probability
that player 1’s type lies in this interval is 1 − F (h∗1|h∗2 − k). Therefore, if D
cannot be eliminated for type h∗2, it must be the case that type h

∗
2 weakly

prefers D when the opponent uses H with probability at most F (h∗1|h∗2− k).
This implies

h∗2 + (d− c)F (h∗1|h∗2 − k) ≤ 0

By a similar argument, if H cannot be eliminated for type h∗1, then type
h∗1 must prefer H when the opponent uses H with probability at least 1 −
F (h∗2 − k|h∗1). That is,

h∗1 + (d− c) (1− F (h∗2 − k|h∗1)) ≥ 0

Subtracting the first inequality from the second yields

h∗1 − h∗2 ≥ (c− d) (1− F (h∗2 − k|h∗1)− F (h∗1|h∗2 − k)) = 0

where the last equality uses 13. However, this contradicts h∗2 > h∗1 + k − 2ε.
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