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Egregious Errata

Positive Political Theory II (University of Michigan Press, 2005) regrettably
contains a variety of obscurities and errors, both typographical and substantive.
Most of these are apparent and the appropriate corrections evident. Unfortu-
nately, a few of the mistakes to surface are egregious (and thus correspondingly
embarrassing ...). So, with apologies to Je¤ and to those using this book, the
mistakes within this category identi�ed so far are located and corrected below.
(The University of Michigan Press has kindly agreed to publish a corrected
version of the ms in 2015.)

David Austen-Smith
December 2014

p.4, following discussion of De�nition 1.2.
To avoid the occasional ambiguity in some subsequent examples, a sentence

has been added that reads, "Hereafter, unless explicitly stated otherwise, assume
an aggregation rule f satis�es unrestricted domain, D = Rn." Corresponding
changes are thereafter made where appropriate.

p.5, remarks on simple rules and the Nakamura number.
The examples using majority and plurality rule on this page (from the top

to the �nal paragraph) presume unrestricted domain.

p.22, De�nition 2.4.
As written, this is insu¢ ciently tight. Replace the current de�nition and

subsequent paragraph with:

De�nition 2.4 Fix a collective choice function ' : Rn ! X with
range �'. Say that ' respects unanimity if and only if, for all
� 2 Rn and all sets X�

� � �' such that (x; y) 2 X�
� � �'nX�

�

implies P (x; y; �) = N , '(�) 2 X�
� .

In words, ' respects unanimity if, at any pro�le for which it is pos-
sible to partition the range of ' into two subsets such that every
alternative in one subset is strictly preferred by all individuals to
every alternative in the other subset, then ' surely selects an alter-
native from the universally more-preferred-to set. It is easy to see
that if there are multiple such sets for any pro�le, then they must
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be ordered by set-inclusion. Although similar in spirit to the Pareto
criterion, respecting unanimity and weak Pareto are not equivalent
(where a choice function ' is weakly Paretian if, for all x; y 2 X and
all � 2 Rn, P (x; y; �) = N implies '(�) 6= y).

p.38, line 5.
Should have k and n � k + 1 below the equality, not ik and n � ik + 1,

respectively.

p.44, Lemma 2.5.
The constructive argument used in the text to prove Lemma 2.5 turns out to

have paid insu¢ cient attention to di¢ culties at the boundaries of the feasible set
of alternatives. In particular, the particular choice of pro�les for the argument
in one case need not be feasible. Below is a complete restatement of the required
(slightly extended) Lemma and proof.

Lemma 2.5 Let ' : SQ ! X be strategy-proof and satisfy citizen
sovereignty. Then ' is weakly Paretian and satis�es peak only.

Proof (Weakly Paretian) We need to prove minfxigi2N � '(�) �
maxfxigi2N for all � 2 SQ. First show that strategy-proofness and
voter sovereignty imply unanimity. To this end, let � 2 SQ be any
pro�le such that, for all i 2 N , xi = x; we want to show '(�) =
x. By citizen sovereignty there exists a pro�le �0 2 SQ such that
'(�0) = x. By strategy-proofness, for all admissible single-peaked
R01, '(R1; �

0
�1)R1'(R

0
1; �

0
�1); in particular, since '(R

0
1; �

0
�1) � '(�0) =

x1 by hypothesis and ideal points are uniquely de�ned, we must
have '(�0) = '(R1; �0�1). But '(R1; �

0
�1) = x and x = x2; hence, by

strategy-proofness, it must also be that '(R1; �0�1) = '(R1; R2; �
0
�f1;2g).

Repeating the argument for j = 3; ::; n yields '(�) = x. Thus ' sat-
is�es unanimity.

Now consider any pro�le �� 2 SQ such that x1 � x2 � : : : � xn and
x1 < xn and suppose, contrary to ' weakly Paretian, '(��) > xn.
For k = 1; 2; : : : ; n�1, �x an admissible pro�le �k = (�0f1;:::;kg; ���f1;:::;kg) 2
SQ such that, for all j � k, x0j = xn and '(��)P 0jat for all at < xn.
By ' strategy-proof, '(��)R1'(�1). By R1 single-peaked, therefore,
either '(�1) � '(��) > xn or '(�1) � �1('(�

�)) < x1. Suppose
the latter case holds, so '(�1) < x1 < xn and, by de�nition of P 01,
'(��)P 01'(�

1). But then j = 1 can pro�tably manipulate ' by re-
porting R1 instead of R01 at �

1. So, '(�1) � '(��). Moreover, since
' strategy-proof requires '(�1)R01'(�

�) which, by R01 single-peaked,
implies '(�1) � '(��), we must have '(��) = '(�1). Now applying
this argument iteratively, we �nd '(�n�1) = : : : = '(�1) = '(��) >
xn. But by construction, �n�1 is such that x0j = xn for all j 2 N ,
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in which case, ' unanimous implies '(�n�1) = xn: contradiction.
A symmetric argument accounts for the case '(��) < x1. Hence, '
must be weakly Paretian.

(Peak only) Now �x � 2 SQ, arbitrary i 2 N and any single-peaked
preference ordering R0i with xi = x

0
i. To prove the lemma, it su¢ ces

to show '(�) = '(R0i; ��i). If '(�) = x0i, then the result is trivial.
So, without loss of generality, assume x0i = xi > '(�). There are
two cases (in what follows, the alternative �0i(y) is de�ned in exactly
the same way as the alternative �i(y), above, but with respect to the
preference ordering R0i rather than to the ordering Ri).

(1) �0i('(�)) < �i('(�)): see Figure 2.3.

Figure 2.3: Lemma 2.5, case (1)

Suppose '(�) 6= '(R0i; ��i). Then, depending on the relative posi-
tion of the alternative '(R0i; ��i) in Figure 2.3, there are three possi-
bilities, each of which (given single-peakedness) contradicts strategy-
proofness.

(1a):

'(R0i; ��i) < '(�)) '(R0i; ��i) < '(�) < x
0
i

) '(�)P 0i'(R
0
i; ��i)

) ' manipulable at (R0i; ��i):

(1b):

'(�) < '(R0i; ��i) � �0i('(�))
) '(�) < '(R0i; ��i) < �i('(�))

) '(R0i; ��i)Pi'(�)

) ' manipulable at �:

(1c):

�0i('(�)) < '(R0i; ��i)) x0i < �
0
i('(�)) < '(R

0
i; ��i)

) '(�)P 0i'(R
0
i; ��i)

) ' manipulable at (R0i; ��i):

Therefore, if, contrary to the claim, '(�) 6= '(R0i; ��i), we must have
'(R0i; ��i) � �i('(�)) > x0i and �i('(�)) � �0i('(�)), the second case.

(2) �i('(�)) � �0i('(�)). In this case, we need to take a more indirect
approach than in case (1) to proving the claim. To this end, let
L = fj 2 N : xj > x

0
ig. If L = ; then x0i = xi � xk for all k 2 N .
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But since, '(�) 6= '(R0i; ��i) implies '(R0i; ��i) > x0i from Case (1),
this contradicts ' weakly Paretian. So assume L 6= ;. By relabeling
if necessary, let L = f1; :::; `g and x1 � x2 � : : : � x`. For all j 2 L,
let R0j be such that x

0
j = x

0
i and xj � �0j('(�)) � �j('(�)): see Figure

2.4 for the situation in which all of the inequalities are strict for i
and some j 2 L.

Figure 2.4: Lemma 2.5, case (2)

Consider individual ` 2 L and the choice '(R0`; ��`). Suppose
'(R0`; ��`) 6= '(�). Arguing similarly to Case (1), single-peaked
preferences implies that ' is manipulable by ` unless '(R0`; ��`) �
�`('(�)) > x`. But since, by de�nition, x` � xk for all k 2 N ,
'(R0`; ��`) > x` contradicts ' weakly Paretian. Hence '(R

0
`; ��`) =

'(�). Applying the same argument, mutatis mutandis, to `� 1 then
yields '(R0`; R

0
`�1; ��f`;`�1g) = '(R0`; ��`) = '(�). And continu-

ing in this way iteratively for ` � 2; ` � 3; : : : ; 1, conclude '(�) =
'(�0L; ��L). Now consider the pro�le �

0 = (�0L[fig; ��L[fig). There
are �ve possibilities for the relative location of '(�0). In four of these,
'(�0) 6= '(�) and we show that i has opportunity to manipulate the
outcome pro�tably; thus we must have '(�0) = '(�) and, in this
case we show '(�0) = '(R0i; ��i) as claimed.

(2a): '(�0) < '(�). Referring to Figure 2.4, observe

'(�0) < '(�)) '(�0) < '(�) < x0i

) '(�)P 0i'(�
0)

) ' manipulable at �0:

(2b): '(�0) = '(�). In this subcase, we need to show: '(�0) =
'(R0i; ��i). We �rst show '(�

0) = '(R1; �
0
�1); to do this, suppose

the contrary, '(�0) 6= '(R1; �
0
�1). Then arguing as for Case (1), '

strategy-proof implies �01('(�
0) � '(R1; �0�1) � �1('(�0)) with x1 <

'(R1; �
0
�1). Now, for all j 6= 1, let R00j be an admissible single-peaked

ordering such that x00j = x1 and

j 2 Lnf1g ) �0j('(R1; �
0
�1)) < �

00
j ('(R1; �

0
�1));

j =2 L) �j('(R1; �
0
�1)) < �

00
j ('(R1; �

0
�1)):

Figure 2.5 illustrates the construction.

Figure 2.5: Lemma 2.5, case (2b)

Using a similar argument to that above for '(�) = '(�0L; ��L),
conclude '(R1; �0�1) = '(R1; �

00
�1). But then x1 = x002 = ::. =
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x00n < '(R1; �
0
�1), contradicting ' unanimous; therefore, '(�0) =

'(R1; �
0
�1) necessarily. Repeating the preceding argument for each

j 2 L yields

'(�0) = '(R1; �
0
�1) = '(R1; R2; �

0
�f1;2g) = ::: = '(�L; �

0
�L) = '(R

0
i; ��i)

as required.

(2c): '(�) < '(�0) < �i('(�))). But then '(�) = '(�0L; ��L) implies

'(�0L; ��L) < '(�0L[fig; ��L[fig) < �i('(�))

) '(�0)Pi'(�)

) ' manipulable at �:

(2d): �i('(�)) � '(�0) � �0i('(�)). In this case, a similar argument
as that for (2b) yields a contradiction of ' unanimous [Exercise].

(2e): '(�0) > �0i('(�)). Referring to Figure 2.4, observe

'(�0) > �0i('(�))) x0i < �
0
i('(�)) = �

0
i('(�

0
L; ��L)) < '(�

0)

) '(�0L; ��L)P
0
i'(�

0)

) ' manipulable at �0:

Because the situation where '(�) > x0i is completely symmetric, the
lemma is proved. �

p.67, Section 2.10: Exercises.
Exercises 2.1 and 2.9 of the original text have been eliminated.

p.79, four lines up from Example 3.3.
The sentence beginning, �Formally, therefore, ...�should read:

�Formally, therefore, Maskin monotonicity implies monotonicity which in
turn implies weak monotonicity; ... �

p.82, De�nition 3.7.
The de�nition should have �... j\y2XR(x; y; �)j � n � 1 implies x 2 '(�)�,

rather than R(x; y; �) = n� 1 for all y 2 X implies ...�.

p.92, Second sentence of paragraph immediately preceding Corollary
3.2.
The vote pro�les m 2 M should be understood as rationalizable preference

relations (see PPT I, ch.1, on rationalizable preferences).

p.139, from the end of line 5 to the middle of line 12.
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The claim made in this section is that condition (*) is a necessary condition
for an alternative y to be agenda independent. This is false and the comments
immediately following (*) are thereby nonsense. The text beginning on line 5
with the sentence �In other words ...� to the end of the sentence concluding
on line 12 with �... S(��; P ) = y�, should be deleted and replaced with the
following:

�On the other hand, a su¢ cient condition for an alternative y 2
Xnfx0g to be the sophisticated outcome irrespective of the agenda
�� 2 A(x0), is that

y 2 P (x0) and, 8z 2 P (x0)nfyg; y 2 P (z): (*)

That is, if y satis�es (*) then, for all �� 2 A(x0), S(��; P ) = y. To
see this, recall that every terminal node of an amendment agenda
pairs the status quo x0 against an alternative from the agenda, with
every such alternative appearing on at least one terminal node. By
the �rst property of (*), that y 2 P (x0), and the earlier logic for
solving binary voting games, y must be the sophisticated equivalent
of every terminal node at which y is compared with x0. Now consider
any alternative z 6= y. If z is the sophisticated equivalent of some
terminal node, then either z = x0 or z 2 P (x0). In either case, (*)
implies that y must be the sophisticated equivalent of any pairwise
comparison between y and z at the next stage; and so on back up
the voting tree, thus establishing the claim. In other words ... �

p.172, Figure 5.12.
The payo¤s identi�ed in this diagram for Example 5.8 are incorrect. A

corrected example is as follows.

Example 5.8 Consider the extensive form game G summarized in
Figure 5.12, where the outcome associated with each terminal node
of the game tree is de�ned in terms of the payo¤s (u1; u2) to indi-
viduals 1 and 2 respectively.
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Figure 5.12: The game G

The feasible strategy sets for the two individuals are

M1 = f(D;L); (D;R); (A;L); (A;R)g;
M2 = fl; rg:

There are three Nash equilibria � = (�1; �2) 2M1 �M2 to G:

�� = ((A;L); l); ��� = ((A;R); l); and ���� = ((D;R); r).

To check �� and ��� are both Nash equilibria note that, given ��2 = l,
the best 1 can do is play A at his �rst decision node to obtain a payo¤
of one rather than zero and, given 1 chooses A, no subsequent deci-
sion nodes are reached, so specifying 2 plays l is as good as anything
else since 2 receives payo¤ one in any case; similarly, given 2 plays
l, 1 is indi¤erent between L or R at the �nal decision node. That
���� is also a Nash equilibrium follows easily from the observation
that it yields the unique best payo¤ for each individual. Moreover,
we claim ���� is the only subgame perfect Nash equilibrium to G.

To see that �� and ��� are not subgame perfect, consider the two
proper subgames, G� and G�0 , in turn. The restriction of �� to
G� is the strategy pair (L; l) which is easily checked to be a Nash
equilibrium for G�. On the other hand, the restriction of �� to G�0 is
the decision �L�for individual 1, which is clearly not a best response
at this decision node. Thus �� is not a subgame perfect equilibrium
strategy pro�le for G. Similar reasoning shows ��� is not subgame
perfect: here, the restriction of ��� to the (trivial) subgame G�0 has
individual 1 choosing a best response, but then the restriction of
��� to the subgame G� is not a Nash equilibrium for G�. This is
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because individual 2 choosing l is not a best response in G� to 1�s
choice of R, despite the fact that ���2 = l is a best response in G
to ���1 = (A;R). Finally, it is easy to check that ���� is a subgame
perfect Nash equilibrium to G as claimed. �

p.178, line 4.
The de�nition of R(x) should read, R(x) = fy 2 X : yRxg.

p.288, last expression in the proof of Theorem 7:10.
By de�nition of ��(a�; y), there should be no minus sign on the terms !�i (�)

under the summation. The same is true in the argument for Corollary 7.3.

p.288, line 2 of Corollary 7.3.
The assumption that �pi(�) = p(�)�should be replaced by �!ci (�) is indepen-

dent of i�; the �rst line of the proof is then redundant.

p.336, Example 8.2 (5).
Proportional representation, even as described here, is not a scoring rule.

p.383, Exercise 8.3(b).
The last conditional, �... if m is odd�should read �... if m = 3�. Further-

more, the exercise is intended to concern only pure strategy equilibria.
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