In a repeated game players can develop a reputation for playing in a specific way. Building a reputation can take time, so patient players are more likely to invest.

Example

- The main point of this paper can be illustrated in a repeated "Chain Store Paradox" example.

![Figure 1: Stage game of the chain store paradox](image)

- Monopolist facing an infinite sequence of potential entrants, can respond aggressively or passively
 - Period t entrant observes the entire preceding history
- Assume the monopolist can be a commitment type with a preference for fighting
 - All entrants have a common prior about this, $\varepsilon > 0$

Theorem. In any sequential equilibrium, if δ is close to 1, then player 1’s expected average payoff in equilibrium is close to 2.

Proof Sketch. Fix a sequential equilibrium and let t be the first period that player 1 plays "Acquiesce". If $t = \infty$, player 2 is playing "Stay Out" and player 1 gets payoff 2. If $t < \infty$, then deviating to playing "Fight" in all periods will give payoff at least -1 in period t and say s periods after it (until player 1’s posterior is sufficiently high) and payoff 2 in subsequent periods.

Result extends to finite number of commitment types

The Basic Environment

- 2 Players in each period, player 1 (the long-run player) and Player 2 (one of a sequence of short-run players)
 - Denote short-run player in period t by player 2_t
- Stage game pure action sets, A_1 and A_2, are finite (not critical)
 - Denote mixed actions by $\alpha_i \in \Delta(A_i)$
- Imperfect public monitoring
 - Players observe a random outcome $y \in Y$, where $|Y| = M < \infty$
 - Given action profile $a \in A$, the probability of signal y is $\rho(y|a)$
- Includes perfect monitoring as a special case
 - Another special case is an extensive form stage game where only terminal payoffs are observable

Equilibrium

- History for player 2 is the public history $H_t \in Y^t$
- Pure strategy for player 2_t is $s^t: H_{t-1} \rightarrow A_2$
 - S^t_1 denotes the set of all pure strategies for player 2_t
- Player 1 knows the public history and his private history $H_t^1 \in (A_1)^t$
- Pure strategy for player 1 in period t is $s_1 = \{s'_1\}_{i=1}^\infty$ where $s'_1: H_{t-1} \times H_{t-1}^1 \rightarrow A_1$
 - S_1 denotes the set of all pure strategies for player 1
- Mixed strategies for players 1 and 2 are $\sigma_1 \in \Delta(S_1)$ and $\sigma^t_2 \in \Delta(S^t_2)$, respectively
- A mixed strategy for player 2 is $\sigma_2 \in \Delta(\times_{i=1}^\infty S^t_2)$
- Mixed strategy profile $\sigma = (\sigma_1, \sigma_2) \in \Delta(S)$ induces a probability distribution over $\{a_1(t), a_2(t)\}_{t=1}^\infty$ and $\{y(t)\}_{t=1}^\infty$
- Let E_σ denote the expectation w.r.t. this distribution
The average expected utility of player 1 is:

\[U_1 (\sigma, \omega) = E_\sigma \left[(1 - \delta) \sum_{t=1}^{\infty} \delta^{t-1} u_1 (a_1 (t), y (t), \omega) \right] \]

Another way to think about mixed strategies, useful when type spaces are infinite:

- Developed by Milgrom and Weber (1985)
- Requires \(\Omega \) to be a Polish space

A distributional strategy for player 1, \(\sigma_1 \), is a probability measure on Borel sets of \(\Omega \times S_1 \)

- Consistency requirement—the marginal distribution on \(\Omega \) is \(\mu \)

Let \(\mathcal{A} \) denote all the distributional strategies of player 1

Note that for any \(\Omega^+ \subset \Omega \), \(\sigma_1 (\Omega^+) \in \Delta (S_1) \) where

\[\sigma_1 (\Omega^+) (s_1) = \mu (\Omega^+) \int_{\Omega^+} \sigma_1 (\omega, s_1) d\omega \]

Short-run players can have incorrect beliefs about long-run player’s strategy if outcomes are insufficient to identify actions

- Related to self-confirming equilibrium in learning in games

An action \(\alpha_2 \) is an \(\varepsilon \)-confirmed best response to \(\alpha_1 \) if (i) \(\alpha_2 \) is not weakly dominated and (ii) there exists some \(\alpha_1' \) such that:

- \(\alpha_2 \in \arg \max_{\alpha_2} v_2 (\alpha_1', \alpha_2') \)
- \(\| \rho (| (\alpha_1, \alpha_2)) - \rho (| (\alpha_1', \alpha_2')) \|_\infty < \varepsilon \)

Denote by \(B_\varepsilon (\alpha_1) \) the set of \(\varepsilon \)-confirmed best responses to \(\alpha_1 \)

\(B_0 (\alpha_1) \) is not the set of all undominated best responses

- These are generalized best responses (Fudenberg and Levine, 1989)

A Nash equilibrium is \((\sigma_1, \sigma_2) \in \mathcal{A} \times \Delta (S_2) \) so that \(\sigma_2^* \) is the best response to \(\sigma_1 (\omega) \) and \((\omega, s_1) \in \text{supp}(\sigma_1) \) implies \(s_1 \) is a best response to \(\sigma_2 \) by type \(\omega \)

Nash equilibrium exists

- Existence in finite truncations of the game proven by Milgrom and Weber (1985)
- Fudenberg and Levine (1983) show that for finite-action imperfect information games which are uniformly continuous mixed-strategy sequential equilibria exist
- Action spaces and signal spaces are finite, \(U_1 \) and \(v_2 \) are uniformly continuous

Let \(\mathcal{N}_1 (\delta, \omega) \) and \(\overline{\mathcal{N}}_1 (\delta, \omega) \) be the inf and sup of type \(\omega \)'s payoff in any Nash equilibrium of the repeated game with discount rate \(\delta \)

Let \(\varepsilon \)-least commitment payoff for type \(\omega \) be:

\[\overline{v}_1 (\omega, \varepsilon) = \sup_{\alpha_1 \in \Delta (A_1)} \inf_{\alpha_2 \in B_\varepsilon (\alpha_1)} v_1 (\alpha_1, \alpha_2, \omega) - \varepsilon \]

Let \(\varepsilon \)-greatest commitment payoff for type \(\omega \) be:

\[\underline{v}_1 (\omega, \varepsilon) = \sup_{\alpha_1 \in \Delta (A_1)} \sup_{\alpha_2 \in B_\varepsilon (\alpha_1)} v_1 (\alpha_1, \alpha_2, \omega) \]

\(\overline{v}_1 (\omega, 0) \) is generalized Stackelberg payoff

Main Theorem

Theorem (3.1). For all \(\varepsilon > 0 \) there exists a \(K \) so that for all \(\delta > 0 \)

\[
(1 - \varepsilon) \delta^K \overline{v}_1 (\omega, \varepsilon) + \left[1 - (1 - \varepsilon) \delta^K \right] \| u \| \leq \mathcal{N}_1 (\delta, \omega_0)
\]

\[
\leq \mathcal{N}_1 (\delta, \omega_0) \leq (1 - \varepsilon) \delta^K \overline{v}_1 (\omega, \varepsilon) + \left[1 - (1 - \varepsilon) \delta^K \right] \| u \|.
\]

Upper bound seems weak, but is not

- Benabou and Laroque (1988) show that a long-run player can attain utility higher than his Stackelberg payoff
- Later we will prove that this is impossible as \(\delta \rightarrow 1 \)

Before proving this theorem, we state an ancillary theorem, which will be required to prove theorem 3.1

Theorem (4.1). For every \(\varepsilon > 0 \), \(\Delta_0 > 0 \) and \(\Omega^+ \subset \Omega \) with \(\mu (\Omega^+) > 0 \) there is a \(K (\varepsilon, \Delta_0, \mu (\Omega^+)) \) such that for any \(\sigma_1 \) and \(\sigma_2 \), under the probability distribution generated by \(\sigma_1 (\Omega^+) \), there is a probability less than \(\varepsilon \) that there are more than \(K (\varepsilon, \Delta_0, \mu (\Omega^+)) \) periods with:

\[
\left\| p^+ (h_{t-1}) - p (h_{t-1}) \right\|_\infty > \Delta_0.
\]

Proof of Theorem 3.1. Fix a Nash equilibrium \((\sigma_1, \sigma_2) \); \((\sigma_1, \sigma_2) \) and \(\mu \) induce a joint probability distribution over types and histories.

Short-run players must use Bayesian updating in a Nash equilibrium to form posterior beliefs. Let \(\alpha_2 (h_{t-1}) \) denote the mixed action generated by \(\sigma_2 \) which player 2_t plays following history \(h_{t-1} \); similarly for \(\alpha_1 (h_{t-1}) \) and \(\alpha^+_2 (h_{t-1}) \). Let player 2_t’s prediction of the outcome conditional on \(h_{t-1} \) and equilibrium strategies be \(p (h_{t-1}) \in \Delta (Y) \). Let \(p^+ (h_{t-1}) \) also condition on the true type being in \(\Omega^+ \).

Short-run types almost have the correct distribution of outcomes even if they do not know that the long-run player’s type is in \(\Omega^+ \). A period is "exceptional" if short run players get a surprise in the above respect. Take \(\Omega^+ = \{ \omega_0 \} \) and \(\Delta_0 = \varepsilon \) and apply theorem 4.1. There exists a \(K \) so that in all but \(K \) periods with probability \((1 - \varepsilon) \) we have:

\[
\left\| p^+ (h_{t-1}) - p (h_{t-1}) \right\|_\infty \leq \varepsilon.
\]

Thus with probability \((1 - \varepsilon) \) player 2_t’s equilibrium action \(\alpha_2 (h_{t-1}) \in B_\varepsilon (\alpha^+_2 (h_{t-1})) \). If player 2_t expects an outcome \(\varepsilon \)-close to \(p^+ (h_{t-1}) \), then player 2_t must be playing a \(\varepsilon \)-confirmed best response to the mixed strategy that \(\omega_0 \) would play after history \(h_{t-1} \).

Further, since commitment types have full support, player 2_t will not play a strategy that is weakly dominated, i.e., \(\alpha_2 (h_{t-1}) \in B_0 (\alpha_1 (h_{t-1})) \).

The payoff to rational player 1 is:

\[
U_1 (\sigma^+, \omega_0) = E_{\sigma^+} \left[(1 - \delta) \sum_{t=1}^{\infty} \delta^{t-1} v_1 (\alpha_1 (h_{t-1}) \in B_0 (\alpha_1 (h_{t-1})) \], \alpha_2 (h_{t-1}), \omega_0) \right].
\]

Rational player’s payoff in exceptional periods is bounded above by \(\pi \). There are at most \(K \) exceptional periods (which occur with probability greater than \(\varepsilon \)) and \(U_1 (\sigma^+, \omega_0) \) is maximized if these occur at the start.
Type ω_0 must want to play its equilibrium strategy and its equilibrium payoff in non-exceptional periods is at most $\pi_1(\omega_0, \varepsilon)$. This proves the upper bound part of the theorem.

To prove the lower bound, use theorem 4.1 again, but take Ω^+ to be a neighborhood of the "best" commitment type for the rational long-run player.

Fix any $\alpha_1 \in A_1$ and take Ω^+ to be the types which play mixed strategies α_1' in the neighborhood of α_1. Let $\varepsilon > 0$ be such that if $|\alpha_1' - \alpha_1| \leq \varepsilon$, then $\|v_1(\alpha_1, \alpha_2, \omega_0) - v_1(\alpha_1', \alpha_2, \omega_0)\|_\infty < \varepsilon$ and $\|\rho(\cdot | (\alpha_1, \alpha_2)) - \rho(\cdot | (\alpha_1', \alpha_2))\|_\infty < \frac{\varepsilon}{2}$. Such ε exists since v_1 and ρ are continuous and defined on compact sets. By definition $|\alpha_1^+ - \alpha_1| \leq \varepsilon$.

Apply theorem 4.1, with Ω^+ as defined above and $\Delta_0 = \frac{\varepsilon}{2}$ and note that $\mu(\Omega^+) > 0$. Suppose the rational player follows strategy α_1^+ corresponding to some commitment type in Ω^+. In non-exceptional periods, with probability at least $(1 - \varepsilon)$, player 2 plays an $\frac{\varepsilon}{2}$-confirmed best responds to this strategy, but since $\|v_1(\alpha_1, \alpha_2, \omega_0) - v_1(\alpha_1', \alpha_2, \omega_0)\|_\infty < \varepsilon$, we have that in non-exceptional periods ω_0 obtains payoff at least:

$$\min_{\alpha_2 \in B_2(\alpha_1)} v_1(\alpha_1, \alpha_2, \omega_0) - \varepsilon.$$

In exceptional periods the payoff is uniformly bounded from below by u.

\begin{proof} \[\square \]

Corollary (3.2). Taking the limit as $\varepsilon \to 0$ we have that:

$$v_1(\omega_0, 0) \leq \liminf_{\delta \to 1} N_1(\delta, \omega_0) \leq \limsup_{\delta \to 1} N_1(\delta, \omega_0) \leq \pi_1(\omega_0, 0).$$

\begin{proof} From Theorem (3.1) need to show that:

$$\liminf_{\varepsilon \to 1} \pi_1(\omega_0, \varepsilon) \geq v_1(\omega_0, 0), \text{ and}$$

$$\limsup_{\varepsilon \to 1} \pi_1(\omega_0, \varepsilon) \leq \pi_1(\omega_0, 0).$$

Take $(\varepsilon^n)_{n=1}^\infty \to 0$ and $\alpha_2^n \in B_{E^n}(\alpha_1)$ for all n and note that $\lim_{n} \alpha_2^n \in B_0(\alpha_1)$.

A game is non-degenerate if $\exists \alpha_2 \in A_2$ which is undominated such that for some $\alpha_2 \neq a_2$, $v(\cdot, \alpha_2) = v(\cdot, a_2)$.

- Satisfied for an open, dense set of payoffs
- A game is identified if for each α_2 that is not weakly dominated $\rho(\cdot | (\alpha_1, \alpha_2)) = \rho(\cdot | (\alpha_1', \alpha_2))$ implies $\alpha_1 = \alpha_1'$.

Theorem (3.3). In a non-degenerate, identified game $v_1(\omega_0, 0) = \pi_1(\omega_0, 0)$.

- Generically, average payoff of a patient long-run player in any NE is determined by reputation effects if actions are observed

\begin{proof} of Theorem 3.3. Since the game is identified $B_0(\alpha_1)$ the set of 0-confirmed best responses is simply the set of undominated best responses to α_1. Sufﬁces to show that for $\alpha_2 \in B_0(\alpha_1)$, there exists a sequence $\{\alpha_2^n\}_{n=1}^\infty$ which converges to α_1 such that:

$$\{\alpha_2^n\} = B_0(\alpha_1^n).$$

There exists some mixed action $\alpha_1' \in A_1$ such that α_2 is a strict best response to α_1'. Take a sequence $\{\kappa^n\}_{n=1}^\infty$ such that $\kappa^n \in (0, 1)$ and $\kappa^n \to 1$. Define $\alpha_1^n = \kappa^n \alpha_1 + (1 - \kappa^n) \alpha_1'$. Note that α_2 is a strict best response to α_1^n.

\begin{proof} \[\square \]

Remarks about the Technical Result

- The main technical contribution of the paper is theorem 4.1, restated here for convenience

\begin{proof} \[\square \]

Theorem (4.1). For every $\varepsilon > 0$, $\Delta_0 > 0$ and $\Omega^+ \subset \Omega$ with $\mu(\Omega^+) > 0$ there is a $K(\varepsilon, \Delta_0, \mu(\Omega^+))$ such that for any λ and σ_2, under the probability distribution generated by $\sigma(\Omega^+)$, there is a probability less than ε that there are more than $K(\varepsilon, \Delta_0, \mu(\Omega^+))$ periods with:

$$\|p^+ - p(h_{t-1})\| > \Delta_0.$$

\begin{proof} \[\square \]

To prove the above, first show that the odds ratio is a supermartingale (lemma 4.1)

- Supermartingales converge almost surely, but not uniformly
- Fudenberg and Levine show that active supermartingales converge uniformly

To show the rest of the theorem, note that in exceptional periods, there is a substantial (i.e., greater than Δ_0) probability that the short run player will be substantially wrong in their forecast

- Thus, the supermartingale L_t is active, in the sense that L_t has a significant probability of decreasing by a sizable fraction
- Use the level of activity of a supermartingale to get a bound for the number of exceptional periods

Sorin (1999) remarks that Theorem 4.1 is a "uniform version" of the merging of beliefs theorem by Blackwell and Dubins (1962)

- Blackwell and Dubins (1962) consider when posterior beliefs of individuals will merge, if individuals start with different priors and observe the same outcomes

Concluding Remarks

- Introducing reputation yields a sharp prediction for the payoff of patient long-run players
- Generically, if the long-run player’s action is statistically identified, the long-run player obtains his Stackelberg payoff

\begin{proof} \[\square \]