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Abstract

This paper provides a refinement that uniquely selects the ex-ante Pareto dom-
inant equilibrium in a cheap talk game, provided one exists. The refinement works
by embedding any cheap talk game into a class of two-stage games where: in stage 1
sender and receiver choose their biases at a cost, and in stage 2 the cheap talk game
is played. For such games, we show that a forward induction logic can be invoked
to select the ex-ante Pareto-dominant equilibrium in the second stage. Games with
fixed biases (the conventional cheap talk games) are then treated as limiting cases
of this larger class of games.
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1 Introduction

Cheap talk games are ubiquitous in applied theory. However, cheap talk games have
multiple equilibria and this presents a problem for analyzing comparative statics. Applied
papers usually restrict attention to the most informative equilibrium, and justify this
restriction by invoking the fact that this equilibrium is ex-ante Pareto dominant, i.e., it is
the best equilibrium for both sender and receiver. This paper provides a refinement that
leverages this intuition and uniquely selects the ex-ante Pareto dominant equilibrium,
provided such equilibria exist.1

The refinement works by embedding any cheap talk game into a larger space: the
class of games where the relative biases of sender and receiver are chosen endogenously
before the cheap talk game is played.2 For such games, we show that a forward induction
logic can be invoked to select the ex-ante Pareto-dominant equilibrium in the second stage
(Section 5). Games with fixed biases (the conventional cheap talk games) are then treated
as limiting cases of this larger class of games.
The model is as follows. Before the cheap talk stage, every agent i obtains a certain

quantity of qi at a cost ci (qi) . After paying this cost, each agent is assigned the following
payoff function in the cheap talk game:

U (a, qi, ω) ,

where a is the action taken by the receiver, the quantity qi encodes the heterogeneity
across agents, and ω represents the unknown (to the receiver) state of the world. Then
the qi’s become publicly observable. Then the sender learns ω and the cheap talk stage
takes place.
Given any pair of qis chosen in the first stage, the second-stage cheap talk game has

multiple equilibria. But, in the first stage, agents can use their choice of qi to “compellingly
signal”their expectation that the ex-ante Pareto-dominant equilibrium will be played.
The limiting case with exogenously fixed biases qi can be represented as the limit

of sequences of games with cost functions ci (·) that increasingly penalize any choice
qi 6= qi. Our refinement applies to every game in the sequence, and thus selects the
Pareto-dominant equilibrium in the limit.

2 Graphical intuition for the result

The result is proved as follows. Fix any first-stage choice
(
q∗i , q

∗
−i
)
and assume by con-

tradiction that a Pareto-dominated equilibrium Ω1 is played in the second stage. We

1Crawford and Sobel (1982) provide suffi cient conditions for all cheap-talk equilibria to be Pareto-
ranked. Therefore, our refinement applies to that class of cheap-talk games. Chen, Kartik, and Sobel
(2008) is the only other available refinement which selects the ex-ante Pareto dominant equilibrium, to
our knowledge. The pros and cons of that refinement are discussed in Section 7.

2Games where the conflict of interest between sender and receiver is determined endogenously prior
to the cheap talk phase are of applied interest in their own right. See, for example, Antíc and Persico
(2020); Argenziano et al., (2016); Austen-Smith, (1994); Deimen and Szalay (2019a, 2019b); Rantakari
(2017). These papers, however, do not discuss equilibrium selection.
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Figure 1: Agent i’s best-response problem. The convex green function represents i’s cost of
choosing a certain level of qi. Every concave orange dome represents i’s ex-ante payoff in the
cheap talk game following qi, if equilibrium Ω is played. Higher domes correspond to equilibria
that deliver a higher ex-ante payoff to agent i.

construct a specific deviation q̃i such that, among all second-stage equilibria that are pos-
sible following

(
q̃i, q

∗
−i
)
, exactly one of them makes agent i strictly better off, and any

other equilibrium makes agent i strictly worse off, relative to i’s payoff at
(
q∗i , q

∗
−i,Ω1

)
.

The deviation q̃i, if it exists, is “compelling”to the other player because it unequivocally
coordinates her on the only one among many possible second-stage equilibria that player
i “could have wished to achieve”by deviating. If such a deviation exists, the candidate
triple

(
q∗i , q

∗
−i,Ω1

)
is deemed inconsistent with forward induction.

Next we provide a graphical intuition for how the deviation q̃i is constructed. The
figures that follow are visually patterned after the quadratic cheap talk game in Craw-
ford and Sobel (1982), but the qualitative properties used in the proof hold much more
generally.
For a given q∗−i, Figure 1 illustrates the elements of agent i’s best-response problem.

The convex green function represents i’s cost of choosing a certain level of qi. Every
concave dome represents i’s second-stage payoff following qi, if equilibrium Ω is played.
Higher domes correspond to equilibria that deliver a higher ex-ante payoff to agent i.
Given q∗i , for example, Figure 1 indicates that three equilibria exist and that equilibrium
Ω1 is not Pareto-dominant. The segment AD represents i’s total payoff, i.e., the payoff
after subtracting the cost ci, if equilibrium Ω1 is played following

(
q∗i , q

∗
−i
)
.We now show

that the point A is inconsistent with forward induction.
To construct the deviation q̃i, first move up vertically on the graph from point A to

point A′ (refer to Figure 2 step 1). The segment A′D represents i’s total payoff if the
Pareto-dominant equilibrium Ω3 is played following

(
q∗i , q

∗
−i
)
. Next, move left along the

upper envelope of the orange domes (this corresponds to picking out the best equilibrium
following any qi < q∗i ). Initially, that is, for qi = q∗i − ε, agent i’s total payoff exceeds the
total payoff at q∗i (the latter is represented by the segment AD). As we continue moving
down and to the left along the upper envelope, we will eventually encounter a point qi = y
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Step 1: go straight up, then move to the left
along the upper envelope until the point y is reached
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Step 2: move back slightly towards q∗i , and you’ve found q̃i.

Figure 2: This figure illustrates the two-step procedure used to find a “compelling”deviation
q̃i that agent i can use to coordinate the other agent away from the Pareto-dominated outcome
(q∗i , q

∗
−i,Ω1). The point q̃i is such that, among all second-stage equilibria that are possible given

(q̃i, q
∗
−i), exactly one of them (Ω2, corresponding to payoff B′) makes agent i strictly better off

(this is because B′C ′ > AD); and all other equilibria make agent i strictly worse off (this is
because B′′C ′ < AD).
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at which i’s total payoff BC equals the total payoff AD. Set q̃i = y + ε: on the graph
(Figure 2 step 2), this corresponds to moving back slightly toward q∗i . The point q̃i is
our “compelling”deviation: indeed, among all equilibria that are possible given

(
q̃i, q

∗
−i
)
,

exactly one of them (point B′) makes agent i strictly better off relative to i’s payoff at(
q∗i , q

∗
−i,Ω1

)
: this is because B′C ′ > AD; and all other equilibria make agent i strictly

worse off (this is because B′′C ′ < AD).

3 General model

This section lays out a more general setting than the one discussed in the introduction,
in that the second-stage game need not be a cheap talk game. We study a two-stage
sequential game where, in the first stage, two agents indexed by i = R, S simultaneously
and independently select qi at a cost ci (qi) . We do not assume that ci (·) is increasing:
it could be decreasing or non-monotone. After the first stage, q = (qR, qS) are publicly
observed and the second stage is played. The second stage is black-boxed through an
index Ω that denotes a second-stage equilibrium given q = (qR, qS) . Agent i’s payoff in
the entire game is:

Wi (q,Ω) = Vi (qi, q−i; Ω)− ci (qi) , (1)

where Ω belongs to S (q) , the set of all equilibria reached at q. The functions {Vi}i=R,S
capture second-stage payoffs; these functions, and the set S (q), are independent of
the function ci (·) because, by the second stage, the cost ci is sunk. The functions
{Vi, ci}i=R,S and the set S (q) are the primitives of the analysis.
A special case is that in which Vi (qi, q−i; Ω) represents player i’s expected payoff in a

cheap talk game where (qR, qS) are the players’preference parameters, and Ω identifies
which cheap-talk equilibrium is played. This special case will be discussed in Section 5.
When S (q) has more than one element, checking whether a first-stage choice of qi

is an equilibrium requires one to specify which second-stage equilibria should be used to
evaluate a different choice of qi. With this issue in mind, we define a suitable notion of
equilibrium in the sequential game. Note that throughout this section we restrict attention
to equilibria q∗ that are in pure strategies.

Definition 1 (equilibrium in the sequential game) Let s pick, for every q, an ele-
ment of S (q). We say that (q∗, s) is an equilibrium in the sequential game if, for all i,
and all q̃i :

Wi (q
∗, s (q∗)) ≥ Wi

((
q̃i, q

∗
−i
)
, s
(
q̃i, q

∗
−i
))
.

This definition parameterizes a (pure-strategy) equilibrium in the sequential game by
a selection s of second-stage equilibria that are used to evaluate first-stage choices. This
corresponds to the usual notion of sequential equilibrium in extensive form games.3 If,
for example, the second stage is a cheap talk game, an example of s is: “the cheap talk

3Since the actions chosen in the first stage are publically observed, it simplifies notation to just consider
the second stage as a stand-alone game with players assigning probability one to histories with the chosen
(qR, qS).
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equilibrium with 2 partition elements if that exists given q, else the babbling equilibrium;”
then, first-stage choices would be evaluated by restricting attention to those cheap talk
equilibria. In particular, agent i would evaluate her deviations according to the selection
s.
The next definition may be interpreted as an equilibrium selection criterion for second-

stage equilibria. It works by restricting “admissible”selections s (q) through a criterion
in the spirit of forward induction (van Damme 1989).4

Definition 2 (equilibrium selection through forward induction) An equilibrium
(q∗, s) in the sequential game is consistent with forward induction if no agent i and devi-
ation q̃i exist, such that exactly one element Ω ∈ S

(
q̃i, q

∗
−i
)
makes agent i strictly better

off and all other Ω′ ∈ S
(
q̃i, q

∗
−i
)
make her strictly worse off.

This definition starts from a (pure-strategy) equilibrium in the sequential game, and
checks for specific deviations q̃i such that, among all second-stage equilibria that are
possible following the deviation (not restricted to s

(
q̃i, q

∗
−i
)
), exactly one of them makes

agent i better off. Such a deviation q̃i, if it exists, is “compelling” to the other player
because it unequivocally coordinates her on the only one among many possible equilibria
in S

(
q̃i, q

∗
−i
)
that player i “could have wished to achieve”by deviating.

This criterion for selecting equilibria is conservative in that equilibria are only elimi-
nated by “compelling”deviations which cannot be misinterpreted by a rational player who
believes her opponent to be rational. Despite being conservative, under some assumptions
this criterion will rule out all but one second-stage equilibrium in S (q).

Definition 3 (upper envelope of the payoff correspondence) The upper envelope
of Wi is the function:

W sup
i (q) = sup

Ω∈S(q)

Wi (q,Ω) .

The upper envelope function selects the upper limit among all the equilibrium payoffs
that are possible for agent i given a first-stage choice q. If the set S (q) of second-stage
equilibria is finite, as is the case when b 6= 0 in Crawford and Sobel’s (1982) quadratic
example, the sup operator may be replaced by max.5 In that example, W sup

i is attained
by the equilibrium with the largest number of partition elements given b.6

3.1 Assumptions

The following assumptions are suffi cient to prove our main result.

Assumption 1 (one-to-oneness) For every q, Ω 6= Ω′ implies Wi (q,Ω) 6= Wi (q,Ω
′).

4We acknowledge that Van Damme invokes genericity and finiteness assumptions in his setting, whereas
our analysis assumes that q is selected from a continuum.

5Crawford and Sobel (1982) theorem 1 implies that this is true very generally as long as the sender
and receiver prefer different actions at all states of the world.

6This is true more generally in their setting, provided their condition (M) holds.

5



This assumption says that, for any given q, second-stage equilibria are one-to-one with
payoff levels. In Figure 1 this means that every dome is associated with a distinct cheap
talk equilibrium.

Assumption 2 (continuous upper envelope) The functionW sup
i (q) is continuous for

all i.

Loosely speaking this assumption says that i’s best-equilibrium payoff is continuous
in q. This assumption says that the upper envelope in Figure 1 is continuous.

Assumption 3 (worse option is available) Suppose (q∗, s) is an equilibrium in the
sequential game. Then for every i there exists a q

i
such that

W sup
i

(
q
i
, q∗−i

)
≤ Wi (q

∗, s (q∗)) .

This assumption says that, for any equilibrium q∗, player i has a “worse option” q
i

available, at which even the best equilibrium in S
(
q
i
, q∗−i

)
gives a (weakly) worse payoff

than the equilibrium one. A q
i
with the required property can always be found if the cost

ci (·) grows fast enough, simply by picking a very large qi.

Assumption 4 (finite number of second-stage equilibria are pervasive) For any
given q−i, the set of points z such that the set S (z, q−i) has finite cardinality, is dense in
R.

This assumption means that for any q there is an arbitrarily close q̃ with a finite
number of second-stage equilibria. In Figure 1 this assumption holds because, for any
given qi, the number of equilibria is finite (at most three).

4 Results

We say a second-stage equilibrium Ω is Pareto-dominant if all players weakly prefer Ω to
any other equilibrium Ω′.

Lemma 1 (Pareto-dominant second-stage equilibrium is consistent with for-
ward induction) Consider any equilibrium in the sequential game (q∗, s) . If s (q) selects
a Pareto-dominant second-stage equilibrium in S (q) for all q, then (q∗, s) is consistent
with forward induction.

Proof. See Appendix A.
In Crawford and Sobel (1982), the equilibrium with the largest number of partition

elements is Pareto-dominant if assumption (M) holds.7 If s selects this equilibrium for

7See their Theorems 3 and 5.
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every q then, by the above lemma, any equilibrium (q∗, s) in the sequential game is
consistent with forward induction.
To see why the above lemma requires s (q) to be Pareto-dominant for all q, consider

the following simple example in the quadratic setting of Crawford and Sobel (1982). Set
both cost functions {ci} ≡ 0, and q∗R = 2/10, q∗S = 1/10. Because b = q∗R − q∗S = 1/10,
the best cheap talk equilibrium has two partition elements. Denote this equilibrium by
Ω2 = s (q∗R, q

∗
S) . Suppose s (q) picks out the babbling equilibrium for all values of q such

that qR − qS 6= 1/10 (note that this violates Pareto-dominance). Given this choice of s,
(q∗, s) is an equilibrium. However, (q∗, s) is not consistent with forward induction. To see
this, observe that by increasing qS slightly above q∗S, the sender’s best-equilibrium payoff
exceeds that at (q∗, s), but the second-highest equilibrium payoff (babbling is the only
other one that exists) does not. Thus, (q∗, s) is not consistent with forward induction,
but is an equilibrium.
Loosely speaking, this discussion shows that the forward induction requirement “re-

quires”high-payoff outcomes in the second stage on and off the equilibrium path, that is,
over the entire domain of the function s (·). The next lemma, conversely, says that the only
second-stage equilibria that are consistent with forward induction are Pareto-dominant —
at least for generic cost functions.

Lemma 2 (generically, only Pareto-dominant second-stage equilibria are con-
sistent with forward induction) Suppose Assumptions 1-4 hold. If there is an equilib-
rium in the sequential game (q∗, s) such that Wi (q

∗, s (q∗)) < W sup
i (q∗) for some i, then

there is a cost function c̃i arbitrarily close to ci in the uniform norm, for which:

1. (q∗, s) remains an equilibrium in the sequential game

2. (q∗, s) is not consistent with forward induction.

Proof. See Appendix A.
Putting together the two lemmas yields the main result of the paper.

Proposition 1 (equilibrium selection of Pareto-optimal equilibria) Suppose that
the set {Vi}i=R,S , S (q) is generated by the cheap talk game in Section 5, and that As-
sumptions 1-4 hold. Consider any equilibrium (q∗, s) .

1. If s (q) Pareto-dominates all other cheap talk equilibria for all q, then (q∗, s) is
consistent with forward induction.

2. If Ω∗ = s (q∗) does not Pareto-dominate all other cheap talk equilibria at q∗, then
there is an i and a cost function c̃i arbitrarily close to ci in the uniform norm such
that (q∗, s) remains an equilibrium in the sequential game associated with c̃i but it
is not consistent with forward induction.

Proposition 1 says the following. Take any equilibrium choice (q∗R, q
∗
S) that is com-

puted under the stipulation that second-stage equilibrium selection is Pareto-dominant
“on and off path;” then, this equilibrium is consistent with forward induction (part 1).
Furthermore, forward induction requires the second-stage (cheap talk) equilibrium to be
Pareto-dominant “on path”(part 2, approximately).

7



5 Application to cheap talk games

Consider the following special case of the game described in Section 3.

Stage 1 Agents i = R, S simultaneously and independently select a real number qi at a
positive cost ci (qi). The qi’s are publicly observed.

Stage 2a Nature selects a state of the world ω ∈ [0, 1]. The sender privately learns ω and
engages in cheap talk with the receiver.

Stage 2b The receiver chooses action a ∈ R.

Stage 2c An agent i who obtained q experiences utility U (a, q, ω) in addition to the cost
ci (q) .

Note that, in general, the game between S and R is not symmetric because cS (·) 6=
cR (·). This asymmetry will, in general, cause the agents’equilibrium choices q∗S 6= q∗R to
not align, resulting in a conflict of interest between sender and receiver in stage 2.
For any given stage-1 choice (qS, qR), the cheap talk game described in stage 2 may

have multiple equilibria. Let a generic cheap talk equilibrium be indexed by Ω, and let
S (q) denote the set of all cheap talk equilibria given q = (qS, qR) . Denote by Vi (qi, q−i; Ω)
agent i’s expected utility U in the cheap talk game with equilibrium Ω ∈ S (q). If
the function Wi (q,Ω) defined in (1) satisfies Assumptions 1-4, then then the following
corollary of Proposition 2 shows that forward induction selects the Pareto-dominant cheap-
talk equilibrium, if one exists.

Corollary 1 (application to cheap talk games with endogenous conflict of inter-
est) Consider the sequential game described by stages 1 and 2, and let the set {Vi}i=R,S ,
S (q) be generated by the game described in stage 2. Suppose Assumptions 1-4 hold. Then,
for generic cost functions cR and cS, Proposition 1 shows that forward induction selects
the Pareto-dominant cheap-talk equilibrium on and off the equilibrium path, if one exists.

Corollary 1 requires that Assumptions 1-4 hold. Assumption 1 holds in Crawford and
Sobel’s (1982) quadratic example this property holds because, for given specification of
the bias parameter b, equilibrium payoffs are one-to-one with the number of cutoffs in
the equilibrium partition. This is also true more generally when their condition (M) is
satisfied.
Assumption 2 holds in Crawford and Sobel’s (1982) quadratic example, as shown in

Appendix A.2 of Antíc and Persico (2020). It also holds in the more general model studied
by Crawford and Sobel (1982). Indeed, by their Lemma 3 there is a single equilibrium
partition of cardinality N for every b. As b changes, the partitions of this equilibrium
deform continuously. Eventually, the equilibrium will cease to exist as partition elements
run into each other or into the boundaries of the interval [0, 1]. When this happens one of
the partition elements vanishes and the cutoffs constitute the equilibrium with cardinality
N − 1. Since, the receiver’s actions are continuous in these cutoffs, so are the players’
expected payoffs.
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In a cheap talk game, Assumption 3 is satisfied by any q
i
such that S

(
q
i
, q∗−i

)
only

contains the babbling equilibrium.8 In Crawford and Sobel’s (1982) quadratic example,
the assumption holds if, for any given q−i, agent i’s action set includes a qi such that
|b| = |qR − qS| > 1/4. Assumption 4 holds in Crawford and Sobel’s (1982) quadratic
example because b = 0 is the only value at which the cheap talk game has an infinite
number of equilibria. This property also holds under the more general assumptions of
Crawford and Sobel’s (1982) Theorem 1.
In sum, Assumptions 1-4 are implied by the canonical assumptions in Crawford and

Sobel (1982). Moreover, Assumptions 1-4 hold a broader set of cheap talk models including
the case of multiplicative bias (e.g., Alonso, 2009; Antíc and Persico, 2020).9

Finally, we acknowledge that Corollary 1 is only applicable if a Pareto-dominant cheap-
talk equilibrium exists. Crawford and Sobel (1982) provide suffi cient conditions for all
cheap-talk equilibria to be Pareto-ranked. Therefore, our result applies to that class of
cheap-talk games.

6 Extension to games with exogenous conflict of in-
terest

The argument derived in this paper can be used to select the best equilibrium in the game
with exogenous conflict of interest (i.e., q∗i is exogenously set equal to qi), as follows. The
shape of the cost fuctions ci (·) have been restricted only mildly by our assumptions. In
particular, we need not assume ci (·) is monotone. Consequently, Corollary 1 also applies
to cost functions where the cost is prohibitively high except for in a small neighborhood
of some exogenous value qi. Such cost functions result in equilibrium choices q∗i ≈ qi,
corresponding to a scenario where the endogeneity in the choice of qi is almost absent.
The limiting case of q∗i ≡ qi (i.e., fully exogenous preferences in the cheap talk game)
can be approximated by a sequence of games where the continuous cost fuctions ci (·)
increasingly penalize any choice qi 6= qi. Intuitively, in games along this sequence the
choice of qi becomes progressively “less endogenous.”Since Corollary 1 applies to every
game in the sequence it follows that, in the limit game with fully exogenous preferences,

8To see this, write:

Wi (q∗,Ω∗) ≥ Wi

((
q
i
, q∗−i

)
, s
(
q
i
, q∗−i

))
= sup

Ω∈S(q
i
,q∗−i)

Wi

((
q
i
, q∗−i

)
,Ω
)

= W sup
i

(
q
i
, q∗−i

)
,

where the inequality holds because (q∗, s) is an equilibrium, and the first equality holds because the only

element in the set S
(
q
i
, q∗−i

)
is the babbling equilibrium.

9The canonical Crawford and Sobel (1982) assumptions are: U is bounded and continuous with
U11 < 0, U12 > 0, a ∈ [0, 1], condition (M) holds and the players disagree about the ideal action for
all states. The multiplicative bias case violates Crawford and Sobel’s (1982) assumptions because, for
exactly one state, the players agree on the ideal action.
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the Pareto-dominant equilibrium is the limit of the sequence of forward-induction proof
equilibria.

7 Contribution to the literature and conclusions

This paper’s contribution is to provide a refinement that uniquely selects the Pareto-
dominant equilibrium in a cheap talk game, provided that this equilibrium exists. This is
helpful because cheap talk models are used widely and, generally, with an exclusive focus
on the Pareto-dominant equilibrium —and yet refinement criteria that uniquely select the
Pareto-dominant equilibria are few.
Refinement criteria for signaling games such as Kohlberg and Mertens’ (1986) sta-

bility and Cho and Kreps’ (1987) intuitive criterion, do not have power in cheap talk
games because messages are free, unlike costly actions in signaling games. Farrell (1993)
introduced qneologism-proofness, which is the first refinement in cheap talk games that
does rule out some implausible equilibria, but runs into an existence problem: in many
popular cheap talk examples, such as Crawford and Sobel’s (1982) quadratic example,
no equilibria are neologism-proof. There is a literature that builds on the ideas of neol-
ogism proofness. Rabin (1990), Zapater (1997), and Olszewski (2008) face multiplicity:
the selection criterion is not stringent enough to select a unique equilibrium. Matthews,
Okuno-Fujiwara, and Postlewaite (1991), like Farrell (1993), run into existence problems.
Blume and Sobel (1995) propose communication-proof equilibria which, instead of a ne-
ologism, allow players an extra opportunity to communicate, however these also need not
select the Pareto effi cient outcome except in pure common interest games.
The most attractive refinement for cheap talk equilibria is Chen, Kartik, and Sobel’s

(2008) “no-incentive-to-separate”(NITS) criterion. An equilibrium satisfies NITS if the
type-0 sender could not benefit from credibly identifying himself, if he could. This criterion
can be microfounded by viewing the cheap talk game as the limit of games with small
lying costs. Monotone equilibria in these games converge to the NITS equilibrium in the
cheap talk game, as the lying costs converge to zero uniformly. The NITS refinement is
attractive because at least one equilibrium always exists that satisfies NITS and, under
Crawford-Sobel’s “condition M,” the only equilibrium that satisfies NITS is the most-
informative one. Unlike NITS, our refinement operates at the ex ante stage, i.e., before
the sender learns the state of the world. In contrast, in NITS the sender contemplates
“causing the equilibrium to switch”after having observed the signal. The two refinements
are complementary, in our view: in some applications it may be more natural to assume
that there is a cost of lying in the cheap talk game; in other applications, it may be more
natural (and even organically desirable) to contemplate the possibility that the agents’
biases are determined at an earlier stage of play.
The graphical analysis in Figure 2 is reminiscent of the money-burning logic for equi-

librium selection. Roughly speaking, giving a player the option to publicly burn money
before a game is played allows that player to “force” others to coordinate on her pre-
ferred equilibria in the game without actually having to burn money.10 Burning money

10See Section 4 in van Damme (1989), and Ben-Porath and Dekel (1992).
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is somewhat analogous to choosing the compelling deviation q̃i 6= q∗i , except that varying
qi necessarily changes the subsequent cheap talk game, whereas burning money does not
because it is a sunk cost. In particular, the choice of qi affects the equilibrium strategies,
payoffs, and even potentially the number of equilibria in the subsequent cheap talk game.
This complexity means that the arguments developed in this paper are not straightfor-
ward extensions of the money-burning analysis: for example, the compelling deviation q̃i
that achieves equilibrium selection in Figure 2 is analogous to saving rather than burn-
ing money, because ci (q̃i) < ci (q

∗
i ). With this being said, both the money-burning idea

and our selection argument are grounded in a forward induction logic and, as such, are
conceptually related.
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A Appendix: Equilibrium Selection Through For-

ward Induction

Proof of Lemma 1
Proof. Because (q∗, s) is an equilibrium, for all i we have:

Wi (q
∗,Ω∗) ≥ Wi

((
q̃i, q

∗
−i
)
, s
(
q̃i, q

∗
−i
))
≥ Wi

((
q̃i, q

∗
−i
)
,Ω
)
,

where Ω∗ = s (q∗) and, by Pareto-dominance of s, Ω is any element of S
(
q̃i, q

∗
−i
)
. This

means that there is no q̃i and element of S
(
q̃i, q

∗
−i
)
that make agent i strictly better

off than (q∗, s (q∗)) . By definition, this means that (q∗, s) is consistent with forward
induction.
Proof of Lemma 2

Proof. Fix any {Vi, ci}i=R,S , S (q) , s (q). Take an equilibrium (q∗, s) such that for some
i:

Wi (q
∗,Ω∗) < W sup

i (q∗) , (2)

where Ω∗ = s (q∗). We now look for a deviation for player i that demonstrates a violation
forward induction either for the cost function ci or for a “nearby”one c̃i.
Step 1: identifying the “test neighborhood” ỹ
By Assumption 3, there exists a q

i
such that

W sup
i

(
q
i
, q∗−i

)
≤ Wi (q

∗,Ω∗) ,

which, in conjunction with (2), implies q
i
6= q∗i . Assume without loss of generality that

q
i
> q∗i (the other case is treated symmetrically). By the mean value theorem, which

applies because W sup
i is continuous by Assumption 2, there is at least one y ≥ q∗i such

that:
W sup
i

(
y, q∗−i

)
= Wi (q

∗,Ω∗) .

Let ỹ denote the infimum in the set of such y’s. This infimum belongs to the set because
the set is closed, and thus:

W sup
i

(
ỹ, q∗−i

)
= Wi (q

∗,Ω∗) , (3)

which, in conjunction with (2), implies ỹ 6= q∗i .
Step 2: identifying a “test deviation” q̃η arbitrarily close to ỹ
By Assumption 4, the interval (q∗i , ỹ) contains an increasing sequence {q̃η}∞η=1 con-

verging to ỹ such that, for all η, S
(
q̃η, q

∗
−i
)
is a finite set. Fix any η. Because the set of

second-stage equilibria S
(
q̃η, q

∗
−i
)
is finite, the set Wi

((
q̃η, q

∗
−i
)
,S
(
q̃η, q

∗
−i
))
of associated

payoffs has some finite cardinality Nη. By assumption 1 the payoffs in this set may be
strictly ordered as follows:

w1 (η) < w2 (η) < ... < wNη (η) = W sup
i

(
q̃η, q

∗
−i
)
. (4)
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Step 3: constructing the “arbitrarily close”cost function c̃i (q; η)
Fix any η. Denote

∆ (η) = W sup
i

(
q̃η, q

∗
−i
)
−Wi (q

∗,Ω∗) > 0, (5)

where the inequality follows from the fact that for every z ∈ (q∗i , ỹ) we haveW sup
i

(
z, q∗−i

)
>

W sup
i

(
ỹ, q∗−i

)
= Wi (q

∗,Ω∗) (both the inequality and the equality follow from the definition
of ỹ).
We use the quantity ∆ (η) to define an ancillary “upper bound”function that is close

to ci:

ci (q; η) = ci (q) + ∆ (η)− 1

2
min [∆ (η) , wNη (η)− wNη−1 (η)] . (6)

The function ci (·; η) is greater than ci (·), but only by a “small amount”less than ∆ (η).
Now we construct the main object of interest. Let c̃i (q; η) be any continuous function
such that:

c̃i (q; η) ∈ [ci (q) , ci (q; η)]

c̃i (q̃η; η) = ci (q̃η; η)

c̃i (q
∗
i ; η) = ci (q

∗
i ) .

Step 4: showing that the “test deviation” q̃η in conjunction with the cost
function c̃i (q; η) triggers a violation of forward induction
Fix any η. The payoff function of an agent who is endowed with the cost function

c̃i (q; η) instead of ci (q) is denoted by:

W̃i (q,Ω) = Vi (qi, q−i; Ω)− c̃i (qi; η) .

Denote the ordered elements of the set of payoffs
{
W̃i

((
q̃η, q

∗
−i
)
,Ω
)

: Ω ∈ S
(
q̃η, q

∗
−i
)}
by:

w̃1 (η) < w̃2 (η) < ... < w̃Nη (η) ,

with generic element:
w̃n (η) = wn (η) + ci (q̃η)− c̃i (q̃η; η) . (7)

Now note that:

w̃Nη (η) = W sup
i

(
q̃η, q

∗
−i
)

+ ci (q̃η)− c̃i (q̃η; η)

= W sup
i

(
q̃η, q

∗
−i
)

+ ci (q̃η)− ci (q̃η; η)

= W sup
i

(
q̃η, q

∗
−i
)
−∆ (η) +

1

2
min [∆ (η) , wNη (η)− wNη−1 (η)]

= Wi (q
∗,Ω∗) +

1

2
min [∆ (η) , wNη (η)− wNη−1 (η)]

> Wi (q
∗,Ω∗)

= W̃i (q
∗,Ω∗) .
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In the above formulas, the first equality comes from the definition of w̃n (η) (eq. 7), after
using (4) to substitute for wNη (η). The next equality holds because c̃i (q̃η; η) = ci (q̃η; η)
by construction. The equality in line 3 results from substituting for ci using (6), and the
next equality follows from substituting for ∆ (η) using (5). The strict inequality holds
because both arguments of the min operator are strictly positive. The final equality holds
because c̃i (q∗i ; η) = ci (q

∗
i ) by construction.

Proceeding as in the previous paragraph:

w̃Nη−1 (η) = wNη−1 (η) + ci (q̃η)− c̃i (q̃η; η)

= wNη−1 (η)−∆ (η) +
1

2
min [∆ (η) , wNη (η)− wNη−1 (η)]

≤ wNη−1 (η)−∆ (η) +
1

2
[wNη (η)− wNη−1 (η)]

< wNη−1 (η)−∆ (η) + [wNη (η)− wNη−1 (η)]

= W sup
i

(
q̃η, q

∗
−i
)
−∆ (η)

= Wi (q
∗,Ω∗)

= W̃i (q
∗,Ω∗) .

In the above formulas, the equality in line 5 uses (4) to substitute for wNη (η) .
In sum, we have shown that

w̃Nη−1 (η) < W̃i (q
∗,Ω∗) < w̃Nη (η) . (8)

Step 5: wrap up
We have shown that, for every η:
Under c̃i (q; η) , the pair (q∗, s) remains an equilibrium in the sequential game.
This is true because q∗i remains a best response to q

∗
−i (this follows because, by con-

struction c̃i (q∗i ; η) = ci (q
∗
i ) and c̃i (q; η) ≥ ci (q)).

Under c̃i (q; η) , the pair (q∗, s) is not consistent with forward induction.
This is true because equation (8). Note that while this equation is a statement about

payoffs, also has implications for second-stage equilibria in light of Assumption 1. Indeed,
equation (8) shows that the deviation q̃η is such that exactly one element of S

(
q̃η, q

∗
−i
)

makes agent i strictly better off and all others make her strictly worse off. Thus, the
deviation q̃η is used to show that the equilibrium (q∗, s) is not consistent with forward
induction.
It remains to show that c̃i (q; η) and ci (q) can be made arbitrarily close by an opportune

choice of η. To verify this, observe that, for all q,

0 ≤ c̃i (q; η)− ci (q) < ∆ (η) .

Substitute (3) into (5) to get:

∆ (η) = W sup
i

(
q̃η, q

∗
−i
)
−W sup

i

(
ỹ, q∗−i

)
.
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By construction, the sequence {q̃η}∞η=1 converges to ỹ, and by continuity of W
sup
i

(Assumption 2) we get:

lim
η→∞

∆ (η) = lim
η→∞

W sup
i

(
q̃η, q

∗
−i
)
−W sup

i

(
ỹ, q∗−i

)
= 0.

This shows that a suitable choice of η makes ∆ (η) the uniform distance between c̃i (q; η)
and ci (q) arbitrarily small.
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