Mixture Spaces

- The primitives are an arbitrary set \(P \) and an operation \(h : [0, 1] \times P \times P \to P \), we will write \(h_a(p, q) \) instead of \(h(a, p, q) \).

- \((P, h) \) is a mixture space if the following axioms hold:

 - **M1** \(h_1(p, q) = p \) (sure mix)
 - **M2** \(h_a(p, q) = h_{1-a}(q, p) \) (commutativity)
 - **M3** \(h_{ab}(h_b(p, q), q) = h_{ab}(p, q) \) (one-sided distributivity)

- **M1, M2, M3** \(\implies \) **M4**: \(h_c(h_a(p, q), h_b(p, q)) = h_{c(a)(1-c)b}(p, q) \) (two-sided distributivity)

- **M1, M2, M3** \(\implies \) **M0**: \(h_a(p, p) = p \) (trivial mix)

- Careful! The following properties are true in lottery spaces, but **not true** in general mixture spaces:

 - \(h_a(h_b(p, q), r) = h_{ab}(p, h_{(1-b)(a-b)}(q, r)) \) (associativity)
 - \(h_a(p, r) = h_a(q, r) \implies p = q \) (determinism)

- A binary relation \(\succeq \) on \(P \) satisfies the von Neumann–Morgenstern (vNM) axioms if:

 - **A1** \(\succeq \) is a preference relation (complete and transitive)
 - **A2** \(p \succ q, a \in (0, 1) \implies h_a(p, r) \succ h_a(q, r) \)
 - **A3** \(p \succ q \implies \exists a, b \in (0, 1) : h_a(p, r) \succ q \succ h_b(p, r) \)

- Given **A1** and **A2**, the following is equivalent to **A3** if the set \(P \) is a topological space:

 - **A3***: For every \(p \in P \), the sets \(\{ q : p \succeq q \}, \{ q : q \succeq p \} \) are closed

Theorem (Mixture Space Theorem, Herstein-Milnor 1953). Let \((P, h) \) be a mixture space and \(\succeq \) binary relation on \(P \). Then:

\[\succeq \text{ satisfies A1, A2, A3 iff } \succeq \text{ has a linear representation.} \]

The representation is unique up to an affine transformation, i.e., if \(U : P \to \mathbb{R} \) is a linear function that represents \(\succeq \) and \(V \) is some other function that represents \(\succeq \) then \(V = aU + b \), for \(a > 0, b \in \mathbb{R} \).

- **U is linear** if \(U(h_a(p, q)) = aU(p) + (1 - a)U(q) \)

- Before proving the theorem, we showed two lemmas

Lemma 4.1. If \(\succeq \) satisfies A1, A2, A3 then:

1. \(1 \geq a > b \geq 0, p \succ r \implies h_a(p, r) \succ h_b(p, r) \)
2. \(a \in (0, 1), p \sim q \implies h_a(p, q) \sim q; \text{ if } p \succ q \text{ then } p \succ h_a(p, q) \succ q \)
3. \(p \succeq q, r \succeq s \implies h_a(p, r) \succeq h_b(q, s) \) strict if strict.

Lemma 4.2. Let \(\alpha(p, q, r) := \sup \{ a \in [0, 1] : q \succeq h_a(p, q) \} \). For any \(p, q, r \) such that \(p \succ q \succ r \), \(h_{\alpha(p,q,r)}(p, r) \sim q \).

We proved the theorem by construction

- Note that if \(p \sim q \) for all \(p, q \in P \) then we can set \(U(p) = 1 \) for all \(p \) and we are done

- Thus assume \(p \succ q \) for some \(p, q \in P \) and for any \(r \in P \) define:

\[
U(r) = \begin{cases}
\frac{1}{a(r, p)} & \text{if } r \succ p \\
1 & \text{if } r \sim p \\
\frac{\alpha(p, r, p)}{1-a(p, r, p)} & \text{if } r \prec p \\
0 & \text{if } r \prec q
\end{cases}
\]

- Consider each case in turn to show that \(U \) represents \(\succeq \)

To show that \(U \) is linear, we again consider the various cases

- **A1**: \(p \succ q \succ p, \text{ if case 3 for both} \)
- **Note that** \(h_U(p) \succeq p, \text{ and } h_U(q) \succeq q, \text{ by 4.2 and construction of } U \)

- By 4.1(iii) and the above (as well as M4):

\[
h_a(p, q) = h_a(h_U(p)(p, q), h_U(q)(p, q))
= h_{aU(p) + (1-a)U(q)}(p, q),
\]

- Thus \(U(h_a(p, q)) = aU(p) + (1-a)U(q) \)

- That \(\succeq \) iscts and \(U \) represents \(\succeq \) does **not** imply that \(U \) is cts

- If in addition to the above \(U \) is also linear, then \(U \) must also be continuous

- The representation is unique in the followin sense

Theorem. If \(U \) is a linear function that represents \(\succeq \) and \(V \neq U \) is linear, then \(V \) represents \(\succeq \) iff \(\exists a > 0, b \in \mathbb{R} \) such that \(V = aU + b \).

von Neumann-Morgenstern

- **Let** \(X \) be a finite set of prizes, \(\mathcal{L}(X) \) be lotteries over \(X \)

- An expected utility representation is a utility function \(U \) which represents \(\succeq \) on \(\mathcal{L}(X) \), such that there exists some u: \(X \to \mathbb{R} \) such that \(U(p) = \sum_{x \in X} u(x)p(x) \) for any \(p \in \mathcal{L}(X) \)

Theorem (von Neumann-Morgenstern 1947). \(\succeq \) on \(\mathcal{L}(X) \) satisfies A1, A2, A3 iff it has an expected utility representation.

- Proof is a consequence of the mixture space theorem and the following lemma

Lemma. If \(U \) is a linear function on \(\mathcal{L}(X) \), then there exists some \(u: X \to \mathbb{R} \) such that \(U(p) = \sum_{x \in X} u(x)p(x) \) for all \(p \in \mathcal{L}(X) \). Conversely, if \(U(p) = \sum_{x \in X} u(x)p(x) \) for all \(p \in \mathcal{L}(X) \), then \(U \) is linear.

- **Proof of lemma** is by induction on the number of prizes

von Neumann-Morgenstern on Monetary Prizes

- \(X \) infinite set of prizes, \(X = [w, b] \subseteq \mathbb{R}, w < b \)

- **Let** \(F \) be the set of CDFs on \(X \)

- The axioms are slightly adjusted, as follows:

A1+M \(\succeq \) is a preference relation and satisfies monotonicity, i.e., \(x \succ y \implies \delta_x \succ \delta_y \)

A2 \(p \succ q, a \in (0, 1) \implies h_a(p, r) \succ h_a(q, r) \)
For every $F \in \mathcal{F}$, the sets $\{G : G \succeq F\}$ and $\{G : F \succeq G\}$ are closed under the topology induced by the metric $d(F,G) = \int |F - G| \, dx$

A3* implies we are endowing F with the weak topology

- A3* can be replaced by other notions of weak convergence
- e.g., if $\mu^n \to F$ at every continuity point of F and $\mu^n \succeq G$ for all n, then $F \succeq G$

Theorem. \succeq on F satisfies A1+M, A2, A3* iff there is a continuous, strictly increasing $u : X \to \mathbb{R}$, such that:

$$U(F) = \int u(x) \, dF(x) \quad \text{represents } \succeq.$$

- F second order stochastically dominates G if $F \neq G$ and $\int_{-\infty}^{x} G(z) \, dz \geq \int_{-\infty}^{x} F(z) \, dz$ for all x
- \succeq is risk averse when $F \succ G$, if F second order dominates G

Theorem (Notions of Risk Aversion). Let \succeq on F satisfy A1+M, A2, A3* and u be the vNM utility index. Then:

$$u \text{ strictly concave } \iff \delta_{\frac{1}{2}y + \frac{1}{2}y} > \frac{1}{2} \delta_{x} + \frac{1}{2} \delta_{y}.$$

Anscombe-Aumann

Let $S = \{1, \ldots, n\}$ be a finite set of states, X be a set of prizes

Let H be a set of acts $f : S \to \mathcal{L}(X)$

We have the following AA axioms:

AA1-AA3 These are just A1–A3 for \succeq on H

AA4 $x \succ y$ for some $x, y \in X$ (non-degenerate preference)

AA5 For every $f, g, \tilde{f}, \tilde{g}$, such that there are non-null $i,j \in S$ so that $f_{k} = g_{k}$ for all $k \neq i$, $\tilde{f}_{k} = \tilde{g}_{k}$ for all $k \neq j$ and $f_{i} = \tilde{f}_{i}$, $g_{i} = \tilde{g}_{i}$, we have $f \succeq g$ implies $\tilde{f} \succeq \tilde{g}$ (state separability)

- A state $i \in S$ is null if for all f, g such that $f_{j} \equiv g_{j}$, for $j \neq i$, we have $f \sim g$

- Note that AA5 implies state-separable preferences

Theorem (Anscombe-Aumann 1963). \succeq satisfies AA1–AA5 on H iff there exists a non-constant linear U on $\mathcal{L}(X)$, and a probability μ on S such that:

$$W(f) := \sum_{s \in S} U(f_{s}) \mu(s)$$

represents \succeq. U is unique up to a positive affine transformation.

- The key part of the proof is the lemma below

Lemma. Function $W : H \to \mathbb{R}$ is linear iff $\exists \{U_{s}\}_{s \in S}$, such that $W(f) = \sum_{s \in S} U_{s}(f_{s})$.

- The rest of the proof proceeds as follows:
 - Using AA5 show that all U_{s} from the lemma represent the same preferences up to positive affine transformation
 - By AA4 there is one non-null state $i \in S$
 - Let the positive affine transformations taking utility from state j to state i be $a_{j} > 0, b_{j}$

- Define $\mu(j) = a_{j}$ and normalize to sum to 1

- We extended this to arbitrary S, but restricting to H^{0}, the set of simple acts, i.e., acts which yield finite number of prizes

- In this case we needed a slightly stronger axiom AA5:

AA5 $f, g \in H^{0}$, and $p, q \in \mathcal{L}(X)$, and non-null events E, \hat{E}, such that: $f_{s} = g_{s}$ for $s \notin E$, $\hat{f}_{s} = \hat{g}_{s}$ for $s \notin \hat{E}$, and $f_{s} = \hat{f}_{s} = p$, $g_{s} = \hat{g}_{s} = q$ for all $s \in E$, $\hat{s} \notin E$ we have $f \succeq g$ implies $\hat{f} \succeq \hat{g}$

- Event $E \subseteq S$ is null if $f_{s} = g_{s}, \forall s \in S \setminus E$ implies $f \sim g$

Qualitative Probability

- We began by looking at some facts from probability theory

Fact 1. A finitely-additive probability μ on A, an algebra on S, can be extended to 2^{S}.

Fact 2. A σ-additive probability μ on A, an algebra on S, can be extended to $\sigma(A)$.

- A probability μ on an algebra A is convex-valued if $\forall A \in A$, $r \in [0, 1]$, there is $B \subseteq A$ such that $\mu(B) = r \mu(A)$

- A probability μ on an algebra A is non-atomic if $\forall \mu(A) > 0$, there is $B \subseteq A$ such that $0 < \mu(B) < \mu(A)$

Theorem. Convex-valued $\mu \Rightarrow$ non-atomic μ. The converse is true for σ-additive μ.

- Preference \succeq^{*} over A is a qualitative probability if:

Q1 \succeq^{*} is complete and transitive

Q2 $A \succeq^{*} \emptyset$, for all A

Q3 $S \succeq^{*} \emptyset$

Q4 $A \succeq^{*} B$ iff $A \cap C \succeq^{*} B \cap C$, when $A \cap C = B \cap C = \emptyset$

- Further, there was an important axioms regarding partitions

P $A \succeq^{*} B$ implies $\exists \{A_{1}, \ldots, A_{n}\}$, a partition of S, such that $A \succeq^{*} (B \cup A_{i})$ for every A_{i}

 - Says that not too many things are different from each other”

- Kreps book shows that a qualitative probability, \succeq^{*}, satisfies P

 - is both fine and tight:
 - \succeq^{*} is fine if for all $A \succeq^{*} \emptyset$, there is a finite partition of S no member of which is as likely as A
 - \succeq^{*} is tight, if for all $A \succeq^{*} B$, there is C such that $A \succeq^{*} (B \cup C) \succeq^{*} B$

- Below are some examples of the above theorem

Example (Lexicographic). $A \succeq^{*} B$ iff $|A_{1}| > |B_{1}|$ or if $|A_{1}| = |B_{1}|$ and $|A_{2}| > |B_{2}|$

- Finess fails: For $A = [2, 2.5]$, we have $A \succeq^{*} \emptyset$, by every finite partition includes an element with a positive mass on S

Example (Substitutes). $A \succeq^{*} B$ iff $|A_{1}| + |A_{2}| > |B_{1}| + |B_{2}|$, or if $|A_{1}| + |A_{2}| = |B_{1}| + |B_{2}|$ and $|A_{1}| > |B_{1}|$
There is some
For all
Theorem. Let \(\preceq^* \) satisfy Q1–Q4 and P. Then \(\exists \mu \) a \(\text{finitely}-\text{additive} \) prob. that represents \(\preceq^* ; \mu \) is unique and convex valued.

Fact*. Every \(\preceq^* \) satisfying Q1–Q4 and P has an \(2^n \)-equipartition (for every \(n \)), and for \(A \succ^* B \), there is \(C \subset A \) such that \(C \sim^* B \).

The proof of the theorem uses this fact and a few lemmas.

Lemma 0. Assume \(A \cap B = \emptyset = C \cap D \). If \(A \succ^* C \) and \(B \succ^* D \), then \(A \cup B \succ^* C \cup D \). Further \(A \succ^* C \) and \(B \succ^* D \) implies \(A \cup B \succ^* C \cup D \).

Lemma 1. Let \(a = \{A_1, \ldots, A_n\}, b = \{B_1, \ldots, B_m\} \) be two equips of \(S \). Then (i) \(n = m \) implies \(A_i \sim^* B_j \) for all \(i, j \) (ii) \(n > m \) implies \(A_i \succ^* B_j \) for all \(i, j \) (iii) \(n = 2m \) implies \(A_i \sim^* B_j \cup B_k \).

- Define \(k(n, a, A) = \min \{k : \cup_{i=1}^k A_i \succ^* A\} \), for some \(a = \{A_i\}_{i=1}^{2^n} \)
- Further define \(k(n, A) = \min_{a \in 2^n} k(n, a, A) \)
- By lemma 1, \(k(n, A) = k(n, a, A) \)
- Finally define \(\mu(A) = \lim_{n} \frac{k(n, A)}{2^n} \)

Lemma 2. \(\mu(A) \) is a \(\text{finitely}-\text{additive} \) probability.

The final step is to show \(\mu \) represents \(\preceq^* \) and is unique and convex valued.

Savage

- Let \(S \) be an arbitrary set of states, \(X \) the set of prizes
- An act \(f : S \to X \) is \textit{simple} if it takes a finite number of prizes
- Let \(\succ^* \) be a relation on \(F \), the set of all simple acts
 - For any \(x \in X \), let \(f \in F \) be the act always returning prize \(x \)
 - Let \(fAg \) denote the act which is the same as \(f \) on states \(A \subset S \) and the same as \(g \) on \(S \setminus A \)

- The Savage axioms are:
 - \(S1 \) \(\succ^* \) is a preference relation
 - \(S2 \) There is some \(x, y \in X, F \) such that \(x \succ^* y \) (non-degeneracy)
 - \(S3 \) \(fAh \succ^* gAh \) implies \(fAh' \succ^* gAh' \) (sure-thing principle)
 - \(S4 \) If \(A \) is non-null, then \(xAh \succ^* yAh \forall h \) iff \(x \succ^* y \) (Kreps sure-thing principle)
 - \(S5 \) \(xAy \succ^* xBy \) implies \(x'Ay' \succ^* x'By' \), for all \(x \succ^* y, x' \succ^* y' \) (states are independent of prizes)
 - \(S6 \) For all \(f \succ^* g, \) \(x \in X \) there is a finite partition of \(S \) such that \(xAf \succ^* g, \) and \(f \succ xAg \) (strong continuity)

- Some useful observations
 - For \(S6 \) to be satisfied \(S \) must be infinite
 - For \(S5 \) to be violated we need at least 3 prizes
 - The existence of an additive representation implies \(S3 \)

- The strict version of \(S4 \) is for all non-null \(A \): \(x \succ^* y \) if \(\exists h. xAh \succ^* yAh \)
- The "for all \(h \)" is important for constructing counterexamples of \(S4 \)
- In the absence of completeness, zero measure sets might not be null, as by definition, \(A \) is null if for all \(f, g, h \): \(fAh \sim gAh \), but the latter may not be computable

Theorem (Savage 1954). A binary relation \(\succeq \) on the set of simple savage acts satisfies S1-S6 iff there exists a non-constant function \(u \) on \(X \), and a \(\text{finitely}-\text{additive} \) probability on \((S, 2^S) \), such that \(W(f) = \sum_{x \in X} u(x) \mu(f^{-1}(x)) \) represents \(\succeq \). Furthermore, \(\mu \) is unique and \(u \) is unique up to an affine transformation.

Steps of the proof:
- Pick any \(x \succ^* y \) and define \(\succeq^* \) by \(xAy \succ^* xBy \)
- \(\succeq^* \) is a qualitative probability that satisfies Axiom P, hence there exists a unique convex valued \(\text{finitely}-\text{additive} \) probability \(\mu \) that represents \(\preceq^* \)
- For \(f \in F \), define \(p_f \) by \(p_f(x) = \mu(f^{-1}(x)) \), i.e. fold-down (simple) acts to (simple) lotteries
- Show that \(\phi : F \to \mathcal{L}^0(X) \), defined by \(\phi(f) = p_f \) is onto, i.e. every (simple) lottery \(p \in \mathcal{L}^0(X) \) has an act that "reduces" to it
- \(p_f = p_g \) implies \(f \sim g \)
- Define \(\succeq^0 \) on \(\mathcal{L}^0(X) \) by \(p \succeq^0 q \) iff there are \(f, g \) such that \(f_p = p, \) \(g_q = q, \) and \(f \succeq g \)
- \(\succeq^0 \) satisfies (vNM) A1-A3 and therefore there exists a function \(u : X \to \mathbb{R} \) that represents \(\succeq^0 \) on \(\mathcal{L}^0(X) \)
- Combined together, \(u, \mu \) yield the desired representation: \(W(f) = \sum_{x \in X} u(x) \mu(f^{-1}(x)) \)

Comments about Finiteness Assumptions

Throughout this course we worked with finite primitive sets, with occasional excursions into the infinite, in particular:

- vNM: \(X \) is a finite set of prizes
- vNM over monetary prizes: here we considered infinite \(X \), but with the natural order structure, allowing us to approximate elements in \(\mathcal{L}(X) \) by simple lotteries, using an added monotonicity requirement
- A-A: \(S \) is finite and in the homework we extended the result to infinite \(S \) but restricted to \textit{simple} acts, i.e. acts that give a finite number of outcomes (lotteries in \(\mathcal{L}(X) \) in this case)
- Savage: \(S \) is infinite (required for P to hold), but we restrict attention to \textit{simple} savage acts