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Abstract

Risk-neutral firms with risky projects require external funding from lenders. The

project’s realized return is private information of each firm. We study a financial

intermediation with costly-state verification, where agents cannot commit to their

verification strategy, there is aggregate uncertainty and lenders may be risk averse.

Static bank contracts are Pareto optimal without aggregate uncertainty, but they

may not be so with it. However, regulator can implement a Pareto optimal dynamic

contract even with aggregate uncertainty, via a resolution mechanism that uses

franchise values as threat to discipline the bank undertake costly monitoring in

bad states. Bailout policy, subject to ex ante budget-balancedness, can be welfare-

improving if the dynamic bank contract is not financially stable.
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1 Introduction

The defining events of the Global Financial Crisis of 2007-2008 are the defaults and near

defaults of large financial intermediaries. As a result, regulations regarding the supervision

and potential resolution of such institutions took center stage in the subsequent reforms.

Indeed, both aspects are prominent in the Dodd-Frank Act, which includes a “living will”

feature, i.e., a strategy for rapid and orderly resolution in the event of material financial

distress or failure of a financial intermediary, as well as the establishment of the Orderly

Liquidation Authority to oversee the resolution, potentially with government funding to

support the process. These provisions are highly debated,1 partly because they provide

an alternative (to the usual court procedure) in case of bankruptcy of certain financial

firms and because the Orderly Liquidation Authority can access public funding. Accord-

ingly, such regulations require the regulator to set expectations about the supervision and

resolution of financial intermediaries and how depositors, as well as tax-payers, get repaid

in the event of a crisis.

We contribute to this debate by taking seriously the underlying asymmetric infor-

mation problem that renders financial intermediation necessary, and its implications to

banking regulations. We take into account that bankruptcy is costly and that resolution

mechanisms have incentive implications which affect the behavior of all relevant parties

in financial intermediation. One advantage of this approach is that we are able to derive

Pareto optimal financial contracts as simple debt contracts, according to which default

means failure to repay the debt level and the creditors receive whatever is left in that event.

Moreover, we derive the Pareto optimality of financial firms to act as intermediaries.

However, as seen in the Financial Crisis, default in financial intermediaries is triggered

by defaults in the ultimate borrowers, and a novel feature of our model is to introduce

aggregate uncertainty to discuss this. By doing so, our model highlights the two-sided

nature of financial contracts: as financial intermediaries, defaults from their borrowers

have material implications to the lenders; at the same time, the resolution procedure

1See, for example, Acharya and Richardson (2012), Section 4.3, and Bernanke (2017) who have argued

for their continual existence.
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and the fact that what they get from their borrowers would, at least in part, go to their

creditors, also affects the incentives for the intermediaries to undergo costly bankruptcy

procedures to recover assets from their borrowers.

We formalize these ideas in a costly-state-verification model where financial intermedi-

aries are set up so that investors can delegate costly monitoring activities, a story behind

seminal papers such as Diamond (1984) and Williamson (1986), but with two novel fea-

tures that make it suitable to address the challenges in financial regulations revealed by

the recent crisis mentioned above. First, we assume that the lenders cannot commit to

their verification strategies, an important feature that endogenously gives rise to debt

contracts as the optimal arrangement.2 This lack of commitment brings in a novel moral

hazard problem in financial intermediation. Thus, default in our model is endogenously

determined by the contractual arrangement: a minimum return to the depositors is needed

to induce voluntary participation, but a higher interest rate to the lender would imply a

higher rate of costly monitoring.

Second, we allow for aggregate uncertainty and hence complete diversification may

not be feasible. This feature makes the moral hazard issue faced by financial intermedi-

aries prominent due to their two-sided contracts. In particular, in a crisis situation where

defaults from entrepreneurs are more prevalent, financial intermediaries may find it un-

profitable to engage in costly verification in the interim stage unless they can retain some

proceeds from those activities for themselves; in other words, they would need to pay less

to their depositors. With risk-averse depositors, these financially unstable contracts are

undesirable and could potentially eliminate the benefits of financial intermediation.

We obtain two sets of results. First, even with this moral hazard issue, financial inter-

mediation can make Pareto improvement without any regulations if there is no aggregate

uncertainty. We show that the financial intermediary can provide a two-sided contract

2The optimality of debt contract under costly-state-verification goes back to Townsend (1979) and

Gale and Hellwig (1985). More recently, Krasa and Villamil (2000) have shown the optimality of the

debt contract, by assuming that lenders cannot commit to their verification strategy and allowing for

renegotiation at the interim stage, which addressed the criticism that the earlier results are not robust

to randomization.
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that dominates the optimal direct contract. While Williamson (1986) and Krasa and

Villamil (1992) obtain similar results when ex-ante commitment to a monitoring strategy

is assumed, we extend this to a setting without such commitments.

Our second set of results highlight our main contribution that deals with optimal

regulation under aggregate uncertainty and the situation where there can be instability

with financial intermediation. We show that a well-designed resolution mechanism in

the form of orderly liquidation similar to the one envisioned in the Dodd-Frank Act

can make Pareto improvement. The main incentive issue under aggregate uncertainty

is the following. Because of lack of commitment, the bank needs incentives to monitor

at the interim stage, which requires that the bank’s profit, net of the monitoring cost,

be nonnegative in every state. This incentive compatibility constraint limits the bank’s

ability to provide a deposit contract that smooths depositors’return across different states.

As a result, if the firms’aggregate returns are worse than the depositors’outside options

in some states, then the bank contract cannot be financially stable in the sense that the

depositors get the same return in all states.

Under this financial instability, we show that a resolution mechanism regulated by

a banking authority can be welfare-improving by providing dynamic incentives to the

bank. Under this mechanism, the bank may engage in costly self verification similar to a

conservatorship process, and report the results to the banking authority. Depending on

the result, the authority may terminate the bank’s charter privilege. The authority can

then use this threat to the bank’s future profits as incentive for the bank to perform costly

monitoring of the firms. We show that, under some mild conditions, such a dynamic bank

contract can always Pareto dominate any optimal direct contract, and, unless the bank

can provide a financially stable static contract, such dynamic contract can always make

Pareto improvement.

Both risk aversion and costly monitoring play a role in obtaining our results. If

the static contract is not financially stable, the depositors need to monitor the bank

occasionally and that is costly. In contrast, in the dynamic setting, because of future

profits, the bank has incentive to self-verify even if it is costly, and that is more effi cient.
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Moreover, since under dynamic contract the bank can make a negative profit at some

states, the bank can provide a deposit contract that second order stochastically dominates

the static one, and this is welfare-improving for risk averse depositors. These results also

show the socially beneficial role of the franchise value of the bank, which are essential for

the provision of dynamic incentives.

Finally, we show that a bailout policy can be welfare improving if the above dynamic

contract is not financially stable due to feasibility constraints. Under this scheme, the

bank has to pay a premium in good states but may request a bail-out in bad sates.

However, to request a bail-out, costly self-verification is necessary for the authority to

ascertain the state and the amount of funds already available to the bank. Depending on

the result, the bank charter may be terminated. In this case, the scheme needs to provide

an incentive for the bank to pay the premium in good states, and to monitor firms as well

as to self-verify in bad states. We show that, for suffi ciently high discount factors and

suffi ciently low self-verification cost, a financially stable bank contract is always incentive

compatible and is welfare-improving under such policy. Again, risk aversion is crucial for

these results: the bailout policy allows for the bank to engineer a contract that second

order stochastically dominates the original one, and that makes risk averse depositors

strictly better off.

Related Literature

We follow the literature that explains financial intermediation based on asymmetry infor-

mation (e.g., Freixas and Rochet, 1997). Our paper builds on two intertwining literatures

that micro-found financial intermediation and debt contracts as the optimal contractual

arrangement, building on the intuition that monitoring borrowers is costly. Diamond

(1984) formalized the argument that financial intermediaries can save monitoring costs

on behalf of the ultimate lenders. Instead of relying on the nonpecuniary cost of mon-

itoring, our approach adopts the costly-state-verification story introduced by Townsend

(1979) and Williamson (1986). Like Winton (1995), we allow for risk averse investors and

solve for optimal contract with multiple investors as a baseline. Krasa and Villamil (1992)
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adopt the same approach to justify financial intermediation, but allow for finitely many

lenders instead of the continuum. We advance in this literature by considering the lack of

commitment in the verification strategy, with the advantage that debt contracts endoge-

nously emerge as the optimal contracts, even if stochastic verification is allowed, using the

logic of Krasa and Villamil (2000). Our main contribution, however, lies in the analysis

of how this lack of commitment, which is essential to obtain debt contracts, affects the

effi ciency of financial intermediation and how policies, such as liquidation procedures and

bailouts, can be welfare improving.

There is a large literature that considers banks’ risk-taking behavior and optimal

regulations to mitigate it, including Hellman et al. (2000) and Allen and Gale (2000).

Boyd and De Nicoló (2005) emphasize the importance to take both the asset and the

liability sides of the bank balance sheet into account in this debate, and argue that both

can be endogenously determined by policy. Keeley (1990) demonstrates the role of banks’

franchise values, the discounted sum of its future profits, in disciplining banks’risk taking

behavior empirically. Our paper focuses on a new moral hazard problem, the incentive for

banks to take costly monitoring activities, that would endogenously determine the bank’s

asset values and focus on the resolution mechanism instead of capital requirements. The

optimal regulation in our model also emphasizes the role of the bank’s franchise value.

Our paper is also related to the literature that studies optimal resolution of bank fail-

ures and the trade-offs of bailout policies, with the emphasis on their ex post benefits and

ex ante incentive effects. Acharya and Yorulmazer (2008) study the trade-off to provide

bailouts to surviving banks in the banking crisis due to firesale of assets that leads to

ineffi cient closure. More recent papers include Keister (2016) and Bianchi (2016). Keister

(2016) adopts the Diamond-Dybvig (1983) model of banking where banking panics occur

due to coordination failures and studies bailout policies in such a context. In contrast, in

our model bank failures can occur in all equilibria and bailout policies, bundled with a

well-designed liquidation procedures, rely on dynamic incentives. Bianchi (2016) follows

the tradition of financial frictions in the style of Kiyotaki and Moore (1997), in which

bailout policies help smooth consumptions. Our rationale for bailouts share a similar
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consumption-smoothing motive but we focus on the micro-foundation of the financial in-

termediations and primitive frictions that give rise to both the need of intermediation as

well as the regulation/intervention needed.

2 Model

Consider an economy with a measure one continuum of firms and a continuum of investors

of measure M . For simplicity, we assume that M is a natural number. Each investor is

endowed with one unit of funds that may be costlessly stored and can generate a gross

return r > 1. Each firm has an investment project that requires M units of funds

from investors and, if funded, the project generates a stochastic return w ∈ W := [0, w̄]

distributed according to cumulative distribution function, F : W → [0, 1]. We assume

that F is absolutely continuous with respect to the Lebesgue measure, that F has a full

support, and that EF (w) > Mr.3 Firms are risk-neutral and short-lived. Investors are

long-lived and may be risk averse. The instantaneous utility of an investor is a strictly

increasing and concave function, u(c), of the consumption level c, and the investor has

discount factor β ∈ (0, 1).

In this section, we consider direct contracts where one firm borrows directly from

M investors as the benchmark case. Since firms last for just one period, only static

contracts are feasible. The information friction is that the firm’s return, w, is its private

information. The investors who lend to the firm, however, may verify the return by paying

a cost γ, which is additive to their utilities of consumption. The verified return is private

information to the verifier that cannot be credibly shared with other lenders. Before the

verification, however, the firm can communicate to its lenders via private messages, and

the lenders, after seeing the messages, decide whether to verify the firm or not. A crucial

assumption is that the investors cannot commit to this verification strategy ex ante. As

3The assumptions about absolute continuity and full support are mainly for expositional reasons.

None of our results rely on absolute continuity. The full support assumption, however, guarantees that

the asymmetric-information problem is substantial.
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a result, the revelation principle does not hold and, following Krasa and Villamil (2000),

we consider the following contractual forms and the time line of interactions. We restrict

our attention to symmetric contracts to be described as follows.

A direct contract is a pair of functions, (b, ρ), with b : W → R the payment to

each investor without verification and ρ : W × {1, ..,M} → R the residual payment after

verification, specified as follows. As in Krasa and Villamil (2000), b is essentially voluntary

repayment but ρ can be costlessly enforced ex post.4 After the return w ∈ W is realized,

the firm makes a report to each of its investors. Each investor i then decides to verify or

not, based on w̃i, the return reported to that investor. If investor i does not verify, she

receives payment b(w̃i). If investor i verifies, she pays a cost γ, and receives a payment

ρ(v,m), where v is the amount of funds available after paying those who did not verify

and m is the number of verifiers. Recall that both the message, w̃i, and verified output, v,

are investor i’s private information and cannot be (credibly) shared with other investors.

Given a contract and the above timeline, a strategy for the firm is a measurable

function sf : W → ∆(WM), which maps realized returns to reported returns to each of

theM investors. Firms can randomize over messages to investors and need not be truthful.

However, each investor may verify this return by paying a cost γ, which is additive to

the investor’s utility of consumption. A strategy for an investor is a measurable function

si : W → {0, 1}, where 0 indicates no verification and 1 indicates verification. Here we

only allow pure strategies on verifications for the investors. Krasa and Villamil (2000)

show that this is with no loss of generality when investors cannot commit to the verification

strategies ex ante. The intuition is the following. Without commitment, the investor will

adopt a randomized verification strategy only if she is indifferent between verifying or not,

and this would not survive renegotiation where it is optimal for the borrower to “bribe”

the investor not to do it.5 Finally, the contract between the firm and investors define

4Note that, since the firm can choose any message as it wishes, essentially this amounts to a voluntary

payment to the lenders, as we will discuss below.
5Strictly speaking, we need also to assume that the firm also incur a small cost when being verified

for this logic to work. Adding that would complicate the notations without adding any insights here, and

one can think of our setting as the limiting case where that cost goes to zero.
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payments as a function of the reported returns if there is no verification and the realized

returns if lenders decide to verify.

We have the following feasibility constraints on the contract (and strategies):

(F1) Feasibility of ρ: ρ(v,m)m ≤ v for all v ∈ W .

(F2) Feasibility of sf under b:
∑M

i=1 b(w̃i) ≤ w for all (w̃1, ...w̃M) in the support of sf (w)

and for all w ∈ W .

We focus on PBE that are symmetric in the following sense: first, all investors use

the same strategy, si, and, for the firm, sf has finite support,6 and, if a profile of message

(w̃1, ..., w̃M) is in the support of the equilibrium strategy sf , then all permutations of that

message occur with equal probabilities.

We say that a direct contract (b, ρ) is implementable if investors are willing to par-

ticipate. We letWm be the subset ofW in which m investors verify the firm with positive

probability. Note that if, in equilibrium, upon receiving a message w̃ the investor does not

verify the firm’s return, the firm simply pays b(w̃), it must be the case that the payment

is the same under b across all such messages that are sent with positive probability, which

we will denote by b̄. Hence, we may assume that there is only one message corresponding

to the subset of W where no lender verifies the firm, W0. Furthermore, because investors

cannot commit to their verification strategies upon signing the contract, they need to be

incentivized to verify after the report from the firm comes in. This requires that γ is

smaller than the expected payment when receiving a message that implies verification in

equilibrium. Formally, let w̃ be a message such that in equilibrium the investor verifies,

it must be the case that

Ew,m
{
u
[
ρ(w − (M −m)b̄, m)

]
| w̃
}
≥ γ.

Since this condition has to hold for all messages w̃ which are sent with a positive proba-

bility and for which the investor verifies in equilibrium, it implies that

E
{
u
[
ρ(w − (M −m)b̄, m)

]
| verification

}
≥ γ.

6This assumption is mainly for technical convenience.

9



As a result, it is then without loss of generality to assume that in equilibrium the firm

only sends two messages, w̃0 or w̃1, where w̃0 indicates no verification while w̃1 indicates

verification.

We make one assumption regarding the cost γ:

(A0) γF (Mr) <
∫Mr

0
u
(
w
M

)
dF (w).

When M = 1, assumption (A0) is essentially identical to assumption (A.2) in Krasa

and Villamil (2000), and hence it generalizes that assumption for general M and it plays

a similar role here. In particular, note that we only consider equilibria where the investors

use a pure strategy, which, as mentioned earlier, can be justified along the renegotiation-

proof requirement introduced by Krasa and Villamil (2000) under (A0).7 The following

theorem characterizes (Pareto) optimal contracts.

Theorem 2.1. Assume (A0). Any optimal contract, (b̄, ρ), takes the form ρ(v,m) = v/m.

Moreover, under an optimal contract W0 = [Mb̄, w̄].

According to Theorem 2.1, the (Pareto) optimal contract is a simple debt contract

from the firm’s perspective: it is characterized by a debt level, Mb̄, and if the return is

above that level the firm repays the debt to all investors equally outright; otherwise, at

least some of the investors verify the firm. The fact that the firm pays outright b̄ to all

investors when it can is a direct implication that the firm must pay the same amount to

all who do not verify in equilibrium. To show that a debt contract is optimal, however,

one needs to demonstrate that the firm pays out all its funds whenever it cannot pay all

investors the debt level.

For the case M = 1, the result is based on the following well-known intuition (e.g.,

Townsend, 1979; Gale and Hellwig, 1985): any contract deviating from the debt contract

necessarily requires the firm to keep some of the funds when verified for some returns that

7Krasa and Villamil (2000) assume risk neutrality and that the firm also occurs a small cost when it

is verified, and show that equilibria with random verification is not sustainable under (A0) with M = 1.

Our result will not be affected by the introduction of a small cost to the firm and the logic to exclude

random verification in Krasa and Villamil (2000) does not seem to depend on M nor risk neutrality.
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occur with positive probability. It then follows that, while keeping the expected payment

from the firm constant, one can adjust the contract by lowering the debt level but requiring

the firm to pay all its funds whenever it cannot pay the debt level and is verified. This

is Pareto improvement because it strictly decreases the probability of verification while

holding the expected return the same for the investor. While most papers assume that

the investor is risk neutral, the argument is even stronger for risk-averse investors: the

original contract is a mean-preserving spread of the new contract, and hence a risk-averse

investor would strictly prefer the return distribution of the latter over the former, even

without taking the lower verification cost into account.

Our analysis sheds some more light on the interaction between verification cost and

risk aversion in addition to this established result. As mentioned earlier, for M = 1

there is no conflict between verification cost and risk aversion: whenever the firm cannot

pay the debt level the investor has to verify. It is more subtle when there are multiple

investors. Indeed, when the firm cannot pay its debt level to all investors but can do so

to some, the optimal payment schedule faces a trade-off between verification cost and risk

aversion. On the one hand, to save the verification cost, it is better to ask as few lenders

as possible to verify. On the other hand, risk-averse investors prefer a payment schedule

with more equal payments to all investors, but this would require more investors than

the minimum to verify the firm.

As a result, under risk neutrality, optimal contract only minimizes verification cost

and hence it calls the firm to pay b̄ to the maximum number of investors. The resulting

contract is the random seniority as in Winton (1995). In contrast, for strictly risk averse

investors, the optimal contract calls for all investors to verify whenever the firm cannot

pay all investors the debt level for γ suffi ciently small. In general, under the optimal

contract some investors are chosen to be paid outright while others are called to verify

the firm to divide whatever is left. We fully characterize the optimal number of investors

asked to verify, with details given in the Supplemental Appendix, A.1. Finally, although

(A0) is suffi cient for Theorem 2.1, a weaker condition may also suffi ce, depending on the

fundamentals. See also the Appendix for more discussion.
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Theorem 2.1 will be useful for our later analysis as it gives welfare bounds to both

the firms and to the investors under direct contracting. Indeed, under optimal direct

contracts with debt level B = Mb̄, the firm’s payoff is∫
w≥B

(w −B) dF (w).

Each investor’s payoff is bounded from above by∫
w<B

u(w/M) dF (w) + u(B/M)[1− F (B)]− (1/M)

M∑
m=1

F (mB/M)γ. (1)

The first two terms reflect the expected payoff to each investor, assuming that they share

the returns whenever the firm fails to pay all investors the debt level, which is the upper

bound for that payoff, the third term reflects the cost of verification, assuming the fewest

number of investors verifying and all have equal chance to do so, which is a lower bound

of the verification cost. We will use this bound to compare welfare with bank contracts,

which we consider next.

3 Banking: static contracts

We now consider how banks may emerge in such an environment. Here we consider the

static case where there are no aggregate shocks, and returns to firms are iid. In this case

we show that a static bank contract is suffi cient to make Pareto improvement against

direct contracting.

As in Section 2, there is a continuum of investors of measure M and a continuum

of firms of measure 1 with i.i.d. returns. We assume that the LLN holds exactly when

we aggregate the firms’returns and hence there is no aggregate shock.8 We envision the

bank as a risk-neutral agent capable of taking deposits from investors and then using the

proceeds to lend to firms. When the bank decides to verify a firm, it has to pay a cost

8The literature has recognized issues related to i.i.d. returns in a continuum economy; see, e.g. Sun

(2006). Our use of this assumption, however, is mainly for expositional convenience. All our results can

be generalized to a setting with a finite but large number of depositors and firms, as will be discussed in

concluding remarks.
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cE. This monitoring cost is interpreted as the effort of the banker and does not affect

the funds available for distribution to investors.9 Again, the verified returns are private

information to the bank and cannot be credibly shared with investors.

Since debt contracts are optimal without financial intermediation, to show that the

bank can make Pareto improvement, we only need to consider such contracts. We call

a two-sided contract between the bank and investors on the one side and between the

bank and firms on the other side, a bank contract. Assuming that it is a debt contract for

both sides, we may denote it by (B, d), where B is the debt level each firm owes the bank

and d is the promised repayment to each investor. Later on we will establish that such

contracts are in fact optimal. One of the insights from Section 2 is that it is optimal to

restrict the message space to {0, 1}, where 0 indicates repayment without verification and

1 indicates verification, and, if the lender, which can be either the bank or the investor,

fails to verify, he or she gets nothing.

The two-sided nature of bank contracts introduces new incentive issues that are not

present in direct contracting. To formalize those issues we give a precise description

of the game as follows. The game is played among firms, the bank, and investors. We

assume that all agents have agreed to the contract (B, d) and discuss agents’participation

decisions later.

1. Firms’returns are realized and firms simultaneously report (either 0 or 1) to the

bank.

2. The bank decides, based on the reports, whether or not to verify each firm.

3. After the bank receives all the payments from the firms, the bank sends a massage

(again, either 0 or 1) to each investor simultaneously.

4. After seeing the individual message, each investor decides whether or not to verify

the bank.
9Note that the cost is cE per firm. The bank corresponds to a large entity in reality with potential

monitoring issues within itself; here we abstract away from those complications.

13



Given a bank contract (B, d), we formulate the agents’ strategies as follows. The

strategies for firms and for investors are straightforward extensions from the ones under

direct contracting. Each firm decides, as a function of its realized profit, to either repay

the debt in full or request verification. The bank’s strategy comes in two stages. The first

is a verification strategy for each firm, as a function of all the information it has available,

i.e., the bank knows which firms have repaid the debt and which requested verification.

Second, the bank makes a recommendation to each of its investors, asking them to verify

it or repaying the investors in full. Each investor’s strategy is then a function which takes

the bank’s recommendation and maps it to a binary decision (to verify or not). The

following gives the formal definitions.

Definition 3.1. (a) For a firm, its strategy is a measurable function sf : W → {0, 1}

that maps its return to its report to the bank.

(b) The bank’s strategy has two components. The first is a measurable function s1
B :

M([0, 1]) × [0, 1] → ∆({0, 1}). The first argument is the subset of firms sending 1, and

the second argument is the identity of the firm.10 Thus, for any given received reports, s1
B

specifies a (randomized) verification decision for each firm. Then, after the verifications,

the bank’s strategy has a second component, a measurable function s2
B : W × [0,M ] →

∆({0, 1}), in which the first argument is the amount of available funds to the bank (in

per depositor terms) and the second is the identity of the investor, and hence it maps the

available funds to the bank’s (randomized) report to each investor.11

(c) An investor’s strategy is a function si : {0, 1} → {0, 1}, which maps the report from

the bank to the verification strategy.

As before, symmetric PBE is our solution concept, i.e., all firms use the same strategy

sf and all investors use the same strategy si in equilibrium, and, for the bank, although

we allow randomization, we only focus on equilibrium strategies in which s1
B verifies all

firms that cannot pay B.12

10M([0, 1]) is the set of all measurable subsets of [0, 1] (endowed with the sup norm).
11In general, sB2 may also depend on the history that leads up to the available funds.
12This assumption is in line with the observation from Krasa and Villamil (2000). In particular, if we
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We now discuss the participation decisions of agents. We say that a bank contract

(B, d) is implementable if there is a symmetric PBE in which the investors are willing

to participate, the bank is willing to verify the firms’returns whenever they cannot meet

their debt level B, and the bank’s expected payoff(net of monitoring costs) is nonnegative.

In contrast to Krasa and Villamil (1992), because of the lack of commitment, we need

to discuss the bank’s incentive to verify firms after returns realize and requests come in.

In particular, two deviations are crucial for incentive compatibility. First, the bank can

choose to verify none of the firms and, regardless of investors’reactions, the bank gets

at least zero profit. Second, the bank has to decide whether to verify each firm which

requests it, and the bank will do so as long as the expected gain (net of what it expects

to pay to investors at the margin) from doing so exceeds the cost. Under the contract B,

F (B) fraction of the firms request verification. We have the following lemma.

Lemma 3.1. Let (B, d) be a bank contract. Bank verification of the firms is incentive

compatible if and only if{
[1− F (B)]B +

∫ B

0

wdF (w)

}
≥Md+ F (B)cE, (2)∫ B

0

wdF (w) ≥ F (B)cE. (3)

To understand the two conditions above, first note that under the bank contract,

(B, d), the bank’s expected profit (per investor per firm) is given by

1

M

[
[1− F (B)]B +

∫ B

0

w dF (w)− F (B)cE

]
− d. (4)

Hence, condition (2) simply says that the bank is making a nonnegative profit and this

deters the first deviation mentioned above. Indeed, the left-side of (2) represents the avail-

able funds to the bank (in per-firm terms), and the right-side represents two expenditures

to be covered, the repayment to investors and the labour cost of verification. The repay-

ment to investors is specified by the contract, but the verification cost requires proper

incentives as it is decided in the interim stage. Conditional on the firm sending a message

introduce renegotiation then randomized verification is unlikely to be sustained in equilibrium.
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that recommends verification under contract (B, d), the bank’s expected payment to be

received is given by ∫ B
0
w dF (w)

F (B)
,

and hence condition (3) requires that conditional expected return to at least cover the

cost of verification, cE, and this would deter the second deviation. The proof essentially

shows that these two are the only relevant deviations.

For bank contract to be more effi cient, we need the following assumptions.

(A1) Effi cient bank verification: cE < u−1(γ)
∑M

m=1

F(mBM )
F (B)

.

(A2)
∫
w∈[0,B]

wdF (w) + (1− F (B))B − F (B)cE > Mr.

Assumption (A1) is necessary: if cE is large relative to γ, then the bank contract cannot

save on monitoring costs. However, the precise comparison is related to the curvature of

u, since γ enters the investors’payoff in comparison with u. M also plays a role, as the

bank monitors a firm for M investors. Without (A2), the bank is better off by storing

cash and generating return r for each investor. The following theorem shows that these

two assumptions are also suffi cient to ensure that the bank contract can make Pareto

improvement for all parties involved.

Theorem 3.1. Assume (A0). For any implementable direct contract with debt level B

that satisfies (A1) and (A2), there is an implementable (static) bank contract that Pareto

dominates the direct contract.

Theorem 3.1 is proved by constructing a bank contract that Pareto dominates the

direct contract with debt level B. The bank contract is given by (B, d), where the debt

level is left unchanged, and d is given by

d =
1

M

{∫ B

0

wdF (w) + [1− F (B)]B − F (B)cE − ε
}
. (5)

The proof shows that for ε > 0 but small, u(d) is strictly higher than the payoff upper

bound for lenders given by (1). Moreover, by (4), the bank has profit at least ε. This

implies that the bank contract is Pareto superior to the direct contract. The crucial

observation for u(d) to be higher than the payoff from direct contract is the following.
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Notice that, by construction of d, d+ 1
M
F (B)cE+ε is the expected payment from the firm

to each investor under the direct contract. Moreover, assumption (A1) ensures that the

monitoring cost is lower under the bank contract. As a result, even risk aversion implies

that having a sure payment of d, which is guaranteed under the bank contract, is strictly

better than the risky repayment from the direct contract minus the monitoring cost. This

then illustrates the advantage of the bank contract through diversification: first, it can

reduce risk by pooling the funds, and, secondly, it can reduce monitoring, as the bank

can offer a deposit contract that the bank can almost surely pays to the depositors and

hence only monitoring of the bank on behalf of M investors per firm is required.

Assumption (A0) ensures that the optimal direct contracts are simple debt contracts

and the investors’payoffs are bounded by equation (1). The assumptions (A1) and (A2)

are tight for Theorem 3.1. We have seen the necessity of (A2), which is in fact implied

by implementability of the direct contract under risk neutrality. When u is linear, (A1)

is also necessary for the bank to be able to provide a better contract. When u is strictly

concave, however, (A1) can be relaxed, since the constructed bank contract is strictly

better because it is able to provide the certainty equivalence of what the direct contract

can provide to the investors.

4 Aggregate shock and financial stability

Here we consider aggregate shocks, so that firms’returns are correlated. We begin by

extending the static bank contracts to this environment, and then consider liquidation

mechanisms under a regulator who uses the franchise value as an important dynamic mo-

tivation to incentivze the bank to perform costly monitoring even when it is not profitable

to do so in an economic downturn.
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4.1 Environment and static bank contracts

Suppose that the aggregate returns depend on an aggregate state, s, which can be either h

(high) or ` (low). We assume that the state s is i.i.d. across time according to distribution

π (πs denotes the probability of state s for s = h, `), and that the firms’returns are i.i.d.

according to Fs(w) conditional on s. Suppose that, Fh first-order stochastically dominates

F`, so that for any B ∈ [0, w̄], Fh(B) < F`(B). We assume that the aggregate state s,

once realized, is observable to the bank and firms, but not to investors. Investors learn s

only if they verify the bank.13 Note that this assumption implies that results regarding

direct contracting are not affected by this aggregate shock at all: for each specific firm,

its return is characterized by the distribution function F = πhFh + π`F`.

For bank contracts, the timing is as follows. In the beginning of each period, before

the aggregate state is realized, the bank agrees a contract with firms and investors. The

bank contract with a firm takes the same form as in direct contracting, (ρ, b). Since

the realization of the state is observable to the bank and to the firms and hence is com-

mon knowledge among them, the payment without verification can be dependent on the

aggregate state, and we use Bs to denote that payment under state s = h, `.

The bank contract with depositors is slightly more complicated, but can be specified

as follows. First, as in Section 2, the contract specifies a repayment amount without

verification, d. Note that d has to be state independent as investors do not know the

aggregate state without verification. The deposit contract also describes what happens

if the bank does not pay back d to all and some investors verify. This is specified by

the function ξ : {h, `} × R+ × [0,M ] → R+, where ξ(s, y,m) is the amount paid to each

verifying investor when the aggregate state is s, the available funds (in per investor terms)

are y and m is the measure of depositors verifying. The bank contract with depositors

will thus be denoted by (d, ξ).

The optimal bank contract can be quite complicated in general. However, under an

13Even if the bank does not observe s, it can learn it based on reports made from the firms. This

assumption therefore eliminates the potential asymmetric information between the bank and firms about

the state.
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analogous assumption to (A0) in direct contracting, we can show that the debt contract

with the firms is in general optimal. Formally, the assumption is given by (A3) below, and

the proof of the optimality of debt contract under (A3) can be found in the Supplemental

Appendix A.2 (see, in particular, Lemma A.4).

(A3)
∫Mr

0
wdFs(w) > cEFs(Mr) for both s = h, `.

Intuitively, since both the bank and firms are risk neutral, (Pareto) optimal contracts

only aim at saving the verification cost and the simple debt contract would do the job,

regardless of the contract with the investors, (d, ξ).

Besides ensuring the optimality of debt contracts with firms, assumption (A3) also

implies that, in equilibrium, each firm who request verification by the bank will indeed

be verified, if the bank can keep the verified return. Such a contract may be denoted by

B = (Bh, B`), where Bs is the debt level under state s, s = h, `. However, depending on

the deposit contracts, banks may not be able to keep all the returns from verifying a firm,

and additional considerations about the bank’s incentive to verify firms are necessary.

The deposit contract is more complicated and, significantly, the bank’s incentive to

verify firms is linked to its repayment to investors. To see this, for a given B, the contract

between the bank and firms, and a contract with investors, (d, ξ), the corresponding

equilibrium outcome may be characterized by (dh, d`), where ds is the average payment

to investors under state s. From this information one can infer the fraction of verifying

investors at each state. Thus, any equilibrium outcome can be represented by (B,d),

where d = (d, dh, d`). We restrict our attention to contracts such that d` ≤ dh.

We highlight a key incentive problem for implementing bank contracts: it requires the

bank to make a nonnegative ex post profit in both states. This is due to the fact that the

bank cannot commit to its verification strategy. So, if the bank were to make a negative

profit at some state, it would deviate by not verifying any firms and guarantee at least a

zero profit. To respect this incentive constraint, it is necessary that, for both s = h, `,

1

M

{∫ Bs

0

wdFs(w) + [1− Fs(Bs)]Bs

}
− 1

M
Fs(Bs)cE − ds ≥ 0. (6)

The first term in (6) is the amount of funds (per investor) the bank collects in equilibrium,
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which is the maximum amount that the bank can repay to investors to satisfy feasibility.

Incentive compatibility, however, requires the payout to investors to be significantly lower

than that due to the cost of verification, the second term in (6), as the bank has to keep

some of the available funds to compensate for effort costs. A welfare-improving scheme,

where the bank repays all its available funds at state ` (and makes a loss) but makes a

higher profit at state h, may not be incentive compatible.

To study to what extent the incentive problem (6) prevents a better arrangement, we

consider the benchmark case where the bank contracts can provide full risk sharing for

the depositors.

Definition 4.1. A bank contract, [B, (d, ξ)], is financially stable if there is a PBE in

which the bank’s expected payoff is nonnegative, and all investors obtain u(d) ≥ u(r) in

both states s = h, `.

Our main result here shows that static bank contracts, due to the incentive compatibility

condition, (6), has limited scope in achieving financial stability. We have the following

theorem.

Theorem 4.1. Let [B, (d, ξ)] be an implementable bank contract. If

[1− F`(B`)]B` +

∫ B`

0

wdF`(w) ≤Mr, (7)

then it is not financially stable.

Theorem 4.1 states that if the amount of available funds to the bank in state ` is lower

thanMr, and if this contract is implementable, then it is not financially stable. Condition

(7) essentially states that the amount of available fund to the bank can only cover the

repayment to investors at most d = r, but, as we have seen earlier, to do that would

imply that the bank cannot cover its verification cost. As a result, by (6), it must be the

case that d` < r. However, implementability requires the investor’s expected utility must

be at least u(r) and hence dh must be more than compensating the low d` relative to r.

This implies financial instability.
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Theorem 4.1 also highlights the possibility that aggregate shocks may hinder the ben-

eficial role of financial intermediation, when no regulator is present. In particular, since

investors do not observe the aggregate state when it is realized, results in Section 2 go

through with F = πhFh + π`F`. Thus, when F` is much lower than Fh but the average

gives a good return, direct contracting can dominate any static bank contract due to

financial instability. In the next section, we introduce a liquidation mechanism and show

that banking regulations and dynamic incentives can restore the beneficial role of financial

intermediation, even under aggregate shocks.

4.2 Liquidation mechanisms and dynamic contracts

In this section we introduce a regulator to enforce a liquidation mechanism with a dynamic

bank contracts, which can be implemented by a bank charter system. A banking charter

is a privilege in the sense that once revoked, the bank can no longer operate and can no

longer receive future profits. Under this system the regulator can implement dynamic

contracts with the bank through threats of revoking the charter and by requiring self-

verification from the bank. Importantly, even when the bank cannot repay investors the

debt level, the regulator can allow the bank to continue to operate if the self-verification

result is satisfactory. As seen in the previous section, under a static contract incentive

compatibility requires the bank to make a nonnegative profit in every state, and this

requirement limits the bank’s ability to offer a financially stable contract. In contrast, a

dynamic contract can overcome this incentive issue and improve social welfare.

We first describe the liquidation mechanism. Under this mechanism, the bank has

to be chartered by a regulator. We assume that the bank is long-lived and has discount

factor β. The fact that this discount factor coincides with investors’discount factor plays

no role in our analysis, but simplifies notation.

The regulator has the power to terminate the bank’s charter and hence uses future

profits as an incentive.14 However, the regulator does not observe the funds collected by

14The key differences between our work and the large literature on dynamic principal-agent problems

(e.g., Thomas and Worrall, 1990) is that we have to attend to the agent’s (the bank, in our case) incentive

21



the bank, nor the realized aggregate state, s. We assume a technology with which the

bank can self-verify and make both the state and available funds in the bank credibly

known to the regulator at a cost of cB per investor.15 This self-verification can be done

by hiring an external auditor, for example.

The liquidation mechanism implemented by the regulator operates as follows. If the

bank fails to pay the investors in full and fails to self-verify, its charter is automatically

terminated: in this case, the investors may verify the bank and receive whatever funds

are left. Otherwise, termination of the charter is determined by the following dynamic

contract. First the contract specifies a promised payment to investors, d, which corre-

sponds to the repayment amount without any verification. If the bank does not pay d

to all investors and engages in self-verification, the contract then specifies a termination

policy, τ(s, y) ∈ {0, 1} (here 0 indicates termination), and a payment to each investor,

χ(s, y) ∈ R+, where s is the aggregate state and y is the available funds per investor

revealed through verification. Since τ governs the fate of the bank’s future operation

given the self-verification report, we regard this as a liquidation mechanism in the event

of a default, i.e., failure to repay d. This contract also has a deposit side that governs

the repayments to investors in such an event, given by (d, τ , χ). Note that, in contrast to

the last subsection, here χ is a contract between the regulator (on behalf of the investors)

and the bank.

After termination, the bank’s continuation payoff is zero and hence, if designed appro-

priately, the termination policy can provide the bank with an incentive to verify the firms.

Moreover, these dynamic considerations can sometimes make financially stable contracts

feasible in equilibrium, even though a static contract cannot.

to pay third-parties (investors), which the principal (regulator) also cares about. So, while we use future

utility promises to incentivise truthful reporting of private information, our construction is quite different

to those papers; in particular, the agent (bank) will necessarily need to make a profit (in order to ensure it

has an incentive to pay depositors) and thus the agent cannot be held down to his participation constraint,

as in Thomas and Worrall (1990).
15While we assume a fixed cost per investor, our analysis goes through with a cost which varies with

the size of the bank’s balance sheet.
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Given the dynamic contract, the sequence of actions needs some modification. The

timing in each period is as follows (after all parties agree to participate):

1. After the firms’returns realize, all firms simultaneously make reports (either 0 or

1) to the bank.

2. The bank decides, based on the reports from the firms, whether or not to verify

each firm.

3. After the bank receives all the payments from the firms it can take one of the

following actions:

(a) pay all investors d (which may not be feasible);

(b) engage in self-verification– and is thus subject to termination policy, τ (s, y),

and repayment schedule, χ(s, y);

(c) do nothing– in which case the bank’s charter is automatically terminated.

4. If the bank fails to pay all investors d and fails to sell-verify, each investor decides

whether or not to verify the bank.

Given the dynamic nature and the modified timing of the game, the agents’strategies

can be defined in an analogous manner to those in Definition 3.1. We emphasize a

few key differences. First, strategies have to be indexed by time and may depend on

observed histories from previous periods as well as the state s. Furthermore, s2
B, the

bank’s reporting strategy has to be amended to allow for the possibility in item 3 above

(we’ll denote paying d by 0, self-verification by 1, and doing nothing by 2). Finally, si, the

strategy of the investor, chooses whether to verify the bank or not only when the bank

decided to do nothing. While this seems complicated, we will show that when discount

rates are high and the cost of self-verification is low, investors have a relatively simple

optimal strategy– they will decide to verify if given the opportunity.

Note that the dynamic contract is more effi cient than static contracts only if the cost

cB is small, and that will be the case we focus on. Moreover, when cB is small, the optimal
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dynamic contract will use investors’verification only as an off-equilibrium threat. Because

of that the decisions of investors are straightforward, so our focus is on the interaction

between the bank and the regulator, as well as the bank and the firms.

As before, we focus on symmetric equilibria in which the interactions between the

bank and firms form a PBE with the property that the bank verifies all firms that request

it. We say that a dynamic contract is implementable if there is such a PBE in which

the investors are willing to participate and the bank is making a nonnegative (expected)

profit at the beginning of each period.16 The following theorem shows that the dynamic

bank contracts can make Pareto improvement.

Theorem 4.2. Assume that u is strictly concave and that cE satisfies (A3).

(a) Assume (A0). For any implementable direct contract with debt level B that satisfies

(A1) and (A2) for F =
∑

s∈S π(s)Fs, there is an implementable dynamic bank contract

that Pareto dominates the direct contract for suffi ciently high β and suffi ciently low cB.

(b) Let [B, (d, ξ)] be an implementable static bank contract that is not financially stable.

Then, for suffi ciently high β and suffi ciently low cB, there is an implementable dynamic

bank contract that Pareto dominates it.

The main ingredient of the proof, which is also the main contribution of the above

theorem, is in the design of a dynamic contract which allows for the usual repeated-games

arguments and, thus, a Pareto improvement on the original contract. While the details

differ for parts (a) and (b), the main ideas can be outlined as follows. We use expected

future profits to incentivise the bank to suffer a short-term loss, which allow the contract

to increase the depositors’returns at state ` at the expense of returns at state h; when

designed properly, this is welfare-improving given that investors are risk averse. Once we

obtain a contract that both improves investors’welfare as well as gives the bank a positive

profit, we can apply the usual repeated-game argument that a suffi ciently high β and a

suffi ciently low cB ensures that the dynamic incentives are powerful enough to discipline

the bank. These requirements are indispensable; for low β’s, the dynamic incentives have

16Hence, implicitly we allow the bank to leave the charter system at any point.
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no bite, and for high cB’s, the self-monitoring technology of the bank is not suffi ciently

effi cient to be useful.

According to Theorem 4.2 (a), one can always devise a dynamic contract to dominate

the direct contract, even under aggregate uncertainty, as long as (A1), (A2), and (A3)

are satisfied. This result does not hold for static contracts; indeed, for F` suffi ciently

concentrated on returns that are close to zero, the depositors have no incentive to monitor

the bank at state `. Instead, in the dynamic bank contract, the bank is motivated to self-

verify because of concerns about future profits.

Part (b) of Theorem 4.2 shows that a dynamic bank contract can improve upon any

implementable static bank contract that is not financially stable. Recall that under the

static contract, the bank’s incentive to verify defaulting firms requires a nonnegative profit

for the bank state by state, condition (6). Given this condition, we construct a dynamic

contract in which the bank takes a short-term loss at state ` and pays all its available

fund to each depositor, a loss because of the monitoring cost. This dynamic contract,

although violating (6), is incentive compatible because of future profits: we can decrease

dh, the payment to investors in state h, so that the bank is making a positive expected

profit. This change improves the welfare of the investors as they are strictly risk averse

and prefer the higher payment in the low state.

We remark here that while bank profit is crucial to use the dynamic incentives, it

also limits the benefits to the investors. In fact, for any given static contract, there is a

maximal (average) profit that can give to the bank to ensure that the investor is better

off, which depends the investors’risk aversion. Given the profit, there is then a cut-off

discount factor that makes the dynamic contract incentive feasible.

Finally, although the designed liquidation mechanism can provide better contracts,

it may not guarantee financial stability as defined earlier. In particular, the ability to

increase d` depends on both the available funds in state ` and the incentive compatibility

condition for the bank to suffer losses. In the next section we show that the first issue

can be solved by the introduction of a bailout policy.
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4.3 Orderly Liquidation and Bailouts

In this section, we introduce a bailout policy under our liquidation mechanism. We assume

that there is a monopoly bank. The policy is essentially an insurance scheme, which sets

an amount x of transfers from the regulator to the investors (in terms of per investor)

and an amount z of premium paid by the bank to the regulator (in terms of per investor).

Consistent with the previous section, to claim for the transfer or a “bailout,”the bank has

to pay a per depositor cost cB to self-verify to make its available funds and the state known

to the regulator. The transfer x may depend on the funds y and the state s. Alternatively,

the bank may simply pay the premium. If the bank fails to pay the premium and fails

to self-verify at the same time, the bank is declared bankrupt (with depositors rushing

in to claim their d) and its charter is terminated, resulting in a zero continuation payoff.

Thus, under deposit insurance, the dynamic contract has three components: the promised

payment d, the termination and payment rules, τ(s, y) and χ(s, y), and the bailout policy

with the premium z and the transfer x(s, y).

Given the deposit insurance policy, the sequence of events is as described in Section

4.2, except that one needed to modify item 3, describing the bank’s options after it receives

payments from the firms, as follows:

(a) pay all depositors d and the premium z, if feasible;

(b) engage in self-verification (subject to payment and termination policy, χ(s, y) and

τ (s, y), and bailout policy pays x(s, y) in addition to investors);

(c) do nothing– in which case the bank’s charter is automatically terminated.

We say that a liquidation mechanism with a bailout policy is implementable if the

investors are willing to participate, the bank has a nonnegative (expected) profit every

period, and that the scheme is ex ante budget balanced. More precisely, let ȳs be the

expected funds available at the bank for state s in equilibrium. Then,

−
∑
s∈L

πsx(s, ȳs) +
∑
s/∈L

πsz ≥ 0, (8)
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where L is the set of states at which the bank self-verifies. We have the following theorem.

Theorem 4.3. Assume (A3) and assume that u is strictly concave. For any imple-

mentable dynamic bank contract that is not financially stable, for β suffi ciently high, there

exists an implementable bailout policy and a bank contract that Pareto dominates it and

is financially stable.

Theorem 4.3 shows that, with a well-designed bailout policy in the dynamic bank

contract, one can always achieve financial stability, and the scheme is Pareto optimal.

We emphasize that, although the bailout policy may resemble deposit insurance, the

rationale in our model is drastically different from that in Diamond and Dybvig (1983).

In particular, the bailout policy has to pay out its funds in equilibrium, while in Diamond

and Dybvig (1983) the deposit insurance scheme is used to restore good equilibria, but

does not pay out in equilibrium.

Theorem 4.3 assumes ex ante budget balancedness. This amounts to assuming that

the external lender to the bailout policy can commit to future lending (such as US Trea-

sury). In the Supplemental Appendix A3, we show that this commitment is not necessary.

Instead, the external lender can walk away from this lending relationship with the reg-

ulator or the government at any point in time. As shown there, what we need is that

the regulator can commit not to borrow from a lender who has walked away, and we can

device a similar scheme that, provided that the lender is suffi ciently patient, gives the

lender some profits from the lending relationship to keep the lender in the game.

5 Concluding remarks

We showed how financial intermediaries can improve welfare in the presence of asymmetric

information about returns between firms who require external funds and potential lenders.

A large bank, which can take deposits from a large number of depositors and then lend

to the firms, can reduce the cost of monitoring relative to direct contracts and hence

improve welfare. In our setup where the lender cannot commit to ex post monitoring,
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a new incentive issue emerges: with bank contracts, the incentive to induce the bank to

monitor the firms is a nontrivial issue. That issue is even more severe under aggregate

uncertainty, and we showed that a resolution mechanism can be welfare improving. If

such a dynamic contract cannot reach financial stability, a bailout policy embedded into

this resolution mechanism is welfare improving.

While we mainly focused on whether financial intermediaries and regulators can make

Pareto improvements, one can use our framework to discuss limits on rents for the financial

intermediary or to discuss other welfare criteria. In particular, since our framework also

provides results regarding welfare bounds on direct contracting, these bounds set a natural

limit to the rents the financial intermediary can extract. Moreover, the framework can

be used to discuss how regulators may want to set limits on bank profits. However,

the friction we identify also shows that the franchise value can play an important role

for incentive compatibility. Finally, while we assumed a single financial intermediary,

our model can be extended to allow for multiple industries where each industry has a

specialized bank (which has a comparative advantage in monitoring that industry). In

such an extension, we can get a similarly functioning resolution mechanism and bailout

policy.

A Appendix: Proofs

Proof of Theorem 2.1

Before proving the theorem, we first give the following useful lemma.

Lemma A.1. An equilibrium outcome is characterized by a tuple, (W0,W1, ...,WM , ρ, b̄),

where Wm ⊂ [0, w̄] is the set of returns under which m lenders verify with a positive

probability. For all k = 0, 1, ...,M − 1, we have [kb̄, (k + 1) b̄) ⊂ WM−k ∪ ... ∪WM , where

b̄ is the repayment to each lender without verification. Moreover, for all m > 0 and for

all w ∈ W0 ∩Wm, ρ(w − (M −m)b̄, m) = b̄.

Proof. Let (ρ, b) be a given contract and let (sl, sf ) be a PBE. Let A = {w̃ ∈ W : sl(w̃) =
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1} be the set of messages resulting in verification. Now, for each m = 0, ...,M , define

Am = {(w̃1, ..., w̃M) ∈ WM : w̃i1 , ..., w̃im ∈ A and w̃im+1 , ..., w̃iM /∈ A}, (9)

the set of messages for which m lenders verify in equilibrium, and let

Wm = {w ∈ W : sf (w) assigns a positive probability to Am},

that is the realized returns which induce messages resulting in m lenders verifying in

equilibrium.

For each m and each (w̃1, ..., w̃M) ∈ Am that is in the support of sf , if w̃i /∈ A, then

b̄ ≡ min{b(w̃) : w̃ /∈ A and w̃ assigned a positive probability under sf} = b(w̃i). (10)

To see this, if this inequality does not hold, or if the minimum does not exist, then the

firm always have a positive deviation to send another message to replace the message w̃i

so that a lower payment without verification is feasible.

By (10) and feasibility, it is easy to see that [kb̄, (k + 1) b̄) ⊂ WM−k∪...∪WM . Suppose

that w ∈ W0∩Wm, so that at the realized w, the firm has the option of paying everybody

b̄ and asking them not to verify. If both messages are sent by the firm, it must mean that

the firm is indifferent, which can only happen when ρ(w − (M −m)b̄, m) = b̄.

We are now ready to prove theorem 2.1.

Let (ρ, b) be a given contract and let (sl, sf ) be a PBE in which the lender’s expected

payoff is at least u(r). For each w ∈ W and each m = 1, ...M , we use κm(w) to denote

the probability that the firm sends a message asking m lenders to verify. By symmetry

of sf , conditional on having m lenders verify, sf induces a uniform distribution over the

identities of the lenders. Obviously, κm(w) > 0 only if w ∈ Wm.

By Lemma A.1, for all w ∈ W0, the firm’s payment is a constant, Mb̄. Now, let b̄′

solve: ∫ Mb̄′

0

w dF (w) + [1− F (Mb̄′)]Mb̄′ (11)

=

∫
W0

Mb̄ dF (w) +

M∑
m=1

∫
Wm

[
mρ
(
w − (M −m)b̄, m

)
+ (M −m)b̄

]
κm(w) dF (w).
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The above equates the expected payments to lenders of an arbitrary contract (ρ, b) and a

debt-like contract. By feasibility, for each w ∈ Wm with m ≥ 1,

mρ
(
w − (M −m)b̄, m

)
+ (M −m)b̄ ≤ w, (12)

it follows that b̄′ < b̄, unless the above holds as an equality for almost every w below Mb̄′

(i.e., the firm pays out all its income, w), in which case (ρ, b) is already a debt contract.

Construct a new contract, (ρ′, b′) and a new PBE (s′f , s
′
l) as follows. The strategy

s′f only sends two possible messages, w̃0 and w̃1, to each lender, and s′l(w̃0) = 0 and

s′l(w̃1) = 1. We set b′(w̃0) = b̄′ and b′(w̃) > b̄′ for any w̃ 6= w̃0, w̃1, and ρ′(v,m) = v/m if

v ≤Mb̄′ and ρ′(v,m) = b̄ otherwise.

Now, for each w ≥Mb̄′, s′f (w) sends w̃0 to all lenders with probability 1. Since b̄′ ≤ b̄,

for any w < Mb̄′, w /∈ W0 by feasibility. For each w < Mb̄′, note that
∑M

m=1 κm(w) = 1

by feasibility. Thus, for each m, s′f (w) is a two-stage lottery: first it chooses m with

probability κm(w); second, conditional on choosing m, it sends exactly
(
M
m

)
messages

in the support of this second lottery, each of which is sent with equal probability and

designates the m lenders verifying (and M −m lenders getting fully repaid).

Now consider the two lotteries, X and Y , that describe each lender’s payment to be re-

ceived from the borrower, denoted p, induced by contracts
(
ρ, b̄
)
and

(
ρ′, b̄′

)
and the above

PBE’s, respectively. By (11) the two lotteries have the same expectation, i.e., EX [p] =

EY [p]. Let FX and FY denote the distribution function for the two lotteries. Since the

two lotteries have the same expectation, we have that
∫ b̄

0
FX (x) dx =

∫ b̄
0
FY (x) dx. We

claim that for each p < b̄′,

FX [X < p] ≥ FY [Y < p] . (13)

To see this, fix some p < b̄′. The realization of X and Y depend on the realization of w

and the resolution of the randomization in sf and s′f . Given w, in both sf and s
′
f , there

are two stages of randomization: the first involves the number of lenders to verify and the

second involves the identities of lenders to verify.

Now, since Y < p implies that w < Mb̄′, by construction of how s′f assigns number of

verifiers using κm’s and by symmetry of the two strategies, the two-stage lotteries in the
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two strategies have exactly the same distributions, conditional on such w. As a result, for

any such w that leads to Y < p, it corresponds to the event in which the lender receives

w̃1 at that w under s′f (w). As argued above, conditional on w, that probability is exactly

the same as under sf (w), and by (12), at that event X ≤ Y < p. This implies that FX

and FY cross exactly once at the point p = b̄′. Immediately above this point we have

FX
[
X ∈

(
b̄′, b̄
)]

< 1 = FY
[
Y ∈

(
b̄′, b̄
)]
. The fact that we have single crossing CDFs,

with the same expectation then implies that
∫ t

0
FX (x) dx ≥

∫ t
0
FY (x) dx for all t, with

the inequality holding strictly for t ∈
(
b̄′, b̄
)
. That is,

(
ρ′, b̄′

)
second order stochastically

dominates
(
ρ, b̄
)
. Hence all lenders prefer

(
ρ′, b̄′

)
to
(
ρ, b̄
)
, since their utility function u is

increasing and concave.

We can make a strict pareto improvement for both the firm and lenders, by slightly

adjusting the above. The overall probability of verification is strictly smaller under
(
ρ′, b̄′

)
than under

(
ρ, b̄
)
, since under

(
ρ′, b̄′

)
, the corresponding verification regions, W ′

m = Wm∩

[0,Mb̄′) for all m ≥ 1, κm(w) is the same under s′f for all w < Mb̄′, and since b̄′ < b̄.

Thus the contract
(
ρ′, b̄′

)
strictly improves the lenders’expected utilities, while leaving the

borrower’s expected utility unchanged. This also implies b̄′ > r as the original contract is

implementable.

Note that under the debt contract
(
ρ′, b̄′

)
, the payoffs of the two parties are continuous

in b̄′ (decrease the full repayment level, keep all Wm regions the same). This follows since

the contract and utility functions of all agents are continuous. Since b̄′ > r, we can find

b̄′′ < b̄′ such that the contract
(
ρ′, b̄′′

)
still strictly improves the lenders’expected utilities,

while the borrower now makes a strictly smaller expected payment and thus we have a

strict Pareto improvement.

Finally, we need to show that (s′f , s
′
l) does constitute a PBE. It is straightforward

to see that s′f is optimal. Now, to show that s
′
l is optimal, we need to show that the

lender has the incentive to verify whenever seeing message w̃1 and has incentive to take b̄′

whenever seeing message w̃0. The latter follows since the lender can never get more than

b̄′ by verifying. For the former, we note that under contract
(
ρ′, b̄′

)
lenders are asked to

verify (weakly) less often than under contract
(
ρ, b̄
)
and because ρ′(v,m) = v/m lenders
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get a (weakly) higher payoff if the do verify. Thus, given that sl was a PBE, s′l must be

optimal for contract
(
ρ′, b̄′

)
. �

Proof of Lemma 3.1

We first show necessity. Suppose that (2) does not hold. Then, the bank is making a

negative profit in equilibrium. But by not verifying any firm at all, the bank can make a

nonnegative profit and hence verification is not optimal. Similarly, suppose that (3) does

not hold. We have shown that (2) is necessary, and that, together with the assumption

that (3) does not hold, implies

[1− F (B)]B > d.

Now, this implies that the bank would have suffi cient funds to pay to each depositor

without verifying any firm that sent message 1. Since verifying each individual firm

results in a net loss for the bank, it is better off not to do it.

Here we show suffi ciency. We show that in equilibrium the bank sends message 0 to

all depositors and no depositor verifies the bank, and if the bank sends message 1, the

verifying depositors share all the remaining funds. We separate two cases.

(a) Suppose that [1 − F (B)]B ≥ Md. Then, the bank can pay off d to each depositor

without verifying any firm that sent message 1. However, by (3), the bank is making a

positive expected profit by verifying such a firm, and hence the bank is willing to do that.

(b) Suppose that [1 − F (B)]B < Md. Thus, the bank cannot meet its obligations to all

depositors unless it verifies a positive fraction of firms that sent message 1. Let f ∗ be the

minimum fraction that the bank can meet that, and let f be the fraction of such firms

that the bank actually verifies. Since the bank will pay out all its available funds when

being verified, if 0 < f < f ∗, then the bank’s profit is negative; if f ∗ ≤ f < 1, then it is

optimal for the bank to pay off d to all depositors, and its payoff (in per depositor terms)

is given by
1

M

[
f

∫ B

0

[w − cE]dF (w) + [1− F (B)]B

]
− d,

which is maximized at f = 1 by (3). Finally, having f = 1 is better than having f = 0
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because of (2).

Proof of Theorem 3.1

First we claim that (A0) and (A1) imply that

u′(r)cE <

M∑
m=1

F
(
mB
M

)
F (B)

γ. (14)

To see this, note that (A0) implies that

γ <

∫Mr

0
u(w/M)dF (w)

F (Mr)
<

∫Mr

0
u(r)dF (w)

F (Mr)
= u(r).

Hence, by concavity of u, we have

cE < u−1(γ)
M∑
m=1

F
(
mB
M

)
F (B)

≤
∑M

m=1

F(mBM )
F (B)

γ

u′ [u−1(γ)]
<

∑M
m=1

F(mBM )
F (B)

γ

u′(r)
.

This shows (14). Moreover, we show that

cEF (B) <

∫ B

0

wdF (w). (15)

Note that implementability of the direct contract implies that

γ <

∑M−1
m=0

∫ (m+1)B/M

mB/M
u((w −mB)/(M −m))dF (w)∑M−1

m=0 F ((m+ 1)B/M)
<

∫ B
0
u(w/M)

F (B)
< u

(∫ B
0

w
M

dF (w)

F (B)

)
.

Therefore,

cE < u−1(γ)

M∑
m=1

F
(
mB
M

)
F (B)

<

∫ B
0

w
M

dF (w)

F (B)

M∑
m=1

F
(
mB
M

)
F (B)

<

∫ B
0
wdF (w)

F (B)
.

Consider the following bank contract, (B, d). The bank has a simple debt contract

with each firm with debt level B. For the deposit side, the depositor receives d that will be

specified below without verification, and, in case the bank refuses to pay d, all depositors

verify and receive equal payments from the remaining funds.

Let

d =
1

M

{∫
w∈[0,B]

wdF (w) + (1− F (B))B − F (B)cE − ε
}
. (16)
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For any ε > 0, (2) is satisfied with a strict inequality and, recalling that (15) implies (3),

the bank has strict incentive to verify firms’returns. It also implies that the bank has a

strictly positive payoff.

Now, let U be the expected payoff for each lender from the direct contract. Then,

U ≤
∫ B

0

u
( w
M

)
dF (w) + (1− F (B))u

(
B

M

)
− 1

M

M∑
m=1

F

(
mB

M

)
γ. (17)

We claim that u(d + ε/M) > U for any ε > 0 (note that d is defined by (16)) and hence

u(d) > U for ε small. To see this, since u is concave, we have:

u

[
1

M

{∫ B

0

wdF (w) + (1− F (B))B

}]
≥
∫
w∈[0,B)

u
( w
M

)
dF (w) + (1− F (B))u

(
B

M

)
,

that is,

u

[
d+ ε/M +

1

M
F (B)cE

]
≥
∫
w∈[0,B)

u
( w
M

)
dF (w) + (1− F (B))u

(
B

M

)
. (18)

Now, (A1) implies that d+ ε/M > r and hence, by concavity of u,

u(d+ ε/M) ≥ u

[
d+

ε

M
+

1

M
F (B)cE

]
− u′

[
d+

ε

M

] 1

M
F (B)cE

> u

[
d+

ε

M
+

1

M
F (B)cE

]
− 1

M

M∑
m=1

F

(
mB

M

)
γ ≥ U,

where the last inequality follows from (17) and (18), and the second inequality follows

from (14) and d+ ε/M > r, which ipmply

cE <

M∑
m=1

F
(
mB
M

)
F (B)

γ/u′(r) <
M∑
m=1

F
(
mB
M

)
F (B)

γ/u′(d+ ε/M).

Finally, we need to show that the depositors have incentive to verify the bank’s return

when the bank does not pay off d. For the continuum model this is off-equilibrium path

and we assume that, when receiving the message 1, the depositors believe that the bank

has d. For finite but large number of depositors, this follows from the CLT, and one can

show that

lim
N→∞

E[u(yN)|yN < E(yN)− F (B)cE] = u(d) > U ≥ u(r) > γ,

where yN is the random variable that represents the average funds available in the bank

to each depositor when there are N firms. 2
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Proof of Theorem 4.1

Let ds denote the average amount paid to the depositors at state s in equilibrium under

the bank contract, [B, (d, ξ)]. Theorem 4.1 follows from the lemma below.

Lemma A.2. Let [B, (d, ξ)] be an implementable bank contract. Then, it satisfies (6) for

both s = h, `, and it has to satisfy the following conditions.

(a) Suppose that d = dh = d`. Then, u(d) ≥ u(r), and∫ Bs

0

wdFs(w) > Fs(Bs)cE for both s = h, `. (19)

(b) If d` < dh, there are two subcases:

(b.1) dh = d and letting m` be the fraction of depositors monitoring at state `,∫ Bh

0

wdFh(w) > Fh(Bh)cE; (20)

u

(
Md` − (M −m`)d

m`

)
≥ γ; (21)

πhu(d) + π`

[
M −m`

M
u(d) +

m`

M
u

(
Md` − (M −m`)dh

m

)
− m`

M
γ

]
≥ u(r). (22)

(b.2) dh < d and letting ms be the fraction of depositors monitoring at state s = h, `,∑
s=h,`

πsms

πhmh + π`m`

u

(
Mds − (M −ms)d

ms

)
≥ γ; (23)

∑
s=h,`

πs

[
M −ms

M
u(d) +

ms

M
u

(
Mds − (M −ms)d

ms

)
− ms

M
γ

]
≥ u(r). (24)

Proof. The necessity in (a) uses the same arguments as in Lemma 3.1. Consider (b).

Conditions (22) and (24) are individual rationality conditions for depositors. (21) and

(23) are necessary for depositors to verify the bank. For (b.1), since (6) holds, for the

bank to verify in full at state h, (20) is necessary.

Now, suppose, by contradiction, that the bank can offer a financially stable contract

with debt level with depositors d. By Lemma A.2, (7) implies that

d = d` ≤
1

M

{∫ B`

0

wdF`(w)− F`(B`)cE + [1− F`(B`)]B`

}
< r,

which leads to a contradiction with implementability. 2
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Proof of Theorem 4.2

(a) Let B be a direct contract between the firm and the lenders that satisfies (A1) and

(A2) for F = πhFh + π`F`. Note that implementability requires B ≥Mr. Concavity of u

implies that, together with (A1),

u′(r)cE <

∑
s=h,` πs

[∑M
m=1 Fs

(
mB
M

)]∑
s=h,` πsFs(B)

γ. (25)

To see this, note that (A0) implies that γ < u(r). Now,

cE < u−1(γ)

∑
s=h,` πs

[∑M
m=1 Fs

(
mB
M

)]∑
s=h,` πsFs(B)

<

∑
s=h,` πs

[∑M
m=1 Fs

(
mB
M

)]∑
s=h,` πsFs(B)

γ

u′ [u−1(γ)]

<

∑
s=h,` πs

[∑M
m=1 Fs

(
mB
M

)]∑
s=h,` πsFs(B)

γ

u′(r)
,

where the last inequality follows from the fact that u−1(γ) < r and that u is strictly

concave.

Now we construct the following bank contract, (B, d), and show that it dominates the

original direct contract, B. The bank has a simple debt contract with each firm with

debt level B (and hence the firms are indifferent between the original contract and the

constructed contract), and let Ys(B) denote the funds available to the bank in equilibrium

under state s, that is,

Ys(B) =
1

M

{∫ B

0

wdFs(w) + [1− Fs(B)]B

}
. (26)

The bank equilibrium revenue, the available funds deducted from the cost of verification,

is given by

Rs(B) = Ys(B)− Fs(Bs)cE =
1

M

{∫ Bs

0

wdFs(w) + [1− Fs(Bs)]Bs

}
− Fs(Bs)cE. (27)

Now, let U be the expected payoff for each lender from the direct contract. Then,

U ≤
∑
s=h,`

πs

{∫ B

0

u
( w
M

)
dFs(w) + (1− Fs(B))u

(
B

M

)
− 1

M

M∑
m=1

Fs

(
mB

M

)
γ

}
. (28)

We consider two cases.
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(a.1) Suppose that Y`(B) ≥
∑

s=h,` πsRs(B), that is, the available fund at state ` is higher

than the average revenue. Then, set d̂ = 1
M

∑
s=h,` πsRs(B), that is, d̂ is set to be the

average revenue. Obviously, if we set d to be slightly below d̂, then the bank will make a

positive average profit.

We claim that u(d̂) > U and hence u(d̂−ε) > U for ε small. This then implies that the

depositors strictly prefer the constructed contract. To see this, since u is strictly concave,

u

[
d̂+

∑
s=h,`

πs
1

M
Fs(B)cE

]
>
∑
s=h,`

πs

{∫
w∈[0,B]

u
( w
M

)
dFs(w) + (1− Fs(B))u

(
B

M

)}
.

(29)

Now, (A2) implies that d̂ > r and hence, by strict concavity of u,

u(d̂) > u

[
d̂+

∑
s=h,`

πs
1

M
Fs(B)cE

]
− u′(d̂)

[∑
s=h,`

πs
1

M
Fs(B)cE

]

> u

[
d̂+

∑
s=h,`

πs
1

M
Fs(B)cE

]
− 1

M

∑
s=h,`

πs

[
M∑
m=1

Fs

(
mB

M

)]
γ ≥ U,

where the second inequality follows from (25) and d̂ > r, and the last inequality follows

from (28) and (29). Thus, for ε > 0 small, u(d̂− ε) > U . Now, set the contract with the

depositors as d = d̂− ε. This then implies that depositors are better off.

Moreover, there is no self-verification on the equilibrium path. On the off-equilibrium

path, we set τ(s, y) = 0 and χ(s, y) = y for all y and for both s. The depositors are then

better off against the direct contract. The bank makes a strictly positive expected profit,

which (in per depositor terms) equals

1

M

∑
s=h,`

πsRs(B)− d = d̂− (d̂− ε) = ε > 0. (30)

Now we consider the bank’s incentive compatibility conditions. There are three such

conditions: the participation condition for the bank, the incentive to verify all firms that

request verification firstly against no firms and secondly against only a fraction of firms

in both aggregate states.

By (30) the bank makes a strictly positive profit on average and hence is willing to
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participate. Since B ≥Mr (as the direct contract is implementable), by (A3) we have∫ B

0

wdFs(w) > cEFs(B) for both s = h, `. (31)

This also implies that, under both aggregate state, if the bank is willing to verify all firms

that request verification against none, it is not profitable for the bank to verify only a

fraction of them.

Now we consider the incentive to verify all requesting firms. Since the bank makes a

strictly ex post positive profit at state h following the equilibrium behavior but will make

more profit by verifying than not according to (31), we only need to consider the incentive

under state `. If the bank verifies none of the firms and fails to repay d to all depositors,

the bank charter will be terminated according to τ . Note that, since R` < d, by (31),

[1− F`(B)]B < d, that is, verification is needed to be able to pay back d. Now, verifying

is incentive compatible if and only if

R`(B)− d+
β

1− β ε ≥ 0, (32)

where the left-side of (32) is the continuation payoff following the equilibrium behavior

and the right-side is the continuation payoff by verifying none of the requesting firms and

having the charter terminated. Since ε > 0, for suffi ciently high β, (32) is satisfied.

(a.2) Suppose that Y`(B) <
∑

s=h,` πsRs(B). Then, set

d` =
1

M
Y`(B) and d̂h = Rh(B)− 1

M

π`
πh
F`(B)cE.

Here d` will be the average repayment to the depositors at state ` and d̂h − ε will be the

average repayment to the depositors at state h with ε > 0 to be determined below. We

claim that

πhu(d̂h) + π`u(d`) > U. (33)

To see this, since u is strictly concave, we have

πhu

[
d̂h +

1

M

(
Fh(B)cE +

π`
πh
F`(B)cE

)]
+ π`u(d`) (34)

>
∑
s=h,`

πs

{∫
w∈[0,B]

u
( w
M

)
dFs(w) + (1− Fs(B))u

(
B

M

)}
.
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Now, (A2) and Y`(B) <
∑

s=h,` πsRs(B) imply that d̂h > r and hence, by strict concavity

of u,

u(d̂h) > u

[
d̂+

cE
M

(
Fh(B)cE +

π`
πh
F`(B)

)]
− u′(d̂h)

[
cE
M

(
Fh(B)cE +

π`
πh
F`(B)

)]
≥ u

[
d̂+

cE
M

(
Fh(B)cE +

π`
πh
F`(B)

)]
− 1

Mπh

∑
s=h,`

πs

[
M∑
m=1

Fs

(
mB

M

)]
,

where the second inequality follows from (25) and d̂h > r, and hence,

πhu(d̂h) + π`u(d`)

>
∑
s=h,`

πs

{∫
w∈[0,B]

u
( w
M

)
dFs(w) + (1− Fs(B))u

(
B

M

)}
− 1

M

∑
s=h,`

πs

[
M∑
m=1

Fs

(
mB

M

)]
≥ U.

Thus, for ε > 0 small, πhu(d̂h − ε) + π`u(d`) > U . Now, set the contract with the

depositors as d = d̂h − ε, which is paid to the depositors when s = h without self-

verification, and, at s = `, there is self-verification and the bank pays d` equally to all

depositors; i.e., χ[`, Y`(B)] = d`. Thus, the depositors are strictly better off against the

direct contract. We set τ(h, y) = 0 and χ(h, y) = y for all y, and τ(`, y) = 0 iff y < Y`(B)

and τ(`, y) = y for all y.

The bank has a positive expected profit provided that cB < πhε/π`: indeed, in this

case, the expected profit is given by∑
s=h,`

πs {Rs(B)− ds} − π`cB = πhε− π`cB > 0.

As in (a.1) we need to verify the bank incentives, and, as there, participation is taken

care of by positive expected profit and conditional on having to the incentive to verify

all requesting firms against none of them, the bank has incentive not to verify only a

fraction of such firms instead of all because of (A3). Moreover, at state h all incentives

are respected as well.

Note that at state `, the bank can maintain its charter only if it verifies all requesting

firms and engages in self-verification. Thus, the only deviation to worry about is that
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it might deviate to verify none of the requesting firms and have its charter terminated.

Now, for the bank to have incentive to verify all requesting firms and to self-verify at state

`, we need

R`(B)− d` − cB +
β

1− β [πhε− π`cB] ≥ 0. (35)

Note that while R`(B)−d`−cB < 0, (35) is satisfied for β suffi ciently close to one because

πhε− π`cB > 0.

(b) Let [B, (d, ξ)] be an implementable static contract that is not financially stable. With

no loss of generality we assume d` < dh and Y`(B`) ≤ Yh(Bh) (the fact that the order of

the d’s align with the order of the Ys’s does not matter either), where Ys is defined in

(26). Incentive compatibility requires d` ≤ R`(B`), where Rs is defined in (27).

We consider two cases.

(b.1) Suppose that d̂ = πhdh + π`d` ≤ Y`(B`). We can choose ε > 0 such that

πhu(dh) + π`u(d`)−
d− d`
d

γ < u(d̂− ε)

because u is strictly concave. We now design a dynamic contract, with B = (Bh, B`) kept

the same, but with promise to depositors equal to d′ = d̂ = ε. Moreover, we will design

the regulator’s contract (τ , χ) such that in equilibrium d′h = d′ = d′`, i.e., the depositors

receive d′ in both aggregate states.

Since the static contract is implementable, (6) must hold, and hence d̂ ≤ πhRh(Bh) +

π`R`(B`), and the bank’s profit is at least ε > 0 under the new contract. Moreover, the

depositors are strictly better off against the static contract.

Now we turn to the regulator contract with the bank and the bank’s incentive prob-

lems. The dynamic contract is given as follows. τ(s, y) = 0 and χ(s, y) = y for all s, y.

By implementability of the static contract we know that d′ > r and hence the assumption

that Y (B`) > d′ implies that B` > Mr. Thus, by (A3) and applying the same logic as in

(a1), (31) holds, and hence the only relevant deviation for the bank in terms of verification

is to choose between verifying all the requesting firms or none of them, but there is no

concern for deviating for verifying only a fraction.
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Clearly d′ < Bh(Bh) and hence the bank has incentive to verify all requesting firms in

state h. In state `, the bank has incentive to verify all requesting firms if and only if (32)

holds, using the same logic as in (a.1). So it is respected for β suffi ciently high.

(b.2) Suppose that πhdh + π`d` > Y`(B`). As before, we keep the bank contract with

the firms the same, B = (Bh, B`) as in the original static contract. We first design the

corresponding equilibrium payments under the new dynamic contract, d′h and d
′
`, and then

spell out the contractual arrangements to achieve them. Let d̂h be such that

πhd̂h + π`Y`(B`) = πhdh + π`d`.

Since the static contract is implementable, (6) holds and hence d` ≤ R`(B`) < Y`(B`),

this implies that d̂h < dh. Let d′` = Y`(B`). Since u is strictly concave,

πhu(d̂h) + π`u(d′`) > πhu(dh) + π`u(d`)−
d− d`
d

γ,

and hence for ε > 0 small,

πhu(d̂h − ε) + π`u(d′`) > πhu(dh) + π`u(d`)−
d− d`
d

γ.

Then set d′h = d̂h − ε. Thus, if these are the equilibrium payments to the depositors, the

depositors are better off relative to the original static contract.

Now we design the new dynamic contract to achieve the depositor payments, and

show that the bank also makes a positive profit. First we give the termination policy and

depositor payment rules under self-verification:

τ(`, y) = 1 iff y ≥ Y`(B`) = d′`, χ(`, y) = y for all y; τ(h, y) = 0, χ(h, y) = y for all y.

The bank contract with depositors has debt level d′ = d′h. On the equilibrium path, the

bank pays d′ = d̂h − ε to all depositors at s = h without self-verification, and self-verifies

when s = `. Following the same logic as in (a.2), if cB < πh
π`
ε, the bank is making a

strictly positive expected profit. The incentive problems also are the same as in (a.2) and

they are respected for suffi ciently high β. 2
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Proof of Theorem 4.3

Let ds be the payment to the depositors under the original dynamic contract at state s.

We may assume that dh = d, the promised payment. Indeed, if dh < d, we can devise

an alternative dynamic contract where d′ = dh and it would keep all bank’s incentive

compatibility conditions in tact but save on self-verification cost. Since it is not financially

stable, d` < d and the bank has to engage self-verification at s = `.

As before, we devise a new dynamic contract that uses the bailout scheme to Pareto

dominate the original dynamic contract. We do so by keeping the firm contracts un-

changed, B = (Bh, B`). We first design the equilibrium payments to depositors. Let

d̂ = πhdh + π`d`. If d̂ ≤ Y`(B`), then, using the same arguments as in Theorem 4.2,

we can have a financially stable contract that dominates the original one without using

bailouts. So suppose that d̂ > Y`(B). Since u is strictly concave, for some ε > 0,

u(d̂− ε) >
∑
s=h,`

πsu(ds). (36)

Then, take d′ = d̂ − ε as the promised return to depositors in the new contract, and

we will design a regulator contract so that this is also the equilibrium payment in both

aggregate states.

Now, for the regulator contract, we have

τ(`, y) = 1 iff y ≥ Y`(B`), χ(`, y) = y for all y; τ(h, y) = 0 and χ(h, y) = y for all y.

For the bailout scheme, we have

x(`, y) = max{d′ − y, 0} if y ≥ Y`(B`), x(`, y) = 0 otherwise;

z =
π` [d′ − Y`(B`)]

πh
.

(37)

On the proposed equilibrium path, the bank self-verifies only in state `, and, in that state,

the bank pays offall its available funds, Y`(B`), and the bailout scheme pays out additional

funds so that all depositors receive d′; at state h, the bank pays d′ to all depositors and

pays z to the bailout scheme. Note that the equilibrium x is given by d′ − Y`(B`) and

that on the proposed equilibrium path the budget constraint (8) is satisfied.
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The bank’s expected profit (in per depositor term) on the proposed equilibrium path

is then given by

πh [Rh(Bh)− d′ − z] + π` [R`(B`)− d` − cB]

=

[∑
s=h,`

πsRs(Bs)

]
− πhd′ − πh

π`[d
′ − Y`(B`)]

πh
− π`Y`(B`)− π`cB

=

[∑
s=h,`

πsηs(B)

]
− d′ − π`cB =

{∑
s=h,`

πs[ηs(B)− ds]
}

+ ε− π`cB,

where the first equality follows from the fact that z is given by (37) and that d` = Y`(B`),

and the last from the construction of d′. Note that this profit is then ε above to the

original dynamic contract in each period, and hence is strictly positive. Moreover, the

depositors are strictly better off under bailout policy than the original unstable contract

by (36).

Finally, using exactly the same arguments as in the proof of Theorem 4.2, part (b.2),

high β ensures that the bank wants to pay d′ + z at state h, self verifies at state `, and

(A3) ensures that the bank has incentive to verify all requesting firms. 2
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Supplemental Appendix: for online publication only

A.1 Optimal verification regions

Theorem 2.1 proved the Pareto optimality of debt contracts, but didn’t characterize their

specific form. We now extend this result by finding the optimal verification regions (the

Wm) for the debt contract. Let (ρ, b) be a debt contract, where we denote by b the level

of debt for each lender. For each w ∈ [0,Mb), the ex ante expected payoff to a lender

when m lenders verify is

Υ(w,m) ≡ m

M

[
u

(
w − (M −m)b

m

)
− γ
]

+
M −m
M

u(b). (38)

The optimal verification strategy maximizes this expected payoff for each w. Note

that under a debt contract the payment for the firm is the same for each realization of w

(pay out everything up to Mb and just Mb thereafter). So this verification strategy will

indeed be Pareto optimal.

We shall define cutoffs xM < xM−1... < x1 so that under the contract (ρ, b) is is optimal

for m lenders to verify if w ∈ [xm+1, xm). We have that x1 = Mb because for realizations

of w suffi ciently close to Mb the firm give the verifying lenders a payout arbitrarily close

to b and so whatever the level of risk-aversion there is no reason to ask more than one

lender to verify. For each m = M,M − 1, ..., 2, define xm as follows:

xm = inf{w ≥ (M −m+ 1) b : Υ(w,m− 1) ≥ Υ(w,m)}.

For all w ∈ [xm, xm−1), we have m − 1 lenders verify, so the firm needs suffi cient funds

to pay the M − (m− 1) lenders who do not verify, i.e., at the cutoff xm we need to have

w ≥ (M −m+ 1) b. The inequality involving Υ(w,m) in this definition show that lenders

cannot be strictly better off at w if fewer than m lenders verify. The following lemma

shows that these cutoffs are well defined.

Lemma A.3. For each m = 2, ...,M , xm is the unique w such that either Υ(w,m) =

Υ(w,m− 1) or xm = (M −m+ 1) b. Moreover, xm > xn for all m < n.
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Proof. Fix somem. Suppose that Υ((M−m+1)b,m) > Υ((M−m+1)b,m−1). Observe

that

∂

∂w
[Υ(w,m)−Υ(w,m− 1)] =

1

M

[
u′
(
w − (M −m)b

m

)
− u′

(
w − (M −m+ 1)b

m− 1

)]
< 0

for all w < Mb, because u is concave and

w − (M −m)b

m
− w − (M −m+ 1)b

m− 1
=

Mb− w
m(m− 1)

.

When w = Mb, we have Υ(Mb,m) − Υ(Mb,m − 1) = 1
M
γ < 0, and when w <

(M −m+ 1) b we cannot have only m−1 lenders verifying by feasibility. Hence there is a

unique xm for each m such that either Υ(xm,m) = Υ(xm,m− 1) or xm = (M −m+ 1) b.

Next we will show that xm > xm−1 and the result follows by induction. First consider

the case where xm > (M −m+ 1) b. Thus Υ(xm,m) = Υ(xm,m − 1) and Υ(xm−1,m −

1) ≤ Υ(xm−1,m− 2) implies that:

0 = mu

(
xm − (M −m)b

m

)
− (m− 1)u

(
xm − (M −m+ 1)b

m− 1

)
− u(b)− γ

≥ (m− 1)u

(
xm−1 − (M −m+ 1)b

m− 1

)
− (m− 2)u

(
xm−1 − (M −m+ 2)b

m− 2

)
− u(b)− γ.

Suppose, by contradiction, that xm−1 ≥ xm. Then,

mu

(
xm−1 − (M −m)b

m

)
− (m− 1)u

(
xm−1 − (M −m+ 1)b

m− 1

)
≥ mu

(
xm − (M −m)b

m

)
− (m− 1)u

(
xm − (M −m+ 1)b

m− 1

)
≥ (m− 1)u

(
xm−1 − (M −m+ 1)b

m− 1

)
− (m− 2)u

(
xm−1 − (M −m+ 2)b

m− 2

)
,

which implies that

m

2m− 2
u

(
xm−1 − (M −m)b

m

)
+

(m− 2)

2m− 2
u

(
xm−1 − (M −m+ 2)b

m− 2

)
≥ u

(
xm−1 − (M −m+ 1)b

m− 1

)
.

But notice that

xm−1 − (M −m+ 1)b

m− 1
=

m

2m− 2

(
xm−1 − (M −m)b

m

)
+

(m− 2)

2m− 2

(
xm−1 − (M −m+ 2)b

m− 2

)
,
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and this leads to a contradiction to the concavity of u.

Now consider the case where xm = (M −m+ 1) b. Because of the definition of xm−1,

we have that xm−1 ≥ (M −m+ 2) b > xm.

A.2 Optimality of debt contract under aggregate uncertainty

The bank contract with the depositors is given by the debt level d and a function ξ(s, y,m)

that specifies payment to each verifying depositor, where y is the available funds to each

verifying depositor, m is the fraction who verify, and s is the state. Our earlier results

regarding the optimality of debt contracts with firms, however, do not directly extend to

the bank contract, since the bank’s funds are (at least partially) paid to the depositors. In

general, a bank contract with the firm may be denoted (b̄s, ρs)s=h,`, where ρs(w) denotes

the firm’s repayment to the bank when verified return is w and b̄s is the repayment without

verification, both of which may depend on the state s.

Given the contract, the strategies can be defined in an analogous manner to those in

Definition 3.1, but with one modification: now both sf and (s1
B, s

2
B) may depend on the

state s. Moreover, as before, we focus on symmetric equilibria in which the interactions

between the bank and the firms in a PBE with the property that the bank verifies all

firms that send message 1. The following lemma shows that it is optimal to have debt

contracts between the bank and the firms.

Lemma A.4. Let {(b̄s, ρs)s=h,`, (d, ξ)} be an implementable bank contract. Under (A3),

there is another bank contract in which the contract with the firm is a debt contract with

verification occurring iff w < Bs and Bs the debt level at state s and which Pareto domi-

nates the original contract.

Proof. Suppose that the contracts with the firms are given by (b̄s, ρs)s=h,`, and suppose

that W0,s is the set where no verification occurs from the bank, s = h, `.

Let

Rs =
1

M

{∫
W1,s

ρs(w)dFs(w)− Fs(W1,s)cE + Fs(W0,s)b̄s

}
,
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and let

Ys =
1

M

{∫
W1,s

ρs(w)dFs(w) + Fs(W0,s)b̄s

}
.

Here Rs is the revenue (net of monitoring cost) from the firms by the bank, and Ys is the

available funds at the bank at state s, both in per investor’s term.

Consider the alternative contracts (Bs)s∈S and ξ
′ as follows. Bs is such that∫ Bs

0

wdFs(w) + [1− Fs(Bs)]Bs = MYs,

and hence Bs ≤ b̄s. Let W ′
1,s = [0, Bs) ⊂ W1,s, and let

R′s =
1

M

{∫ Bs

0

wdFs(w)− Fs(Bs)cE + [1− Fs(Bs)]Bs

}
≥ Rs.

The above inequality is strict unless the contract with the firm is a debt contract. More-

over, the firm’s expected payment is exactly the same conditional on each state under the

alternative contract as in the original contract.

Now we consider the bank contract with the investors. Given the bank contract

with the investors, (d, ξ), let ds be the average amount paid to the depositors at state

s. Incentive compatibility for the bank to monitor the firms requires ds ≤ Rs for both

s = h, `. We then design the new contract with the investors as follows. Keep d as in the

original contract and keep the fraction of verifying investors the same as before for each

states. If at state s no investors verify the bank, then it must be the case that Ys ≥ Mr

and hence Bs ≥ Mr. Then, (A3) implies that the bank has incentive to verify the firms

at state s. Instead, if the bank is verified at state s and if the bank’s available fund and

the fraction of verifiers are consistent with bank revenue of Ys, give the same payments as

the original contract. Otherwise, require the bank to pay off all its available funds. This

ensures the bank has the same incentive to monitor the firms.

Finally, since the investors receive the same amount of payments when verifying in

both states and the probability of verifying remains the same, their incentive to verify

remains.
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A.3 Relaxing lander commitment for the bailout scheme

In Section 4.2 we consider a bailout scheme that only requires budget-balancedness from

the ex ante perspective. This would require an external lender who can commit to a

contract with the regulator, who will receive the premium at good states and will pay for

the insurance at bad states. Here we relax this assumption and consider the possibility

that the external lender cannot commit to his future actions. The regulator, however,

can commit and offer a contract as follows. We assume that there is a single lender to

simplify the analysis but, to be more realistic, we could have a continuum of identical

lenders and each is offered the same contract. We assume that the lender is risk-neutral

and has discount factor β.

If the bank is in state h, then the regulator pays φ (in per depositor term). If the

bank is in state `, then the lenders pays τ . Lack of commitment implies that the lender

can walk away from the contract at any point of time. Obviously, the lender would not

do so in state h. In state `, however, the lender may choose to leave unless the future

benefits from staying in the contract is better than leaving the contract. We assume that

the regulator only pays the lender who has always stayed in the contract.

Thus, the incentive compatibility constraint for the lender to remain in the contract

is given by

−τ +
β

1− β [πhφ− π`τ ] ≥ 0. (39)

Here we show that even with this additional constraint, Theorem 4.3 still holds. The

only modification needed in the argument is the construction of the bailout scheme, and,

instead of having πhφ = π`τ , we have:

πhφ =

(
π` +

1− β
β

)
τ ,

This implies that the bank in state h pays d′′ < d′ (the amount constructed in the proof of

Theorem 4.3, but the difference converges to zero as β goes to one. Since we obtained strict

Pareto improvement in that theorem, this implies that we can still obtain improvement

with β suffi ciently high. The incentives to monitor are not altered.
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