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Abstract. I study contracting with moral hazard when the agent has available a known

(baseline) production technology but the principal thinks that the agent may also have

access to other technologies, and maximizes his worst-case expected utilities under those

possible technologies. The nature of the Pareto effi cient contract depends on the most un-

productive distribution that the principal thinks might be available to the agent. When

this lower-bound technology becomes trivial and all distributions are possible, equity is

a Pareto effi cient contract, generalizing existing work on robust contracting. When the

lower-bound MLRP technology approaches the baseline technology, effi cient contracts

approach debt, providing robust foundations for debt in a classic financial contracting

model. For intermediate lower-bounds, participating preferred equity contracts, mixtures

of debt and equity are Pareto effi cient for specific technology sets.

1. Introduction

Moral hazard, the idea that agents must be given appropriate incentives when their

actions cannot be perfectly observed, occurs in a wide array of applications, e.g., insurance,

franchising, employment contracts, unemployment benefits, CEO compensation, financial

contracting, etc. The classic model of security design with moral hazard shows that

debt contracts are effi cient as long as contracts are restricted to be monotonic in cash

flows (Innes, 1990)?. However, the effi cient contract without this restriction is strikingly

unrealistic1. The reason for this is aptly summarized by Holmström and Milgrom (1987)?:
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"Real world incentive schemes appear to take less extreme forms than the

finely tuned rules predicted by the basic theory... Agents in the real world

typically face a wider range of alternatives and principals a more diffuse

picture of circumstances than is assumed in the usual models."

Relative to the classical models, the present paper, building on the robust contracting

literature started by Carroll (2015), relaxes the assumption that at the time of contracting

the principal (or investor) knows exactly the set of technologies available to he agent

(or entrepreneur) to convert effort into profits and thus faces a more diffuse picture of

circumstances. A technology is a family of distributions, indexed by effort, which satisfies

the monotone likelihood ratio property. I assume that the principal knows two things:

(i) a specific ‘baseline’ technology2 which will certainly be available to the agent, and

(ii) a ‘lower-bound’CDF, which is a worst-case CDF that’s a starting point for all other

available technologies. The principal evaluates other possible technologies with a maxmin

criterion. I show that in this ‘robust contracting’ setting monotonic contracts emerge

because the principal is concerned that the agent might have access to a technology that

exploits any non-monotonicity. I show that debt is an effi cient robust contract when the

lower-bound technology is the same as the baseline technology. In this case, debt provides

the best incentives for the agent to work hard by leaving all profits to him after a certain

threshold.

However, I show that equity contracts are Pareto effi cient when the principal fears that

arbitrarily bad technologies could be realized. Intuitively, equity financing guarantees

that the agent will not chose a technology that excessively hurts the principal, since the

incentives of the two are perfectly aligned. In this case, maxmin considerations dominate

the value of providing incentives, consistent with the results of the recent literature on

robust contracting, e.g., Chassang (2013)? and Carroll (2015)?. In intermediate cases,

a richer set of contracts, participating preferred equity (a mixture of debt and equity,

which includes both as extremes) can occur. A familiar intuition from Innes is that debt

contracts can be useful for incentive provision and thus pushing towards first-best effort

levels. When the Knightian uncertainty of the principal is relatively small, many contracts

could give the principal the required payoff and incentives for effort play a role. However,

when robustness concerns are large, it is hard to look beyond the security that an equity

contract provides.

The present paper makes several contributions to the literature. I first show that in

a general robust contracting framework debt contracts can be effi cient, in one extreme

2More generally, this could be a set of profit distribution and effort pairs.
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case. As an intermediary step, I provide an ambiguity foundation for the monotonicity

assumption commonly made in the security design literature.3 Secondly, I show that

in another extreme case equity is effi cient, in line with the robust contracting literature

(Chassang, 2013; Carroll, 2015). Third, I show that in intermediate environments, and for

specific realizations of technology sets, effi cient contracts take the form of participating

preferred equity: a mixture of debt and equity, including both as special cases. The

difference between the worst-case and baseline technology is the key simple parameter

that determines whether the Pareto effi cient contract is debt, equity or perhaps a mixture

of the two. These results are due to the assumption that the principal has a non-trivial

lower-bound technology and thus does not minimize over a set of distributions that is as

rich as the majority of the literature focuses on.4 Finally, I prove a technical result: in

suffi ciently rich maxmin contracting environments, it is without loss of generality to focus

on contracts which are lower semicontinuous. There is no need for ex-ante restrictions

on the set of allowable contracts;5 and this technical result justifies the use of simple

constructive techniques exhibited here.

The rest of the paper is organized as follows: Section 2 presents a simple example with

an application to financial contracting; Section 3 defines the model and makes some re-

marks about the MLRP; Section 4 makes initial general observations which are applied

throughout the analysis which follows; Section 5 considers the "smallest ambiguity" ex-

treme case and shows the Pareto optimality of debt; section 6 considers the largest possible

ambiguity case and shows the effi cient contract is simple equity; Section 7 provides general

results that encompass the preceding observations and shows that in general participating

preferred equity is optimal; Section 8 concludes. ?

2. Financial Contracting Example

To provide a preview of the results, we start with an example which contrasts the classic

problem of contracting with moral hazard and the robust contracting model we study.

The example highlights the Pareto effi ciency of the live-or-die contract in the classic model

3This type of monotonicity assumption has been used by an array of authors, including DeMarzo & Duffi e
(1999)?, Matthews (2001)?, Biais & Mariotti (2005)?, DeMarzo (2005)?, DeMarzo, Kremer & Skrzypacz
(2005)?, Inderst & Mueller (2006)?, Axelson (2007)?, Poblete & Spulber (2012)? and Dang, Gorton and
Holmstrom (2012)?.
4Including Carroll (2015) and Barron et al. (2019)?, among others. This richness assumption is described
in Walton and Carroll (2019) who show the optimality of linear contracts whenever it is satisfied. Of
course, smaller ambiguity is very relevant and has been considered by a number of authors, albeit in
very different settings; see, for example, Bergemann and Schlag (2011)?, Kos and Messner (2015)? and
Madarász and Prat (2017)?.
5For example, Carroll (2015) assumes contracts are continuous.
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and shows that in different robust contracting environments equity and debt contracts

arise.

An entrepreneur (agent) with an idea for a project needs an investor (principal) to

finance it. The investor will provide seed funding for the project, but it is up to the

entrepreneur to put in effort to ensure the success of the project.

To fix ideas, suppose that the possible profit realizations are π ∈ {0, π, π}: either
zero profit, low profit π = 1

2
or high profit π = 1. Once a contract is agreed, the

entrepreneur decides how much effort to put into the project, with more effort leading to

better profit distributions. In particular, the entrepreneur can choose effort e ∈ [0, 1] and

the technology available to him produces random profit given by the following family of

probability distributions indexed by effort:

f0 (π | e) =


1− 2

3
e− 1

3
e2 if π = 0

2
3
e if π = π

1
3
e2 if π = π

. (2.1)

We shall sometimes write distributions in ∆ (0, π, π) as a triple. Observe that the above

technology satisfies the monotone likelihood ratio property. Effort carries a utility cost

for the entrepreneur, given by c (e) = 1
2
e2.

A contract specifies how the profit is split between the investor and entrepreneur; it is

a function, B, which maps profit realizations π 7→ B (π) ∈ [0, π] to the dollars of profit

given to the investor.6 The entrepreneur gets the remaining π − B (π) dollars. In the

example, a contract is just two numbers b = B (π) ∈
[
0, 1

2

]
and b = B (π) ∈ [0, 1]; if

zero profit is realized neither party can get paid by the limited liability assumption. The

goal is to identify the best contract for the entrepreneur, subject to the investor getting

a required return of 1
48
.

Classic Model

In the textbook financial contracting model (Innes, 1990), the investor perfectly knows

the agent’s technology at the ex-ante contracting stage. In this case, the problem we want

to solve is:

max
b,b

max
e

{
f0 (π | e)

(
1

2
− b
)

+ f0 (π | e)
(
1− b

)
− 1

2
e2

}
s.t. f0 (π | e∗) b+ f0 (π | e∗) b ≥ 1

48
,

6Observe that B (π) ∈ [0, π], so that the entrepreneur cannot commit to paying the investor more than
the entire profit and the investor is not liable for more than the initial investment.
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where e∗ is the entrepreneurs choice of effort for a given contract. In this example, for an

arbitrary contract B, this is:

e (B) =
1− 2b

1 + 2b
.

The above problem then becomes (after simplifying):

max
b,b

(1− 2b)2

6 + 12b

s.t.
b+ 2b− 4

(
1 + b

)
b2

3
(
1 + 2b

)2 ≥ 1

48
.

The solution to this program is b = 1
4
−
√

3
8
and b = 0. Under this contract, the agent’s

effort choice is e (1/8, 0) = 1
2

+
√

3
4
' 0.933 < 1, which is a little lower than the first-

best level of effort e∗ = 1. This contract induces a payoff of 1
48
for the principal and

approximately 0.145 for the agent.

This is a discrete version of what Innes (1990) terms a live-or-die contract: the investor

gets all of the profit up to a point (lives) and gets paid nothing if profit is high (dies).

However, a live-or-die contract is sensitive to the investor knowing exactly the technol-

ogy available to the entrepreneur: if the entrepreneur had a more productive technology

than f0, there would be a higher chance of π being realized, in which case the investor gets

b = 0 with a larger probability. These contracts are therefore not robust to assumption

that the investor perfectly knows the production technology ex-ante.

Robust Financial Contracting

I study a model, based on Carroll (2015), in which the investor does not know the

production technology available at the time of contracting. Instead assume the investor

knows two things: (i) a ‘baseline’technology, denoted f0, and (ii) a ‘lower-bound’CDF,

denoted G. The baseline technology will be available to the agent for sure, but there could

be other, unknown technologies also available. The lower-bound CDF can be thought of

as the worst (in terms of first-order stochastic dominance) possible profit distribution

that the agent can choose. The investor has maxmin preferences: she wants to guarantee

herself a payoff of 1
48
under every possible unknown technology that the agent might

choose.

To keep the examples tractable, let the baseline technology be f0, as defined in equation

2.1. We will consider what happens for different choices of the lower-bound CDF G. Intu-

itively, worse lower-bounds imply more ambiguity, i.e., larger sets of possible distributions

for the principal to minimize over.
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Largest Ambiguity. Suppose initially that the lower-bound CDF, denoted G, is arbi-

trarily bad, e.g., a Dirac mass on 0, denoted δ0 = (1, 0, 0). Thus the investor thinks that

any technology could be available in addition to f0.

The investor can guarantee herself a positive profit in this setting, since she knows that

whatever technology choice the entrepreneur makes must give the entrepreneur at least

as much utility as using the optimal effort level under the baseline technology f0. This

level of utility, denoted υ (B), is:

υ (B) = max
e
f0 (π | e)

(
1

2
− b
)

+ f0 (π | e)
(
1− b

)
− 1

2
e2.

The investor still requires a return of 1
48
and evaluates a contract B as follows:

min
fm

fm (π | e) b+ fm (π | e) b

s.t. fm (π | e)
(

1

2
− b
)

+ fm (π | e)
(
1− b

)
− 1

2
e2 ≥ υ (B) ,

where e is the effort the agent would choose if given technology fm. Clearly the minimizing

technology fm depends on the contract B. Let VP (B | f0) be the value function of the

above program. Note that the constraint in the minimization problem is relaxed if e

is smaller7 and thus the worst-case occurs when e = 0. We can therefore re-write the

principal’s problem as follows:

VP (B | f0) = min
fm

fm (π) b+ fm (π) b (2.2)

s.t. fm (π)

(
1

2
− b
)

+ fm (π)
(
1− b

)
≥ υ (B) .

Fixing B =
(
b, b
)
, this program has a linear objective and constraint and therefore has

corner solutions unless b = 1
2
b, in which case any f that satisfies the constraint is a

minimizer and VP (B | f0) = υ(B)b

1−b .

To allow for a ready comparison with the preceding example, assume the agent only

has access to technology f0, so that we want to solve the same Pareto problem as in the

textbook model, except with the robust objective function for the principal:

max
B

max
e

{
f0 (π | e)

(
1

2
− b
)

+ f0 (π | e)
(
1− b

)
− 1

2
e2

}
s.t. VP (B | f0) ≥ 1

48
,

7This is a familiar result from Carroll (2015): one could simply lower the effort levels associated with any
distribution and this "new" technology would be better for the agent.
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Assume by way of contradiction that in the optimal contract for the entrepreneur b > 1
2
b.

Then fm (π) = 0 and fm (π) = υ(B)

1−b , and hence VP (B | f0) = υ(B)b

1−b ≥
1
16
. However, since

b > 1
2
b ≥ 0 this contract cannot be best for the entrepreneur as b could be decreased at

no loss to the investor (and for all e > 0, f (π) > 0, so that the entrepreneur values this).

A similar argument applies if b < 1
2
b, but a more formal treatment is in main text.

Given that b = 1
2
b, we can interpret this as an equity contract that gives the investor

a b percentage stake in the project. In this example we have b = 1
4
, b = 1

8
, so that

the investor gets 25% equity. This implies an effort choice under the technology f0 of

e (1/8, 1/4) = 0.5 < 0.933; not surprisingly less effi cient (further below the effi cient effort

of e∗ = 1) than under the live-or-die contract described in the previous subsection. This

equity contract, gives the agent a payoff of υ (B) = 1
16
< 0.145.

To check that the principal’s robust objective attains the required level of utility given

this equity contract, we note that one worst-case distribution is (like in the case b > 1
2
b)

to set fm (π) = 0 and fm (π) = υ(B)

1−b = 1
16

4
3

= 1
12
(implying that fm (0) = 11

12
). This indeed

generates the required return of VP (B | f0) = υ(B)b

1−b = 1
48
.

Contracts which are good for motivating effort tend to backload rewards for agents

under the MLRP assumption, i.e., they have b > 1
2
b. With this amount of ambiguity

however, these contracts are ruled out by possible actions for the agent which put close

to probability 1 on zero profit and just enough probability on the highest possible profit

outcome to make them attractive. In the example above that meant a worst-case distribu-

tion fm =
(

11
12
, 0, 1

12

)
. It raises the question about what we can say in environments where

the principal is not facing such large ambiguity, i.e., where the lower-bound distribution

does not permit such pessimism.

Small Ambiguity. Suppose now that the lower-bound CDF does not permit any mea-

sure, e.g., let G =
(

5
6
, 1, 1

)
. This lower-bound implies that the principal puts at most

probability 5
6
on the 0 profit outcome. Indeed, this is typical in the worst-case for the

principal and so the question is how to split the remaining 1
6
probability between the low

and high profit outcomes. Given this, the principal’s objective from 2.2 can be rewritten

as:

VP (B | f0) = min
p∈[0, 16 ]

pb+

(
1

6
− p
)
b (2.3)

s.t. p
(

1

2
− b
)

+

(
1

6
− p
)(

1− b
)
≥ υ (B) .
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If b < b, the solution to the minimization problem has f (π) = 0 and f (π) = υ(B)

1−b . This

can never be optimal since we could decrease b (to the level of b) and the investor’s payoff

would be unaffected. Such a change in the contract is obviously good for the entrepreneur,

strictly so if there is a positive probability of profit π being realized. Thus, it is without

loss of generality to consider monotonic contracts, i.e., contracts for which b ≥ b.

Given that b ≥ b, the solution to the unconstrained version of the principal’s minimiza-

tion problem is VP (B | f0) = b/6. We will later check that the agent’s incentive constraint

is satisfied for the relevant choice of b and b.

Now, to allow comparison to the previous examples, suppose that the only available

technology to the agent is f0.8 We want to solve the Pareto problem given by:

max
B,

max
e

{
f0 (π | e)

(
1

2
− b
)

+ f0 (π | e)
(
1− b

)
− 1

2
e2

}
s.t.

1

6
b ≥ 1

48
, b ≤ b.

Unsurprisingly, the solution to this is b = 1/8 and b = 1/8; a "debt" contract. The effort

choice under this contract is

e∗ =
1− 2b

1 + 2b
= 0.6,

which is higher than 0.5, the effort choice under the equity contract in the largest ambi-

guity case.9 This is still below the first-best effi cient effort level e∗ = 1, but moves in the

direction of effi ciency. Unsurprisingly, the agent’s overall utility is higher as well. For this

contract the agent’s utility from the f0 technology is υ (B) = 3/40 > 1/16; decreasing the

principal’s ambiguity makes the agent better off.

Lastly, one of the minimizing probability distributions for the principal in expression

2.3 is
(

5
6
, 0, 1

6

)
; this action is feasible since it gives the agent utility 1

6
7
8

= 7
48
> 3

40
and

thus satisfies his incentive constraint.10 If the lower-bound G was further improved debt

contracts remain optimal in this example, but the repayment level the investor needs to

meet her required return decreases.

8Our choice ofG technically rules out some low effort levels for the agent from technology f0. We disregard
this and later verify that these effort levels would not have been chosen in a subsequent footnote.
9Given that the effort chosen for the debt contract is e = 0.6, this induces the probability distribution
over profits of

(
12
25 ,

2
5 ,

3
25

)
, which indeed first-order stochastically dominates G.

10There are other minimizing distributions for the principal which make the agent’s incentive constraint
tight.
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3. Model

I study a moral hazard model where the agent may have technologies which are unknown

to the principal at the ex-ante contracting stage. A principal (she) contracts with an

agent (he), who is to take a costly, private action which will randomly produce a publicly

observable profit outcome π ∈ [0, π] =: Π.

More formally, an action is a pair (e, F ) ∈ [0, e]×∆ (Π), where e ∈ [0, e] is interpreted

as a level of effort, F is a cumulative distribution function (CDF) over profit outcomes and

∆ (Π) is the set of Borel measures over Π, which we endow with the topology of weak con-

vergence. The function mapping effort levels to utility cost for the agent, c : [0, e]→ R+,

is common knowledge and increasing. We normalize c so that c (0) = 0. A technology for

the agent is a method for converting effort into random profit outcomes, i.e., a technology

is a function F : [0, e] → ∆ (Π). Instead of writing (F (e)) (π) we write F (π | e). Since
functions can be represented by their graphs, we can think of technology F as the graph

of F :

Γ (F ) = {(e, F (· | e)) ∈ [0, e]×∆ (Π) : e ∈ [0, e]} ,

that is, technology F is simply a set of actions (where effort levels are not repeated).

Where it causes little confusion we will abuse notation and denote Γ (F ) by F . If we

also assume that F is continuous in e and satisfies a stochastic concavity property11 and

that c is strictly increasing and convex, this would guarantee that an optimal effort choice

for the agent exists and that first-order conditions are suffi cient for describing it (Jewitt,

1988; Athey, 2000). These technical assumptions are common in the classic moral hazard

literature, however are not generally necessary for our purposes.

The textbook models of moral hazard, starting with the classic paper by Holmström

(1979)?, assume that there is a single profit technology, F0, which is common knowledge.

This literature requires further assumptions on the technology to deliver general results;

in particular, these papers assume that F0 satisfies the monotone likelihood ratio property

(MLRP). MLRP is a natural regularity condition on the profit technology which formalizes

the idea that more effort should lead to better profit distributions. Consistent with this

literature, we will often be interested in cases where the agent is choosing from technologies

F that satisfy the MLRP. In many places this assumption can be relaxed, as will become

obvious when the problem is simplified.

We will need a more general version of the MLRP than is commonly used, as allow a

rich set of probability measures and in particular measures which do not have densities.

11F satisfies stochastic concavity, i.e., for all π, −
∫ π
0
F (π′ | e) dπ′ is concave in e.
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The generalization of MLRP, due to Athey (2002)?, which extends the usual definition

using Radon-Nikodym derivatives is discussed in the online appendix.

I consider a robust moral hazard problem in which the assumption that there is a single

common knowledge profit technology, F0, is relaxed. In particular, the principal knows

that some baseline technology F0 is available to the agent, but there could be other,

unknown, profit technologies also available. This builds on the model of Carroll (2015)?

and the assumption of a known technology plays the same role here– it guarantees a

minimum utility level for the agent can attain under any contract. This utility allows the

principal to constrain the set of technologies that the agent would be willing to choose and

thus arbitrarily bad technologies which produce no profit can be ruled out. We simplify

the analysis and notation without losing this qualitative property by assuming that F0 is

a constant technology (i.e., F0 (·|e) = F0 (·|e′) for all e, e′); we shall therefore write F0 for

the CDF F0 (·|0).12

On top of the baseline technology F0, we assume that the principal knows a lower-

bound CDF,13 G, such that any realized technology (first-order) stochastically dominates

G. This is all the set of all possible technologies as far as the principal is concerned be:

DG :=
{
F ∈ ∆ (Π)[0,e] : Γ (F ) compact, F (· | e) ≤ G for all e

}
.

If G = δ0, then the constraint holds trivially for any CDF. As G approaches F0, the

amount of ambiguity the principal faces is diminishing. We start with these two extremes

and will later consider a generic lower-bound CDF, G.

A contract, B : [0, π]→ R+, specifies the payment made to the principal as a function

of the realized profit. We assume B is Borel measurable with respect to the usual topology

on [0, π] ⊂ R and B (π) ∈ [0, π] for all π (i.e., the investor’s liability is limited to the initial

investment and the entrepreneur’s liability is limited to his entire profit).14

12Note that in the financial contracting example in section 2 we had a non-constant F0. More generally,
the F0 CDF can be thought of as the distribution that would have been chosen by the agent from a
non-constant technology. This would however complicate the analysis somewhat as changing a contract
may also change the chosen CDF, without affecting the substantive role of F0, which is to provide a
bound on the agent’s utility.
13We could assume that the principal knows a lower-bound technology. As we will see, the relevant bound
for the principal’s worst-case analysis is a profit distribution the agent can costlessly induce. As such, we
can replace this assumption by a lower-bound technology. If the technology is suffi ciently unproductive
(a lower-bound on how effort gets converted into marginal benefit in terms of profit distributions), the
analysis is unchanged.
14The literature often makes stronger assumptions, e.g., Carroll (2015) and Walton and Carroll (2019)
assume contracts are continuous. Given that live-or-die contracts are discontinuous and optimal in the
classic setting, we prefer to allow for a more general class of contracts.
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The agent is a risk-neutral expected utility maximizer: given the set of technologies

available to him, A = {F0, F1, ..., FN}⊂ DG, and a contract, B, he solves:

sup
(e,F )∈Γ(A)

∫ π

0

(π −B (π)) dF (π | e)− c (e) , (3.1)

where Γ (A) = Γ (F0) ∪ Γ (F1) ∪ ...Γ (FN) is a set of actions representing the union of the

possible actions under (or graphs of) the various available technologies. We sometimes

abuse notation and write (e, F ) ∈ A, where we use A to denote Γ (A). Let VA (B | A)

denote the value function of the above. The assumption that A is a finite union of

technologies ensures that Γ (A) is compact, given our previous assumptions.15 We say

that the agent’s technology set A satisfy MLRP if Fi respects the MLRP order with

respect to effort for i = 1, ...N .

Even after the regularity assumptions we have made, note that the supremum in the

above problem may not be attained unless we further restrict the set of permissible con-

tracts B. Although restrictions are common in the literature, e.g., Carroll (2015) considers

continuous contracts, one of the first technical results in this paper is that it is without

loss of generality to assume B is lower semicontinuous, which implies that the supremum

in equation 3.1 is attained. Thus, it is sensible to describe the arguments which maximize

the agent’s utility, A∗ (B | A) ⊂ Γ (A).

Principals are extremely ambiguity averse about the potential technologies available to

the agent, but are risk-neutral with respect to risks they understand. In particular, the

principal’s utility is

VP (B | F0) = inf
A s.t.

F0∈A⊂DG

inf
(e,F )∈A∗(B|A)

∫ π

0

B (π) dF (π | e) .

The assumption that the principal is getting the worst possible outcome when the agent

is indifferent is largely inconsequential, since the worst-case A will usually have a single
minimizing action.16 Furthermore, when we show that restricting to lower semicontinuous

contracts is without loss of generality, we will have that the infimum above is attained

and therefore we may think of it as a minimum.

15Weaker assumptions on A also suffi ce; in particular, one could show that if A is compact in the right
topology then Γ (A) is also compact.
16Brooks (2014)? makes the same assumption as above, while Carroll (2015) assumes the agent maximizes
the principal’s utility when indifferent. The only instance in which the above is consequential is when we
have a contract B and a baseline technology F0, such that at the lowest effort level under F0 the agent
is obtaining the maximum possible profit he can get given B. Carroll (2015) rules these out by requiring
contracts to be "eligibile". I make the assumption above predominantly because it avoids special cases
and streamlines proofs.
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We want to characterize Pareto effi cient contracts in this environment. It is not im-

mediate how a Pareto problem should be posed in this case, since the agent perfectly

knows the technology set A, while the principal faces Knightian uncertainty. The idea
is to give the agent any extra utility that results from the realized A, while satisfying a
robust utility constraint for principal; this is natural since the principal does not express

a preference over a specific A, but rather takes a minimum over possible A. As such, for
each technology set, A, we want to solve for the Pareto frontier,17 given by the following
problem:

max
B

VA (B | A) (3.2)

s.t. VP (B | F0) ≥ R,

where R ∈ [0, Rmax] denotes the location on the frontier and Rmax is the maximum

payment the principal can be guaranteed (the point at which the agent’s participation

constraint binds).

Since ourA is very general, and in particular does not inherit the MLRP from individual
technologies,18 we will typically need to assume some additional structure to be able to

solve the above Pareto problem. In problems of this type in the classical literature,

starting with Holmström (1979)?, without the MLRP assumption we cannot hope to

provide general results. The same thing is true in the robust contracting problem, unless

the robustness of the principal’s preferences simplifies the problem significantly. While

this indeed happens in the largest ambiguity case, it is not generally true when the amount

of ambiguity is limited.

In summary: the key features of the above assumptions is that (1) there is common

knowledge of a lower-bound CDF and a constant baseline technology that the agent can

choose and (2) we will characterize solutions to the Pareto problem, as stated in program

3.2, and mostly focus on the case where the agent is choosing from an MLRP set of

technologies A.

4. Preliminary Analysis

This section makes several preliminary observations, which greatly simplify the proofs

of the major results. Several results in this section may be of independent interest. Some

of these results are familiar from the literature studying robustness in mechanism design,

17Note that the notion of a Pareto frontier in the textbook setting also makes reference to a specific
technology; in that case there is a single technology which is common knowledge.
18We will describe this in detail in section 6.
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but since the literature is focused on the largest ambiguity case, i.e., G = δ0, proofs are

included in the online appendix. The two most novel results of this section are that robust

contracts are (i) lower semicontinuous and (ii) monotonic in profit (see next subsection).

A first observation, familiar from the literature, is that in finding the principal’s worst-

case scenario we can, without loss of generality, assume this occurs with zero effort from

the agent. This is simply because the principal’s worst-case analysis only considers CDFs

that the agent would choose, i.e., by revealed preference, distributions F (π | e) which
satisfy: ∫ π̄

0

(π −B(π))dF (π | e)− c (e) ≥ VA (B | F0) ,

but since c (·) is increasing this constraint is most permissive when e = 0. As such, a

principal who faces unknown technologies can still bound her payoff. Aside from this

revealed-preference constraint, she also has the knowledge that the chosen distribution

must first-order stochastically dominate the lower-bound G.

Lemma 4.1. For any Borel contract B, we have

VP (B | F0) = inf
F≤G

{∫ π̄

0

B(π) dF (π) :

∫ π̄

0

(π −B(π))dF (π) ≥ VA (B | F0)

}
. (4.1)

If B is lower semicontinuous,

VP (B | F0) = min
F≤G

{∫ π̄

0

B(π) dF (π) :

∫ π̄

0

(π −B(π))dF (π) ≥ VA (B | F0)

}
. (4.2)

Proof. See appendix A.1. �

The first part of the lemma is a generalization of similar observations made in theorem

1 in Chassang (2013) and lemma 2.2 in Carroll (2015). In a moral hazard setting both of

these papers find that the principal can essentially only bound her utility by the knowledge

that the agent will not choose a worse outcome than what he is guaranteed under the

known technology. Madarász and Prat (2017)? exploit a similar argument in a screening

setting. The main difference between the above proof and earlier literature arises from

the fact that the principal has a second way of bounding the worst-case outcome, the

lower-bound technology G. The main difference in the proof above to the previous results

is in dealing with the case when G 6= δ0 and the fact that, because B is only assumed

to be Borel, we have to deal with the infimum problem for the principal (and supremum

problem for the agent). The second part of the lemma is a technical result which follows

from a careful application of the theorem of the maximum.
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Figure 4.1. Proof idea for lemma 4.2.

Secondly, without loss of generality, we can restrict attention from all Borel contracts

B to lower semicontinuous contracts. Since Innes (1990) finds that optimal contracts are

not continuous (live-or-die contracts are not continuous, given our definitions), we do not

wish to ex ante restrict our analysis to continuous contracts in the moral hazard problem

presented above.19 Let B̂ denote the lower semicontinuous hull of B, i.e., B̂ is the greatest

lower semicontinuous function majorized by B.

Lemma 4.2. For any Borel contract B and any G ∈ ∆(Π), we have that VP (B | F0) ≤
VP (B̂ | F0), i.e., the principal prefers the lower semicontinuous contract. Furthermore,

for any A ⊆ DG, VA(B̂ | A) ≥ VA(B | A), i.e., the agent also prefers the lower semicon-

tinuous contract.

Proof. See online appendix B.2. �

The proof of this lemma is involved, since it uses several approximation arguments.

The above, combined with lemma 4.1 implies that the principal’s preferences are given

by equation 4.2, a fact we will continually use.

19For example, Carroll (2015) and Walton and Carroll (2019) assume continuous contracts.
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The intuition behind the assertion that VP (B | F0) ≤ VP

(
B̂ | F0

)
is represented in

figure 4.1. The figure plots both CDFs and contracts on the same axis, which is aided

by assuming π = 1. The curve in blue is the lower-bound CDF G, and the 45◦ line is in

dashed grey. A proposed contract, B, is in green; B is not lower semicontinuous. The

infimum sequence of CDFs, represented in red, denoted F̃ε, puts mass on π ever closer to

the jump point of B, as figure 4.1 shows. However, we cannot shift the mass all the way,

since this limiting CDF would result in a higher payoff to the principal (since the B under

consideration is upper semicontinuous). Clearly, when the limiting CDF is considered

with the lower semicontinuous hull of B (which in this case just involves lowering the

function value at the jump point) we obtain the same payoff as the infimum of CDFs.

The figure also illustrates the significance of this lemma– we are able to look at a single

minimizing CDF (the limiting one) instead of having to use sequences.

Lemma 4.2 therefore shows that replacing a contract by it’s lower semicontinuous hull

is preferred by both the principal and agent and thus we focus on lower semicontinuous

contracts without loss of generality. Recall that B̂ denotes the lower semicontinuous hull

of B. For a lower semicontinuous contract B, and a fixed technology set A, we write the
agent’s preferences as follows

max
F∈A
e∈[0,e]

∫ π

0

(π −B (π)) dF (π | e)− c (e) , (4.3)

and denote by VA (B | A) and A∗ (B | A) the value function and argmax of the above,

respectively. Note that these are well defined since π −B (π) is upper semicontinuous.

4.1. Robustness of Monotone Contracts

Given the above preliminaries, the key assertion of this subsection is that robustness

considerations lead to monotonic contracts. The intuition for this is that a principal facing

a non-monotonic contract will assume that a productive technology which exploits the

non-monotonicity will be available to the agent and therefore disregard any non-monotonic

aspects of the contract.

Theorem 4.3. For any G ∈ ∆ (Π) and any non-monotonic contract B (π) there exists a

monotonic contract Bm (π) such that

VP (B | F0) ≤ VP (Bm | F0)
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Figure 4.1. Proof idea for theorem 4.3.

i.e., the principal (weakly) prefers the monotone contract, and since B (π) ≥ Bm (π), we

have that for all A, VA(B | A) = VA(Bm | A), i.e., the agent prefers the monotonic

contract.

Proof. See appendix A.2. �

The intuition for the above theorem is given in figure 4.1. The idea is that if a principal

is offered a non-monotonic contract B, the green line in figure 4.1, she would discount the

non-monotonic part, since in the worst-case analysis she thinks that nature will endow

the agent with a technology which puts no mass on the non-monotonic part. From the

perspective of the principal, we can thus replace this contract by its lower monotone hull,

Bm, the yellow line in the figure, if we assume that the feasible set of distributions for the

agent does not change. However, when B is replaced by the Bm, the agent’s utility from

the baseline technology, F0, increases (which decreases the set of possible distributions the

principal is minimizing over). While the change from B to Bm, also affects the way the

agent compares contracts this turns out not to introduce complications for the principal,

as the same sorts of distributions end up being feared.
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5. Smallest Ambiguity, F0 (· | e) = G

This section and the next consider the two extreme cases of the model and build in-

tuition for the results. This section considers the smallest ambiguity case, where the

lower-bound (G) and reference (F0) technologies are the same. The main result is the

Pareto optimality of debt contracts when the agent’s realized technology MLRP domi-

nates G = F0.

Overall, the proof is very much related to the argument in Innes (1990), but there are

two major differences. First, the restriction to monotonic contracts is a result of theorem

4.3, not an assumption. Second, we need to generalize the definitions and key lemmas to

allow for non-differentiability of CDFs.

5.1. Result

The main result of this section is that Pareto optimal contracts take the form of debt.

Theorem 5.1. For any A ⊂ DG, which MLRP dominates G a solution to:

max
B

VA (B | A) ,

subject to VP (B | F0) ≥ R,

is BD
z (π) := min (π, z) for some z ∈ [0, π].

The proof relies on an important property of the monotone likelihood ration order is

summarized in the following lemma (from Innes, 1990).

Lemma 5.2. Let φ (π) be a function such that φ (π) ≥ 0 for π ≤ πB, φ (π) ≤ 0 for

π ≥ πB and either:

(1)
∫ π

0
φ (π) dF (π | eL) = 0, or

(2)
∫ π

0
φ (π) dF (π | eL) ≤ 0 and φ (π) decreasing for π ≥ πB.

Then, for any eH > eL and any MLRP family F , we have that
∫ π

0
φ (π) dF (π | eL) ≥∫ π

0
φ (π) dF (π | eH).

This is a generalization of lemma 1 from Innes (1990). The line of argument in the proof

is similar, but we need to take care of technical diffi culties arising from the non-existence of

densities. The lemma is key in the proof of the main theorem, since it says that replacing

generic monotone contracts by debt contracts implies higher marginal returns to effort.

The proof of the theorem proceeds by showing that when a monotonic non-debt con-

tract, B, is replaced by an appropriately chosen debt contract the agent and principal

are both (weakly) better off. Working out the debt contract to use is a two-step process:
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there is the standard step, familiar from Innes (1990), where a debt contract is chosen

to replace a monotone contract B to make the agent indifferent given the effort he was

choosing from a MLRP family F . However, we also find a debt contract that makes the

principal indifferent under the worst-case distribution (which in this case is G = F0). The

latter debt contract involves a (weakly) lower repayment level, since whatever the distri-

bution the agent was using first-order stochastically dominates G, and thus replacing B

with it makes the agent better off, while the principal is still guaranteed return R.

Corollary 5.3. The repayment level, z, in the optimal contract, BD
z (π) = min (π, z), is

increasing in R and decreasing in G.20

The above corollary follows since the level of debt is chosen so as to guarantee the

principal the required utility R under the worst-case scenario where G and only G is

available. This implies that the level of repayment z is increasing in R. Furthermore if

G ≤ G′, the level of repayment required under G′ would be greater than under G.

5.2. Numerical Example

To demonstrate the effi ciency of debt contracts, let us consider a simple example. Let

Π = [0, 1], e = [0, 1], c (e) = 1
10
e2 and G = F0 = U [0, 1]. Fix a level of principal utility

R. As discussed, the worst-case scenario for the principal is that only the (constant)

technology F0 is available to the agent21. The principal is thus indifferent between many

contracts. In particular, the principal is indifferent between an equity and debt contract

defined as follows:

BE
α (π) = απ, with α = 2R

BD
z (π) = min (π, z) , with z = 1−

√
1− 2R, and

,

since: ∫ 1

0

BD
z (π) dG (π) = 2R

∫ 1

0

π dπ = R,

and:∫ 1

0

BD
z (π) dG (π) =

∫ 1−
√

1−2R

0

π dπ +
(

1−
√

1− 2R
)(

1−G
(

1−
√

1− 2R
))

=

(
1−
√

1− 2R
)2

2
+
(

1−
√

1− 2R
)√

1− 2R

= 1−
√

1− 2R−R + 2R +
√

1− 2R− 1 = R.

20If we think of potential G CDFs as being ordered by first-order stochastic dominance.
21This is because contracts have to be monotonic and the agent gets his "promised" utility under G.
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Consider now an agent with the following technology set A:

F (π | e) = πe+1, for e ∈ [0, 1] .

Note that this is an MLRP technology set and that F (π | e) ≤ G (π) for all e. Figure

5.1 plots the utilities of the agent under the two contracts above, given different possible

reservation utilities of the principal R.
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Figure 5.1. Numerical example illustrating Pareto Effi ciency

We see in figure 5.1 that although the principal is indifferent between the contracts,

the agent clearly prefers the debt contract for all R ∈ (0, Rmax). Note that in this case

Rmax = 1/2. When R = 0 or R = Rmax the debt and equity contracts are the same– they

either award all profit to the agent or principal.

6. Largest Ambiguity, G = δ0

We now consider the case where the lower-bound CDF is trivial, so that the principal

is minimizing over the largest set of (possibly) available technologies. We also do not
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Figure 6.1. Proof idea for theorem 6.1.

need to assume that the agent is choosing from an MLRP family of technologies for this

results.

Theorem 6.1. For any A ⊂ Dδ0, a solution to:

max
B

VA (B | A) ,

subject to VP (B | F0) ≥ R,

is Bα (π) = απ for some α ∈ [0, 1], i.e., a linear/equity contract.

The intuition for this proof is that an extremely uncertain principal places a huge

premium on having preferences perfectly aligned with the agent, which is what happens

when the contract is linear. Even if there are effi ciency gains from providing stronger

incentives for the agent at the upper end of profit outcomes, as is the case when A is an
MLRP set, this benefit is over-ridden by the principal’s pessimism.

The proof of theorem 6.1 is illustrated in figure 6.1. The left-hand panel gives the

intuition for why contracts have to be (weakly) convex. In particular, consider a concave

contract B (in green). In performing her worst-case analysis, the principal is wants to

find the worst way (for her) that the agent can gain exactly the utility guaranteed by

F0, υ := VA (B | F0). Given that the set of CDFs she can minimize over is unrestricted,

she will put mass on just two points: there will be a lot of mass on 0, since this gives

her no payoff, and just enough mass on the point which minimizes B(π)
π
, i.e., the point

which minimizes what the principal gets relative to what the agent gets. In this case
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"just enough" means to make the agent choose this constructed CDF (at zero effort

cost) over whatever was optimal in F0. This worst-case CDF is illustrated by FB in the

figure. Now, consider replacing B by the lower convex hull, Bc. Note that at the worst-

case the principal is indifferent between B and Bc. Furthermore, since Bc is linear, it

satisfies a "no-weak-point" constraint, so that the minimizing CDF for the principal is

any CDF which delivers the required utility to the agent– including FB. This replacement

therefore makes the principal no worse off, but makes the agent weakly (and generally

strictly) better off.

The right-hand panel in figure 6.1 provides intuition for why contracts have to be

linear. In particular, consider the principal’s worst-case analysis when faced with a convex

contract B, where the agent is guaranteed some level of utility υ. Jensen’s inequality

implies that the worst-case scenario is a Dirac distribution δπ∗ at the lowest level of profit

which gives the agent exactly utility υ. One can replace B by a linear contract Bα that

goes through (π∗, B (π∗)) and we again note that the principal is no worse off. It is not

immediate that the agent likes this replacement however, since there is an interval, [0, π∗],

on which Bα > B. The agent does like this replacement however– since the agent’s

average payoff under whatever technology he was choosing from A is at least υ, it cannot
be the case that the agent is putting much mass on [0, π∗] relative to the mass this CDF

puts on [π∗, π]. Another application of Jensen’s inequality ensures that this replacement

indeed gives the agent higher utility (and strictly higher if the agent’s chosen distribution

is not δπ∗).

We say that A has full support, if for all Fi ∈ A and e ∈ [0, e], supp(Fi(· | e)) = [0, π].

Corollary 6.2. Equity is the unique solution to the above problem if R ∈ (0, Rmax) and

A has full support.

The equity contract is the unique effi cient contract if the agent’s technologies have full

support and if the principal is not requiring a 0 return or would only accept 100% equity.

The robust contracting framework of Carroll (2015) maps closely to the largest am-

biguity case analyzed above. One difference is that Carroll (2015) focuses on unknown

actions, as opposed to technologies, and does not require MLRP (and indeed our proof

above did not require it either); but this is in fact minor. The key difference is that

Carroll (2015) focuses on the principal-optimal problem and the main result of the paper

is stated below.
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Theorem 6.3 (Carroll, 2015). A solution to:

max
B

VP (B | F0) ,

subject to VA (B | A) ≥ 0,

is Bα (π) = απ for some α ∈ (0, 1).

The above is a linear contract or, in our security-design-inspired language, the solution

to the principal problem is an equity contract. As we illustrated in the discussion in

section 5, this does not necessarily imply that the equity contract is effi cient. However,

Carroll (2015) also shows a uniqueness result: under the same conditions as in corollary

6.2, equity is the unique principal-optimal contract. This implies that equity must also

be the effi cient contract under these assumptions. Relative to Carroll (2015), the novelty

of theorem 6.1 is therefore to show that equity is an effi cient contract even when the

uniqueness result fails. A contribution of the above is also the constructive nature of

the proof of the result, which highlights the sorts of distributions feared by the principal

(Carroll; 2015 used an elegant separating hyperplanes argument).

7. Intermediate Ambiguity

We now combine the insights from the study of the extreme cases in the two preced-

ing sections to say something about intermediate levels of ambiguity. Let BP
α,z (π) =

min (π, z + απ) for some z ∈ [0, π], α ∈ [0, 1] with z + απ < π; this is also known as

participating preferred equity.

Theorem 7.1. For any contract B, there exists an MLRP technology set A, such that
the agent prefers BP

α,z (π) to B and VP
(
BP
α,z | F0

)
≥ R, if R is suffi ciently low.

The above theorem is more restrictive than previous results, because it only looks at

specific realized technology sets A that the agent may have access to, as opposed to

general sets which the previous two results allowed. This is to be expected, as in general

many contracts will satisfy the principal’s robust constraint and the actual technologies

available to the agent will impact the sort of contract that is Pareto effi cient. However,

the above suggests that participating preferred equity BP
α,z has features that may make

it optimal in a class of technology sets.

Participating preferred equity contracts can be thought of as a mixture of debt and

equity. An investor issues a debt component and an equity component– the investor is

entitled to all profit up to the repayment level of z
1−α and is then entitled to an additional
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Figure 7.1. Proof idea for theorem 7.1.

α share of any profit above this level. The class of preferred equity contracts includes

the simple debt and equity contracts we proved were effi cient in previous sections. In

particular, α = 0 implies that BP
α,z = BD

z or simple debt, while z = 0 implies BP
α,z = BE

α

or simple equity.

We have already seen that debt contracts are good for incentive provision when the

agent is choosing from an MLRP set of technologies. However, we now need to be careful

that the replacement of a generic contract by a debt one does not pose a problem for the

principal’s utility and is still preferred by the agent, given the agent’s realized technology

set. This was straightforward for arbitrary technology sets in the case where ambiguity

was small, since the principal’s worst case distribution was G = F0.

Now, when ambiguity is intermediate and thus VA (B | F0) is suffi ciently bigger than

VA (B | G) we can make an unambiguous improvement if we are starting from the debt

contract, as shown in figure 7.1.

Take any debt contract B, shown in green in figure 7.1, and consider the minimizing

CDF subject to some arbitrary G. The worst-case CDF, FB, for contract B is shown in

red in the figure. This CDF has the feature that it puts mass on an interval of small profit

realizations and on π, as π minimizes the ratio of what the principal gets relative to the
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agent and thus this is the most costly way for the agent to get at least utility VA (B | F0).

The same logic was used in section 6 when we deduced the Pareto optimality of equity

contracts.

Given the minimizing CDF, FB, we see that B can be replaced by BP , a preferred

equity contract that is the lower convex hull of contract B on the region where FB had

no support. Note that a minimizing CDF for contract BP is still FB, thus the principal

is indifferent to this change. The agent clearly prefers contract BP since BP ≤ B.

Corollary 7.2. The principal’s payoff from contract B (π) = min {π, z + απ} is:

R =

∫ z
1−α

0

π dG+
αVA (B | F0) + z

(
1−G

(
z

1−α
))

(1− α)
.

This corollary gives a relation between α and z, in terms of the known parameters of the

model– the lower-bound CDF G and the utility afforded to the agent under technology

F0, VA (B | F0).

If G = δ0, then for any z ≥ 0 we have that:

R =

∫ z
1−α

0

π dG+
αVA (B | F0) + z

(
1−G

(
z

1−α
))

(1− α)

=
αVA (B | F0)

(1− α)
,

thus the agent is (at least weakly) better offby setting z = 0, since any z > 0 is dominated.

If G = F0, and since worst-case scenario for Principal is G:

R =

∫ z
1−α

0

π dG+
αVA (B | F0) + z

(
1−G

(
z

1−α
))

(1− α)
,

=

∫ z
1−α

0

π dG+

∫ π

z
1−α

(απ + z) dG,

which implies that we must have:∫ π

z
1−α

(απ + z) dG =
αVA (B | F0) + z

(
1−G

(
z

1−α
))

(1− α)
.

The above holds when α = 0 and, as we argued earlier, such a debt contract provides the

best incentives when the agent is choosing from an MLRP set in the smallest ambiguity

case.

The characterization in corollary 7.2 implies that as G improves towards F0 the set of z

and a pairs which are undominated increases continuously (as the expression is continuous

in G). For G suffi ciently close to F0 debt contracts become possible, however they may not
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be chosen for every realization of the technology set since the repayment level, z, may be

too high. When G gets even closer to F0, the repayment level decreases and debt contracts

are certainly effi cient when G = F0 for any MLRP realization of A. For suffi ciently good
realized technology sets, debt becomes Pareto optimal for G where F0 < G.

8. Discussion

This paper has considered the question of Pareto optimal contracts, motivated by a

central planner who cares about effi ciency. Is there a way to decentralize the problem?

To do so, we need to be careful to avoid any possibility of signaling and, as such, consider

the following timing:

(1) The agent, knowing his realized technology set A, as well as the information
available to the principal (the baseline technology F0, and lower-boundG) proposes

a set of contracts B;
(2) The principal accepts or rejects the set of contracts B, based on the understanding

that the agent will be able to select any B ∈ B. The principal has an ex-post
utility constraint, so that he will accept the set of contracts if for any B ∈ B,
V (B | F0) ≥ R;

(3) The agent chooses some B ∈ B and some (e, F ) ∈ A;
(4) Nature realizes profits and they are shared: the principal gets B (π) and the agent

gets π −B (π).

In this game it is a weakly dominant strategy for the agent to propose the largest set of

contracts that will get accepted, which is any contract B for which V (B | F0) ≥ R. This

is related to Myerson’s (1983)? principle of inscrutability in informed principal models:

the informed party (the principal in Myerson’s model, the agent here) should not want

to reveal their private information if they can help it.22

The maxmin preference of the principal actually helps us here. If the principal was

Bayesian and had an ex-ante participation constraint, signaling could clearly be helpful as

it could indicate to the principal that "certain technologies are unlikely" and can therefore

relax the participation constraint in favor of the agent. With a maxmin principal this

signaling benefit is less obvious, since for any contract and any technology realization the

principal has to get the required return R.

22Alternatively, we could have assumed that the agent is not yet aware of the set A in stage 1.
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In the financial contracting interpretation, this decentralization looks potentially like a

reverse convertible bond. With such a contract the issuer has the right to convert between

a pre-agreed set of contracts, e.g., the choice that the agent gets from the set B.

8.1. Conclusion

This paper has studied a general model of robust contracting when the principal does

not know ex-ante all of the profit technologies available to the agent. The relaxation of this

assumption of the textbook financial contracting model gives us a lot of traction. Firstly, it

provides a complete theory of debt contracts which was the goal of this classic literature.

Secondly, it shows that other, readily observable, contracts such as equity are Pareto

effi cient. More generally, these are examples of contracts in the class of participating

preferred equity which we find to be Pareto improving for specific realized technology

sets. While debt and equity are clearly common contracts, empirical work on venture

capital also suggests participating preferred equity is not uncommon in practice.23

The key empirical implication of the results is that we should see firms in ‘new’ in-

dustries (such as social networking or biotech startups), where investors have little prior

experience and face a lot of ambiguity about how the firm is going to generate prof-

its, funded by equity contracts. Conversely, firms in ‘established’ industries (such as

restaurants or accounting offi ces), where investors have a lot of experience and face less

Knightian uncertainty, should be financed by debt.

In a very different set of models, focusing on costly information acquisition instead of

moral hazard, a similar type of empirical prediction results. Dang, Gorton and Holmstrom

(2012)? and Yang (2013)? find that in cases where information acquisition by the investor

is not socially optimal (e.g., if the project is in a well-established industry), debt contracts

should be observed as they provide the worst incentives for costly information acquisition.

Yang and Zeng (2014)? generalize this model and find that if there are enough benefits

from information acquisition by the investor (e.g., if the project is in a new industry), the

class of participating (convertible) preferred equity contracts might be optimal.

Relative to the theoretical literature on robust contracting this paper shows that the

robust environment leads to natural contracts, such as debt, even in environments where

the pessimism of the principal is restricted, i.e., where the richness condition of Walton

and Carroll (2019) fails. It also makes several novel technical observations concerning

the general robustness of monotone contract and the ability to restrict attention, without

23Kaplan and Strömberg (2003)? find that 40 percent of venture capital funding rounds in their data set
involve participating preferred equity.
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loss of generality, from all Borel measurable contracts to lower semicontinuous ones. This

latter observation is relevant as it justifies the use of minima as opposed to infima in the

literature.

The analysis in this paper makes headway using two key simplifying assumptions.

Firstly, in obtaining general results, we are restricting the analysis to cases where the

agent is choosing from MLRP technology sets. This is to be expected, as the classic

contracting literature also requires MLRP technologies to provide general conclusions,

but it does leave open the question of what we can say without any restriction on the

technology sets. Secondly, in the principal’s minimization problem we are allowing for a

relatively rich set of distributions for the principal to minimize over.24 While we reduce

the ambiguity of the principal by decreasing the size of the minimizing set (by increasing

G), the techniques employed require this set to be rich (i.e., all CDFs that dominate G).

It is natural to consider what happens when the richness of the minimizing sets is further

restricted. These are two possible directions for future research.

24We also do not impose an upper-bound technology, but this is of far less improtance.
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Appendix A. Proofs

A.1. Proof of Lemma 4.1

Lemma 4.1. (i) For any Borel contract B, we have

VP (B | F0) = inf
F≤G

{∫ π̄

0

B(π) dF (π) :

∫ π̄

0

(π −B(π))dF (π) ≥ VA (B | F0)

}
.

(ii) If B is lower semicontinuous,

VP (B | F0) = min
F≤G

{∫ π̄

0

B(π) dF (π) :

∫ π̄

0

(π −B(π))dF (π) ≥ VA (B | F0)

}
.

Proof. (i) Since a technology set A involving the baseline technology F0 and one more

constant technology F is a strict subset of DG, we have that

VP (B | F0) ≤ inf
F≤G

{∫ π̄

0

B(π) dF (π) :

∫ π̄

0

(π −B(π))dF (π) ≥ VA (B | F0)

}
.

So to prove the first claim, we are left to show that for all ε > 0

inf
F≤G

{∫ π̄

0

B(π) dF (π) :

∫ π̄

0

(π −B(π))dF (π) ≥ VA (B | F0)

}
≤ VP (B | F0) + ε.

Take any ε > 0 and let {An}∞n=1 ⊆ DG be a minimizing sequence of VP (B | F0) =

infA inf(e,F )∈A∗(B|A)

∫ π
0
B (π) dF (π | e). By definition, there exists N ∈ N such that, for

all n ≥ N ,

VP (B | F0) +
ε

2
> lim

k→∞

∫ π̄

0

B(π) dF n
k (π),

where {F n
k }∞k=1 ⊆ An is the maximizing sequence of distributions for the agent would

solving sup
(e,F )∈Γ(An)

∫ π̄
0

(π − B(π)) dF (π | e) − c(e). Now even when lim
k→∞

F n
k /∈ An there

exists K such that, for all k ≥ K,∣∣∣∣∫ π̄

0

B(π)dF n
k (π)− lim

j→∞

∫ π̄

0

B(π)dF n
j (π)

∣∣∣∣ < ε

2
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and
∫ π̄

0
(π − B(π))dF n

k (π) ≥
∫ π̄

0
(π − B(π))dF0(π), as otherwise the agent would pick

F0 ∈ Γ(An). Now, take this F n
K and observe that

25

inf
F≤G

{∫ π̄

0

B(π) dF (π) :

∫ π̄

0

(π −B(π))dF (π) ≥ VP (B | F0)

}
− VP (B | F0)

≤
∫ π̄

0

dFN
K (π) +

(
− lim
k→∞

∫ π̄

0

B(π)dFN
k (π) + lim

k→∞

∫ π̄

0

B(π)dFN
k (π)

)
− VP (B | F0)

≤ ε

2
+
ε

2
= ε.

(ii) ?We need to prove that the minimization problem is well defined when B is lower

semicontinuous.26

Note that, by the portmanteau theorem,27 F →
∫ π̄

0
B(π) dF (π) is lower semicontinuous

in the weak∗ topology, denoted σ(∆(Π), Cb(Π)), since B is lower semicontinuous.28 The

result then follows from the theorem of the maximum provided that the set

D =

{
F ∈ ∆(Π) : F ≤ G and

∫ π̄

0

(π −B(π))dF (π) ≥
∫ π̄

0

(π −B(π))dF0(π)

}
is nonempty (which is true by assumption, since F0 ∈ D) and compact in σ(∆(Π), Cb(Π)).

To see the latter, observe that ∆(Π) is compact in the weak∗ topology as a consequence

of the Banach-Alaoglu theorem, since ∆(Π) is a weak∗ closed subset of (C(Π)) which is a

separable Banach lattice for Π compact metrizable.29 We are thus left to show that D is
closed.

From the portmanteau theorem, F →
∫ π̄

0
(π − B(π))dF (π) is upper semicontinuous in

the weak∗ topology (since B is lower semicontinuous). It follows that{
F ∈ ∆(Π) :

∫ π̄

0

(π −B(π))dF (π) ≥
∫ π̄

0

(π −B(π))dF0(π)

}
is closed in the weak∗ topology.

Furthermore let F̄ ∈ {F ∈ ∆(Π) : F ≤ G} and {Fn}∞n=1 ⊆ {F ∈ ∆(Π) : F ≤ G} be
a sequence converging to F̄ in the weak∗ topology.30 Then lim

n
Fn(π) = F̄ (π) for all π

such that F̄ is continuous at π. But F̄ is monotone, hence has at most countably many

25We can use the limiting distribution if lim
k→∞

Fnk ∈ An.
26Special thanks to Theó Durandard for pointing out a significant generalization to the previous version
of this argument that relied on G being differentiable.
27Specifically, see Aliprantis and Border (2006) theorem 15.5.
28Here Cb(Π) denotes the set of bounded continuous real functions on Π, see Aliprantis and Border (2006)
chapter 15.
29See Stone-Weierstrass theorem and theorem 9.14 in Aliprantis and Border (2006).
30The weak∗ topology is metrizable, which allows us to work with sequences.
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discontinuity points by Froda’s theorem, and, therefore, F̄ (π) = lim
n
Fn(π) on a comeager

set C(F̄ ) of Π. Clearly, on C(F̄ ) ⊆ Π, F̄ (π) ≤ G(π), since, for all n ∈ N, Fn(π) ≤ G(π).

We now show that F̄ (π) ≤ G(π) on the whole set Π. Recall that F̄ (π) is right contin-

uous, since it is a CDF, and hence ∀{πn}∞n=1 ⊆ Π such that πn ↓ π, lim
n→∞

F̄ (πn) = F̄ (π).

But, for all π < π̄, since C(F̄ ) is dense in Π, there exists a sequence {πn}∞n=1 ⊆ C(F̄ )

such that πn ↓ π. Therefore F̄ (π) = lim
n→∞

F̄ (πn) ≤ G(π), since ∀n ∈ N, F̄ (πn) ≤ G(πn).

Finally, G(π̄) = 1 ≥ 1 = F̄ (π̄).

So, ∀π ∈ Π, F̄ (π) ≤ G(π), and therefore {F ∈ ∆(Π) : F ≤ G} = {F ∈ ∆(Π) : F ≤ G}.
Thus D is the intersection of closed sets, hence closed. �

A.2. Proof of Theorem 4.3

Theorem 4.3. For any G ∈ ∆ (Π) and any non-monotonic lower semicontinuous contract

B (π) there exists a monotonic contract Bm (π) such that

VP (B | F0) ≤ VP (Bm | F0)

i.e., the principal (weakly) prefers the monotone contract, and since B (π) ≥ Bm (π), we

have that for all A, VA(B | A) = VA(Bm | A), i.e., the agent prefers the monotonic

contract.

Define the feasible set of distributions that the principal minimizes over for a given

contract B as follows:

F(B) =

{
F ≤ G :

∫ π̄

0

(π −B(π))dF (π) ≥
∫ π̄

0

(π −B(π))dF0(π)

}
. (A.1)

Lemma A.1. Take a lower semicontinuous contract B and let FB = arg minF∈F(B)

∫ π
0
B (π) dF (π).

For any interval (π1, π2) such that there exists π∗ > π2 for which B (π∗) < B (π′) for all

π′ ∈ (π1, π2), FB is constant on [π1, π2).

Proof. Assume by way of contradiction limπ′↑π2 F
B (π′)− FB (π1) = γ > 0. Consider:

F ∗ (π) =


FB (π) if π < π1

FB (π1) if π ∈ [π1, π2)

FB (π)− γ if π ∈ [π2, π
∗)

FB (π) if π ≥ π∗

,

and note that F ∗ (π) ≤ FB (π) ≤ G (π) for all π and thus satisfies the constraint. Fur-

thermore, by construction we have that:∫ π

0

B (π) dFB (π) >

∫ π

0

B (π) dF ∗ (π) ,
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and thus FB could not have solved the minimization problem, if F ∗ ∈ F(B). We note

that F ∗ first-order stochastically dominates FB and thus
∫ π̄

0
π dF ∗(π) ≥

∫ π̄
0
π dFB(π), so

that ∫ π̄

0

(π −B(π)) dF ∗(π) ≥
∫ π̄

0

(π −B(π)) dFB(π) ≥
∫ π̄

0

(π −B(π))dF0(π),

so that F ∗ ∈ F(B). �

We are now ready to prove the theorem.

Proof of Theorem 4.3. Consider the following contract:

Bm (π) = min
π′∈[π,π]

B (π′) .

Clearly Bm (π) ≤ B (π) for all π and hence the agent weakly prefers Bm for any technology

set A. By lemma 4.2 we can represent the principal’s utility by expression 4.2, so that
we need to show that:

min
F∈F(Bm)

∫ π̄

0

Bm(π)dF (π) ≥ min
F∈F(B)

∫ π̄

0

B(π)dF (π),

where the feasible sets of distributions for the contractB andBm are as defined in equation

A.1.

Let FB = arg minF≤G
∫ π

0
B (π) dF (π) and note that µFB ({π : Bm(π) < B(π)}) = 0

by lemma A.1. Thus, VP (B | F0) =
∫ π̄

0
B(π)dFB(π) =

∫ π̄
0
Bm(π)dFB(π). To prove the

theorem it suffi ces to show that for any F ∈ F(Bm),∫ π̄

0

Bm(π)dF (π) ≥
∫ π̄

0

Bm(π)dFB(π).

Assume by way of contradiction that there exists F ∈ F(Bm) such that∫ π̄

0

Bm(π)dF (π) <

∫ π̄

0

Bm(π)dFB(π),

for some ε > 0. Clearly, µF ({π : Bm(π) < B(π)}) > 0. Since F is a regular Borel

measure, there exists K compact, K ⊆ {π : Bm(π) < B(π)} such that

µF ({π : Bm(π) < B(π)}rK) <
ε

3π̄
.
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Now, let π∗ be such that µF ([π∗, π̄] ∩K) < ε
3π̄
and let π# = max{π ∈ [π∗, π̄] : B(π) ≤

B(π∗)}. Since K is compact and B is lower semicontinuous, such π∗, π# exist. Let

F̃ =


F (π) if π ∈ [0, π∗)

F (π∗) if π ∈ [π∗, π#)

F (π) if π ∈ [π#, π̄]

,

and notice that ∫ π̄

0

Bm(π)dF (π) ≥
∫ π̄

0

Bm(π)dF̃ (π)− 2ε

3

=

∫ π̄

0

B(π)dF̃ (π)− 2ε

3

≥
∫ π̄

0

B(π)dFB(π)− 2ε

3
,

since F̃ ∈ F(Bm) by construction (see argument in, and FB is a minimizer. Putting all

pieces together, we get∫ π̄

0

B(π)dFB(π)− ε >
∫ π̄

0

Bm(π)dF (π) ≥
∫ π̄

0

B(π)dFB(π)− 2ε

3
,

a contradiction. �

A.3. Proof of Theorem 5.1

Theorem 5.1. For any A = G ∪ F (· | e) ⊂ DsG, a solution to:

max
B

VA (B | A) ,

subject to VP (B | F0) ≥ R,

is BD (π, z) := min (π, z) for some z.

Proof. LetB (π) be a monotonic, lower semicontinuous non-debt contract, i.e.,
{
π : BD (π, z) 6= B (π)

}
is not G-null for every z. The principal’s worst case in this instance is if only technology

F0 = G was available. Let z0 solve:∫
BD (π, z0) dG (π) =

∫
B (π) dG (π) .

Note that such a z0 exists by the intermediate value theorem since BD is continuous in

z0.

We now show that the agent prefers the contract BD (π, z0) to B (π). Let:

φ (π) = BD (π, z0)−B (π) .
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By definition: ∫ π

0

φ (π) dG (π) = 0,

and by lemma 5.2, for any e ≥ e∗:∫ π

0

φ (π) dF ∗ (π | e) ≤
∫ π

0

φ (π) dF ∗ (π | e∗) = 0,

so that:∫ π

0

(π −B (π)) dF ∗ (π | e)− c (e) ≤
∫ π

0

(
π −BD (π, z1)

)
dF ∗ (π | e)− c (e) ,

and thus the agent weakly prefers BD (·, z1) over B. Furthermore, note that because

F ∗ ≤ G, we have ∫
B (π) dG (π) ≤

∫
B (π) dF ∗ (π | e∗) ,

and thus z0 ≤ z1. This means that the agent also prefers the contract BD (π, z0) to B (π).

Since by definition ofBD (·, z0) we have that the principal’s robust constraint is satisfied,

because the worst-case is still G and:∫
BD (π, z0) dG (π) =

∫
B (π) dG (π) ≥ R,

we have that BD is effi cient. �

A.4. Proof of Lemma 5.2

Lemma 5.2. Let φ (π) be a function such that φ (π) ≥ 0 for π ≤ πB, φ (π) ≤ 0 for

π ≥ πB and either:

(1)
∫ π

0
φ (π) dF (π | eL) = 0, or

(2)
∫ π

0
φ (π) dF (π | eL) ≤ 0 and φ (π) decreasing for π ≥ πB.

Then, for any eH > eL and any MLRP family F , we have that
∫ π

0
φ (π) dF (π | eL) ≥∫ π

0
φ (π) dF (π | eH).

Proof. Note that under case 1 we have:∫ πB

0

φ (π) dF (π | eL) = −
∫ π

πB

φ (π) dF (π | eL) > 0.
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Take any eH > eL and consider:(∫ π

0

φ (π) dF (π | eL)−
∫ π

0

φ (π) dF (π | eH)

)∫ πB

0

φ (πL) dF (πL | eL)

=

∫ πB

0

φ (πL) dF (πL | eL)

∫ π

0

φ (π)

(
dF (π | eL)

dC (π)
− dF (π | eH)

dC (π)

)
dC (π)

=

(
−
∫ π

πB

φ (πH)
dF (πH | eL)

dC (πH)
dC (πH)

)∫ πB

0

φ (πL)

(
dF (πL | eL)

dC (πL)
− dF (πL | eH)

dC (πL)

)
dC (πL)

+

(∫ πB

0

φ (πL)
dF (πL | eL)

dC (πL)
dC (πL)

)∫ π

πB

φ (πH)

(
dF (πH | eL)

dC (πH)
− dF (πH | eH)

dC (πH)

)
dC (πH) ,

where we write C (π) for C (π | eL, eH). By Fubini’s theorem (applies since the above are

integrable and C is a probability measure and therefore σ-finite) the above equals:

−
∫ πB

0

∫ π

πB

φ (πH)φ (πL)
dF (πH | eL)

dC (πH)

(
dF (πL | eL)

dC (πL)
− dF (πL | eH)

dC (πL)

)
dC (πH) dC (πL)

+

∫ πB

0

∫ π

πB

φ (πH)φ (πL)
dF (πL | eL)

dC (πL)

(
dF (πH | eL)

dC (πH)
− dF (πH | eH)

dC (πH)

)
dC (πH) dC (πL)

=

∫ πB

0

∫ π

πB

φ (πH)φ (πL)

[
dF (πH | eL)

dC (πH)

dF (πL | eH)

dC (πL)
− dF (πL | eL)

dC (πL)

dF (πH | eH)

dC (πH)

]
dC (πH) dC (πL)

≥ 0,

where the last inequality follows since φ (πL) ≥ 0, φ (πH) ≤ 0 and by the generalized

MLRP:
dF (πH | eL)

dC (πH)

dF (πL | eH)

dC (πL)
≤ dF (πL | eL)

dC (πL)

dF (πH | eH)

dC (πH)
.

Thus:(∫ π

0

φ (π) dF (π | eL)−
∫ π

0

φ (π) dF (π | eH)

)∫ πB

0

φ (πL) dF (πL | eL) ≥ 0,

and since
∫ πB

0
φ (πL) dF (πL | eL) > 0, we have that:∫ π

0

φ (π) dF (π | eL) ≥
∫ π

0

φ (π) dF (π | eH) .

Case 2 follows similarly (using first-order stochastic dominance of F (· | eH) over F (· | eL)

and the fact that φ is decreasing for π ≥ πB). May need to "split up" mass at π∗.

In particular, under case 2, there exists some π∗ and α ∈ (0, 1] such that:∫ πB

0

φ (π) dF (π | eL) = − lim
π′→π∗−

∫ π′

πB

φ (π) dF (π | eL)−α
[
F (π∗ | eL)− F

(
π∗− | eL

)]
φ (π∗) .
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We can then repeat the above, replacing π by π∗, with the alpha-mass adjustment. We

have then shown that:( ∫ π∗
0
φ (π) dF (π | eL)−

∫ π∗
0
φ (π) dF (π | eH)

−αφ (π∗) [f (π∗ | eL)− f (π∗ | eH)]

)∫ πB

0

φ (πL) dF (πL | eL) ≥ 0, (A.2)

where

f (π∗ | eL) = F (π∗ | eL)− F
(
π∗− | eL

)
.

Because F (π | eH) dominates F (π | eL) with respect to the monotone likelihood ratio

order, it also conditionally first-order stochastically dominates it (conditioning on any

set). Conditioning on (π∗,∞) and π∗ implies that:∫ π

π∗+

φ (π) dF (π | eL)+αf (π∗ | eL)φ (π∗) ≥
∫ π

π∗+

φ (π) dF (π | eH)+αf (π∗ | eH)φ (π∗) , (A.3)

since φ (π) decreasing for π ≥ πB. Combining A.2 and A.3 we have the desired result.

Note that the above inequalities are strict, i.e.,
∫ π

0
φ (π) dF (π | eL) >

∫ π
0
φ (π) dF (π | eH)

if MLRP holds strictly. �

A.5. Proof of Theorem 6.1

The statement of the theorem is repeated below for convenience.

Theorem 6.1. For any A ⊂ D, a solution to:

max
B

VA (B | A) ,

subject to VP (B | F0) ≥ R,

is Bα (π) = απ for some α, i.e., a linear/equity contract.

The proof proceeds by first showing that a solution to the above must be a (weakly)

convex contract B, since the principal will not put any value on concave portions of a

contract and thus the lower convex hull of B is evaluated in the same way as the original

contract by the principal. We then show that the appropriate linear contract is optimal

within the set of convex contracts, since it is no worse for the principal and better for the

agent.

Lemma A.3. In problem ?? for any non-convex B, there exists a convex Bc such that

VP (B | F0) ≤ VP (Bc | F0) and B ≥ Bc.

Proof. Note that it is without loss of generality to consider B which are lower semicontin-

uous by lemma 4.2. Let Bc be the lower convex hull of B, i.e., the largest weakly convex
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function majorized than B. Clearly B ≥ Bc and thus VA (B | F0) ≤ VA (Bc | F0). It suf-

fices to consider the case where VA (Bc | F0) = VA (B | F0) =: υ, since a larger VA (Bc | F0)

decreases the constraint set and thus weakly increases VP (Bc | F0).

It suffi ces to show that:{
min

F∈∆(Π)

∫ π

0

B (π) dF s.t.
∫ π

0

π −B (π) dF ≥ υ

}
=

 min
F∈∆(Π)

supp(F )=D

∫ π

0

B (π) dF s.t.
∫ π

0

π −B (π) dF ≥ υ

 , and
{
min

F∈∆(Π)

∫ π

0

Bc (π) dF s.t.
∫ π

0

π −Bc (π) dF ≥ υ

}
=

 min
F∈∆(Π)

supp(F )=D

∫ π

0

Bc (π) dF s.t.
∫ π

0

π −Bc (π) dF ≥ υ

 ,
where D = {x : B (π) = Bc (π)}. Let FB be the CDF which minimizes the LHS and Fc
be the CDF which minimizes the RHS. Clearly, it is without loss of generality to assume

that supp (Fc) ⊂ D.31 We will show that supp (FB) ⊂ D.

Assume by way of contradiction that there is some π ∈ supp (FB) and ε > 0 such

that B (π′) > Bc (π′) for all π′ ∈ Nε (π). Note that by construction there exist πL < πH

such that for all π′ ∈ Nε (π) there exists an β (π′) ∈ (0, 1) such that π′ = β (π′)πL +

(1− β (π′))πH and:

B (π′) > Bc (π′) = β (π′)Bc (πL) + (1− β (π′))Bc (πH)

= β (π′)B (πL) + (1− β (π′))B (πH) .

Let m = FB (π + ε)− − FB (π − ε) =
∫
Nε(π)

dFB (π′) and note that m > 0 since π ∈
supp (FB). Let:

β∗ =
1

m

∫
Nε(π)

β (π′) dFB (π′) ,

so that:

1− β∗ = 1− 1

m

∫
Nε(π)

β (π′) dFB (π′)

=
1

m

∫
Nε(π)

dFB (π′)− 1

m

∫
Nε(π)

β (π′) dFB (π′)

=
1

m

∫
Nε(π)

(1− β (π′)) dFB (π′) .

31To see this, note that any π /∈ D is a convex combination of two elements in D and we can therefore,
instead of putting mass on π, put the appropriate mass on the elements which constitute the convex
combination.
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Thus:

β∗Bc (πL) + (1− β∗)Bc (πH)

= β∗B (πL) + (1− β∗)B (πH)

=
1

m

∫
Nε(π)

β (π′)B (πL) dFB (π′) +
1

m

∫
Nε(π)

(1− β (π′))B (πH) dFB (π′)

=
1

m

∫
Nε(π)

β (π′)B (πL) + (1− β (π′))B (πH) dFB (π′)

<
1

m

∫
Nε(π)

B (π′) dFB (π′) ,

hence shifting mass to points πL and πH leads to a lower expected payoff for the principal

and thus FB could not have been a minimizer, which is a contradiction. �

We are now ready to prove the theorem. The proof goes by invoking Jensen’s inequality

and using a revealed preference argument to rule out technologies which the suggested

replacement of contract makes worse.

Proof of Theorem 6.1. Next we show that for the principal’s problem, a minimizing F for

convex B puts mass on a single point. Note that for any F , where πF = EF [π], such that∫ π
0
π −B (π) dF ≥ υ = VA (B | F0), Jensen’s inequality implies that:

υ ≤
∫ π

0

π −B (π) dF ≤ πF −B (πF ) =

∫ π

0

π −B (π) dδπF ,

since π −B (π) is concave. Furthermore, since B is convex:∫ π

0

B (π) dδπF = B (πF ) ≤
∫ π

0

B (π) dF .

Thus, the agent prefers the Dirac distribution (at the expected value) over others and the

principal dislikes such distributions. Therefore, the appropriately chosen Dirac distribu-

tion (the one just attractive enough for the agent) is the principal’s worst case.

Now consider replacing B (π) by a linear contract Bα (π) = απ, where α = B (π∗) /π∗

and:

π∗ = minπ s.t. π −B (π) ≥ υ.

Such a minimizer exists since π − B (π) is concave and upper semicontinuous, which in

particular implies π − B (π) is continuous, since the domain of this function is a subset

of R.
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Consider

VA (Bα | F0) =

∫ π

0

π −Bα (π) dF0 =

∫ π

0

π∗ −B (π∗)

π∗
π dF0

≥ υ

∫ π

0

π

π∗
dF0.

Assume by way of contradiction that π∗ >
∫ π

0
π dF0 = πF0 , but then by Jensen’s inequality

and since π −B (π) is increasing for π < π∗ (by definition of π∗, since the subgradient at

B (π) ≤ 1 for π < π∗), we have that

υ =

∫ π

0

π −B (π) dF0

≤ πF0 −B (πF0)

< π∗ −B (π∗)

= υ,

which is a contradiction. Thus

VA (Bα | F0) = υ

∫ π

0

π

π∗
dF0 ≥ υ = VA (B | F0) ,

i.e., the agent is weakly better offunder the linear contract, given the baseline technology.

Consider any F such that
∫ π

0
π − B (π) dF ≥ υ and assume by way of contradiction

that π∗ >
∫ π

0
π dF = πF . We have that

υ ≤
∫ π

0

π −B (π) dF

≤ πF −B (πF )

< π∗ −B (π∗)

= υ,

where the second step follows by Jensen’s inequality and the third since π − B (π) is

increasing for π < π∗ (by definition of π∗, since the subgradient at B (π) ≤ 1 for π < π∗).
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Thus, π∗ ≤ πF which implies that:

VA (Bα | F ) =

∫ π

0

π −Bα (π) dF

= πF −Bα (πF )

≥ πF −B (πF )

≥
∫
π −B (π) dF .

where the second line follows by linearity, the third since π∗ ≤ πF and the convexity of B

and the final by the Jensen’s inequality. Hence the agent prefers the linear contract for

any F .

Note that now, the principal’s payoff for any F is α
1−αVA (Bα | F ), i.e., it is perfectly

aligned with the agent. When the agent chooses F = F0, by construction the principal

gets at least the level of utility he got with the previous contract B (since F0 is weakly

better than the principal’s worst case). Other choices of F can only weakly improve the

principal’s payoff. �

A.6. Proof of Theorem 7.1

Theorem 7.1. For any contract B 6= BP
α,z, there exists an MLRP technology set A, such

that the agent strictly prefers BP
α,z (π) to B and VP

(
BP
α,z | F0

)
≥ VP (B | F0).

Proof. For an arbitrary contract B′ define

F(B′) =

{
F ∈ ∆(Π) : F ≤ G and

∫ π̄

0

(π −B′(π))dF (π) ≥ VA (B | F0)

}
,

i.e., the set of distributions the principal views as feasible. Let the principal’s worst-case

distribution under contract B be FB ∈ F(B). Let z1 solve let z1 solve:∫
BD (π, z1) dFD (π) =

∫
B (π) dFB (π) ≥ R,

where FD = arg minF∈F(BD)

{∫
BD (π, z1) dF (π)

}
. As in the proof of theorem 5.1 the

agent weakly prefers BD (·, z1) over B, if endowed with an MLRP family which dominates

FD. That is, consider technology set A = F0 ∪ F , where F is an MLRP family (where

MLRP holds strictly) such that F (·|0) = FD (π). Since MLRP is strict, note that by the

last part of the proof of lemma 5.2 the agent strictly prefers BD to B.

Now, since FD puts zero mass on π ∈ (πD, π), we can take BD (π, z0) and replace it by

its lower convex hull on the region where FD had no support. This new contract is indeed

BP
α,z (π) for appropriately chosen α and z. In this case α = (1 − G (πD))/(π − πD) and
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z = πD (1− α). Now one of the minimizing CDFs for the contract BP
α,z (π) is FD, and

thus the principal is indifferent to this change. The agent prefers contract BP
α,z (π) since

BP
α,z (π) ≤ BD (·, z0). Thus the agent strictly prefers BP

α,z (π) to B for the defined A. �

A.7. Proof of Corollary 7.2

Corollary 7.2. The principal’s payoff from contract B (π) = min {π, z + απ} is:

R =

∫ z
1−α

0

π dG+
αVA (B | F0) + z

(
1−G

(
z

1−α
))

(1− α)
.

Proof. The principal’s payoff from contract B (π) = min (π, z + απ) is:

R =

∫ z
1−α

0

π dG+ min
F

∫ π

z
1−α

(απ + z) dF

s.t.
∫ π

z
1−α

(π − απ − z) dF ≥ VA (B | F0) .

For any F : ∫ π

z
1−α

(απ + z) dF = α

∫ π

z
1−α

π dF + z

(
F (π)− F

(
z

1− α

))
= α

∫ π

z
1−α

π dF + z

(
1−G

(
z

1− α

))
,

and hence:∫ π

z
1−α

(π − απ − z) dF = (1− α)

∫ π

z
1−α

π dF − z
(

1−G
(

z

1− α

))
≥ VA (B | F0) .

Thus the constraint in the principal minimization problem holds as an equality.

Solving the last equation for the integral we have that:∫ π

z
1−α

π dF =
VA (B | F0) + z

(
1−G

(
z

1−α
))

(1− α)
,

and hence for any F :∫ π

z
1−α

(απ + z) dF =
αVA (B | F0) + z

(
1−G

(
z

1−α
))

(1− α)
,

which gives the characterization in the corollary. �
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Appendix B. Online Appendix

This appendix contains some proofs which are more technical and involved. It starts

with a discussion of the generalized notion of MLRP, due to Athey (2002), needed for the

arguments.

B.1. Aside on MLRP

In this subsection, I make some basic remarks regarding a key assumption underly-

ing most classical moral hazard models, including that of Holmström (1979) and Innes

(1990)– the monotone likelihood ratio property (MLRP). The simplest version considers

a family of CDFs, indexed by e, i.e., F (π | e), which is twice-differentiable with respect
to both π and e (as is the case in Innes (1990) and most existing models). In this case,

the monotone likelihood ratio property (MLRP) states that:

∂

∂π

(
fe (π | e)
f (π | e)

)
≥ 0,

where f is the density of F .

A slightly more general definition of the MLRP, but still requiring the existence of

densities, is that the likelihood ratio:

f (π | eH)

f (π | eL)
,

is non-decreasing for any eH ≥ eL. An equivalent way to state this is to assume that f is

log-supermodular, i.e., for all πH ≥ πL and eH ≥ eL:

f (πH | eH)

f (πH | eL)
≥ f (πL | eH)

f (πL | eL)
.

Recall that a non-negative function defined on a lattice, h : X → R is log-supermodular
if, for all x, y ∈ X, h (x ∧ y)h (x ∨ y) ≥ h (x)h (y). Note that in this version of the

definition, we can also treat f as the PMF if the measure is discrete.

However, we need to allow for general distributions in the present model– e.g., distri-

butions which involve mixtures of continuous and discrete parts. As such, we work with

general probability measures from the outset and require a general MLRP. The natural

idea is to generalize the definition using Radon-Nikodym derivatives instead of densi-

ties, however one needs to take care to ensure the absolute continuity condition in the

Radon-Nikodym theorem is satisfied.

This exact problem is beautifully addressed by Athey (2002)?, who gives the right

generalization of the MLRP (see definition A1). For any eL < eH ∈ R+, first define a
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carrying measure as follows:

C (π | eL, eH) =
1

2
F (π | eL) +

1

2
F (π | eH) .

Importantly, note that both F (· | eL) and F (· | eH) are absolutely continuous with respect

to C (· | eL, eH). We say that a family of CDFs, F , satisfies the monotone likelihood ratio

property (MLRP) if for any eL < eH , the Radon—Nikodym derivative h (π, e) : (π, e) 7→
dF (π|e)

dC(π|eL,eH)
is log-supermodular for C-a.e. (π, e), where e ∈ {eL, eH}.

To give a little intuition for this, consider the special case of differentiable CDFs. We

have that:

dF (π | e)
dC (π | eL, eH)

=
dF (π | e) /dπ

dC (π | eL, eH) /dπ
=

f (π | e)
1
2
f (π | eL) + 1

2
f (π | eH)

= 2
f (π | e)

f (π | eL) + f (π | eH)
.

The MLRP states that the Radon-Nykodym derivative above is log-supermodular, or:

dF (πH | eH)

dC (πH | eL, eH)

dF (πL | eL)

dC (πL | eL, eH)
≥ dF (πH | eL)

dC (πH | eL, eH)

dF (πL | eH)

dC (πL | eL, eH)
.

We write F (· | eH)
MLR

≥ F (· | eL) if the above holds. Note that in the differentiable CDF

case reduces to:

f (πH | eH)

f (πH | eL) + f (πH | eH)

f (πL | eL)

f (πL | eL) + f (πL | eH)
≥ f (πH | eL)

f (πH | eL) + f (πH | eH)

f (πL | eH)

f (πL | eL) + f (πL | eH)

f (πH | eH) f (πL | eL) ≥ f (πH | eL) f (πL | eH)

f (πH | eH)

f (πH | eL)
≥ f (πL | eH)

f (πL | eL)
,

which is one of the standard definitions.

The following is a useful observation about the general definition of MLRP, above.

Lemma B.1. Take any CDF, F̂ . Then for any ε > 0, there exists a family of CDFs,

parametrized by e ∈ [0, e], which satisfies MLRP, where F (· | 0) = δ0 and F (· | ε) = F̂ .

Proof. Let F (· | e) = δ0 if e < ε and F (· | e) = F̂ if e ≥ ε. The only non-trivial case

is when eL < ε and eH ≥ ε, so take these effort levels. This means that the carrying

measure is C (π) = 1
2
δ0 + 1

2
F̂ (π), and thus that

dF (π | eL)

dC (π)
=

{
2 if π = 0

0 if π > 0
and

dF (π | eH)

dC (π)
=

{
0 if π = 0

2 if π > 0
.
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The Radon-Nikodym derivatives above are log-supermodular, since for any πH > πL > 0

we have

dF (πH | eH)

dC (π)

dF (πL | eL)

dC (π)
= 2 · 0 = 0 ≥ 0 · 2 =

dF (πH | eL)

dC (π)

dF (πL | eH)

dC (π)
,

and if πH > πL = 0, then

dF (πH | eH)

dC (π)

dF (πL | eL)

dC (π)
= 2 · 2 = 4 ≥ 0 = 0 · 0 =

dF (πH | eL)

dC (π)

dF (πL | eH)

dC (π)
.

Thus the constructed family of distributions satisfies MLRP. �

B.2. Proof of Lemma 4.2

Lemma 4.2. For any Borel contract B and any G ∈ ∆(Π), we have that VP (B | F0) ≤
VP (B̂ | F0), i.e., the principal prefers the lower semicontinuous contract. Furthermore,

for any A ⊆ DG, VA(B̂ | A) ≥ VA(B | A), i.e., the agent also prefers the lower semicon-

tinuous contract.

Proof. Let B̂ denote the lower semicontinuous envelope of B, i.e., ∀π ∈ Π,

B̂(π) = sup
{
b̂(π) : b̂ is lower semicontinuous and b̂ ≤ B

}
= sup

{
b̃(π) : b̃ is Lipschitz continuous and b̂ ≤ B

}
,

where the second line follows from Theorem 3.13 in Aliprantis and Border (2006).

Clearly, the agent prefers B̂, since for all π ∈ Π, B̂(π) ≤ B(π), and the agent (weakly)

prefers the contract which gives less to the principal for any technology set.

We next show that the principal weakly prefers B̂ to B; i.e., VP (B̂ | F0) ≥ VP (B | F0).

It is enough to consider technology sets A ⊆ DG of the form A = {F0} ∪ {F1} for some
F1 ∈ ∆(Π) such that F1 ≤ G and∫ π̄

0

(π −B(π))dF1(π) ≥
∫ π̄

0

(π −B(π))dF0(π).

So we want to show that

VP (B | F0) = inf
F≤G

{∫ π̄

0

B(π)dF (π) :

∫ π̄

0

(π −B(π))dF (π) ≥
∫ π̄

0

(π −B(π))dF0(π)

}
≤ VP (B̂ | F0) = inf

F≤G

{∫ π̄

0

B̂(π)dF (π) :

∫ π̄

0

(π − B̂(π))dF (π) ≥
∫ π̄

0

(π − B̂(π))dF0(π)

}
.

Since B̂ ≤ B,

VA ≡
∫ π̄

0

(π −B(π))dF0(π) ≤
∫ π̄

0

(π − B̂(π))dF0(π),
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so

VP (B̂ | F0) ≥ inf
F≤G

{∫ π̄

0

B̂(π)dF (π) :

∫ π̄

0

(π − B̂(π))dF (π) ≥ VA

}
,

as the feasible set is now larger. Define

F(B̂) =

{
F ∈ ∆(Π) : F ≤ G and

∫ π̄

0

(π − B̂(π))dF (π) ≥ VA

}
,

and

F(B) =

{
F ∈ ∆(Π) : F ≤ G and

∫ π̄

0

(π −B(π))dF (π) ≥ VA

}
.

Now, if we are able to show that for F ∗ ∈ arg min
F∈F(B̂)

∫ π̄
0
B̂(π)dF (π),32 and for all ε > 0,

there exists F ε ∈ F(B) such that∫ π̄

0

B(π)dF ε(π) ≤
∫ π̄

0

B̂(π)dF ∗(π) + ε, (B.1)

the conclusion follows since

VP (B | F0) ≤ inf
F∈F(B)

∫ π̄

0

B(π)dF (π)

≤
∫ π̄

0

B(π)dF ε(π)

≤ VP (B̂ | F0) + ε,

and, since it holds for all ε > 0, this implies that VP (B̂ | F0) ≥ VP (B | F0). The proof of

the claim in equation B.1 is long and relies on various approximation arguments and is

given in the subsequent lemma. �

Lemma B.2. Let F ∗ ∈ arg min
F∈F(B̂)

∫ π̄
0
B̂(π)dF (π). Then for all ε > 0, there exists F ε ∈

F(B) such that ∫ π̄

0

B(π)dF ε(π) ≤
∫ π̄

0

B̂(π)dF ∗(π) + ε

Proof. 1. We first claim that if Bn → B uniformly, then B̂n → B̂ pointwise. Assume

by way of contradiction that B̂n 6→ B̂ pointwise. Then there exists π ∈ Π, ε > 0,

and a subsequence
{
B̂nm

}
m∈N

such that, for all m ∈ N, |B̂nM (π) − B̂(π)| > ε. Either

B̂nM (π) > B̂(π) + ε or B̂(π) > B̂nM (π) + ε. Suppose that we are in the first case, i.e.,

B̂nM (π) > B̂(π) + ε (the second case is similar). This means that there exists δ > 0 such

that, for all π′ ∈ Bδ(π),

BnM (π′) > B̂(π′) + ε.

32This is well defined as proven in lemma 4.1.
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But then, for all δ′ > 0, for all π′ ∈ Bδ(π), there exists π′′ ∈ Bδ′(π′) such that BnM (π′′) >

B(π′′) + ε, but this contradicts that Bn → B uniformly.

2. The above step and Egorov’s theorem, imply that ifBn → B pointwise, then B̂n → B̂

in L1(F ∗).

Let ε > 0. Since Bn → B pointwise, by Egorov’s theorem, there exists K ⊆ Π compact

such that Bn → B uniformly on K and∫
Π−K

dF ∗(π) <
ε

4π̄
.

This means that ∣∣∣∣∫
Π−K

(
B̂n(π)−B(π)

)
dF ∗(π)

∣∣∣∣ < 2π̄
ε

4π̄
=
ε

2
.

Furthermore, by step 1, B̂n → B pointwise on K. Therefore, by the dominated conver-

gence theorem,33 there exists N ∈ N such that, for all n ≥ N ,∣∣∣∣∫
K

(
B̂n(π)−B(π)

)
dF ∗(π)

∣∣∣∣ < ε

2
.

Therefore, for all n ≥ N , ∣∣∣∣∫ π̄

0

(
B̂n(π)−B(π)

)
dF ∗(π)

∣∣∣∣ < ε.

3. By assumption, B is Borel measurable, and by Kechris (2012), proposition 11.5,? it

is Baire measurable. It follows that B ∈ Bairek(Π) (Baire class k) for some k ∈ N.
We now show that, for all k ∈ N, Bairek−1(Π) is dense in Bairek(Π) for the L1-norm

associated to any Borel measure F ∈ ∆(Π); i.e., for all k ∈ N, for all B̃k ∈ Bairek(Π),

for all F ∈ ∆(Π), for all ε′ > 0, there exists B̃k−1 ∈ Bairek−1(Π) such that∣∣∣∣∫ π̄

0

[
B̃k(π)− B̃k−1(π)

]
dF (π)

∣∣∣∣ < ε′,

and ∣∣∣∣∫ π̄

0

[
ˆ̃Bk(π)− ˆ̃Bk−1(π)

]
dF (π)

∣∣∣∣ < ε′.

Hence let ε′ > 0. Let B̃k ∈ Bairek(Π). By definition of Baire classes, Bairek(Π) is the

pointwise closure of Bairek−1(Π), and therefore there exists a sequence
{
B̃k−1
n

}
n∈N
⊆

Bairek−1(Π) that converges pointwise to B̃k. Let F ∈ ∆(Π). Since F is a probability

measure, it is finite, and since B̃k−1
n converges pointwise to B̃k, it is bounded (e.g., by π̄).

So the dominated convergence theorem applies. Similarly, by step 2., ˆ̃Bk−1
n converges to

33B̂n is bounded by π̄ for all n.
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ˆ̃Bk in L1(F ∗). Therefore, we can choose N ∈ N such that, for all n ≥ N ,∣∣∣∣∫ π̄

0

[
B̃k(π)− B̃k−1

n (π)
]
dF (π)

∣∣∣∣ < ε′,

and ∣∣∣∣∫ π̄

0

[
ˆ̃Bk(π)− ˆ̃Bk−1

n (π)
]
dF (π)

∣∣∣∣ < ε′.

This concludes the proof of the claim in step 3.

4. Observe that for all F ∈ ∆(Π),∫ π̄

0

B(π)dF (π)−
∫ π̄

0

B̂(π)dF ∗(π)

=

∫ π̄

0

[
B(π)−Bk−1(π) +Bk−1(π)dF (π)− · · · −B0(π) +B0(π)

]
dF (π)

−
∫ π̄

0

[
B̂(π)− B̂k−1(π) + B̂k−1(π)dF (π)− · · · − B̂0(π) + B̂0(π)

]
dF ∗(π)

<
ε

2
+

∫ π̄

0

B0(π)dF (π)−
∫ π̄

0

B̂0(π)dF ∗(π),

where, using step 3, we chose Bj ∈ Bairej(Π) such that, for all j ∈ {0, 1, . . . , k − 1},∣∣∣∣∫ π̄

0

[
Bj+1(π)− B̃j(π)

]
dF (π)

∣∣∣∣ < ε

4k
,

and ∣∣∣∣∫ π̄

0

[
B̂j+1(π)− B̂j

n(π)
]
dF ∗(π)

∣∣∣∣ < ε

4k
.

5. But B0 is continuous, so B̂0 = B0, since the lower semicontinuous envelope, f̂ , of a

function, f , coincides with the function exactly at the points of lower semicontinuity.

6. Lemma B.3, proven below, shows that F ∗ ∈ F(B). Then, since F(B) is dense in

F(B) (with respect to the weak∗ topology), there exists F ε ∈ F(B) such that, for all B̃0

continuous, ∣∣∣∣∫ π̄

0

B̃0(π)d (F ε − F ∗) (π)

∣∣∣∣ < ε

2
,

and thus, we have ∫ π̄

0

B(π)dF ε(π)−
∫ π̄

0

B̂(π)dF ∗(π) < ε,

for this F ε ∈ F(B). �

Lemma B.3. Let F(B) and F(B̂) be defined as above. Then F (B̂) ⊆ F(B)
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Proof. We first show that the lower semicontinuous envelope of F →
∫ π̄

0
B(π)dF (π) is

given by
∫ π̄

0
B̂(π)dF (π). To see this, note that B̂ ≤ B implies that∫ π̄

0

B̂(π)dF (π) ≤
∫ π̄

0

B(π)dF (π)

from monotonicity of the integral. Furthermore, from the Portmanteau theorem, F →∫ π̄
0
B̂(π)dF (π) is lower semicontinuous. So, by definition of the lower semicontinuous

envelope, ∫ π̄

0

B̂(π)dF (π) ≤ lsc

(∫ π̄

0

B(π)d · (π)

)
(F ).

To prove the reverse inequality, suppose for a contradiction that there exists F ∈ ∆(Π)

and ε̄ > 0 such that

lsc

(∫ π̄

0

B(π)d · (π)

)
(F )− ε̄ >

∫ π̄

0

B̂(π)dF (π).

Then, by lemma 1.32 (part iv) in Bauschke and Combettes (2011),? there exists an open

neighborhood V of F such that, for all F̃ ∈ V ,∫ π̄

0

B(π)dF̃ (π) >

∫ π̄

0

B̂(π)dF (π) + ε̄.

Furthermore, by the same lemma 1.32 (part iv),

B̂(π) = lim
ε̃→0+

inf
π′∈{π′:|π−π′|<ε̃}

B(π′).

Therefore, for all ε′ > 0, there exists ε̃ such that, ∀ε̄min{ε̃, ε′},

0 ≤ inf
π′∈{π′:|π−π′|<ε̃}

B(π′)− B̂(π) <
1

2
ε′.

Furthermore, by the definition of the infimum, for all ε′ > 0, there exists π∗ such that

0 < B(π∗)− inf
π′∈{π′:|π−π′|<ε̃}

B(π′) <
1

2
ε′

and |π − π∗| < ε̃. Therefore

B(π∗)− B̂(π) ≤
(
B(π∗)− inf

π′∈{π′:|π−π′|<ε̃}
B(π′)

)
+

(
inf

π′∈{π′:|π−π′|<ε̃}
B(π′)− B̂(π)

)
<
ε′

2
+
ε′

2
= ε′.

Summarizing, for any ε′ > 0 and any π ∈ Π, there exists π∗ ∈ Π such that |π − π∗| < ε′

and B(π∗)− B̂(π) < ε′.
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Let ε > 0 and consider a partition of Π, PN = {[π0, π1]} ∪ {(πi−1 ∪ πi}Ni=2, so that

N <∞ and, for all i ∈ {0, 1, . . . , N − 1}, πi+1 − πi < 1
2
ε and F (πi) = F (π−i ), i.e., πi are

not mass point of F , except possibly π0.34 Let π′i = arg B̂(π)
π∈[πi,πi+1]

, which is well defined by

the theorem of the maximum since B̂ is lower semicontinuous.

By the above argument, find π∗ such that |π′∗| < 1
2
ε and B(π∗i )− B̂(π′i) <

ε̄
2
. Now let

fε(π
∗
i ) = F (πi+1)− F (πi) and define

Fε(π) =
∑
π∗j≤π

fε(π
∗
j).

Observe that, as ε → 0, Fε → F in the weak∗ topology. This implies that Fε ∈ V for

some ε > 0 suffi ciently small. Furthermore∫ π̄

0

B(π)dFε(π)−
∫ π̄

0

B̂(π)dF (π)

=
N−1∑
i=0

(F (πi+1)− F (πi))B(π∗)−
∫ π̄

0

B̂(π)dF (π)

≤
N−1∑
i=0

(F (πi+1)− F (πi))
(
B(π∗)− B̂(π′i)

)
≤1

2
ε̄.

So ∫ π̄

0

B(π)dFε(π) ≤
∫ π̄

0

B̂(π)dF (π) +
1

2
ε̄,

which is a contradiction. Therefore, this shows that∫ π̄

0

B̂(π)dF (π) ≥ lsc

(∫ π̄

0

B(π)d · (π)

)
(F ),

and thus that: ∫ π̄

0

B̂(π)dF (π) = lsc

(∫ π̄

0

B(π)d · (π)

)
(F ).

Now, by the definition of the upper semicontinuous envelope, F →
∫ π̄

0

(
π − B̂(π)

)
dF (π)

is the upper semicontinuous envelope of F →
∫ π̄

0
(π −B(π)) dF (π). Then, by lemma 1.32

(part vi) in Bauschke and Combettes (2011),? the hypograph of F →
∫ π̄

0

(
π − B̂(π)

)
dF (π)

34We can indeed choose such πi’s as there can only be countably many mass point by Froda’s theorem.
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is the topological closure of the hypograph of F →
∫ π̄

0
(π −B(π)) dF (π); i.e.,{

(F, µ) ∈ ∆(Π)× R : µ ≤
∫ π̄

0

(
π − B̂(π)

)
dF (π)

}
=

{
(F, µ) ∈ ∆(Π)× R : µ ≤

∫ π̄

0

(π −B(π)) dF (π)

}
.

Finally, observe that

F(B̂) = Proj∆(Π)

({
(F, µ) ∈ ∆(Π)× R : µ ≤

∫ π̄

0

(
π − B̂(π)

)
dF (π)

}
∩ [{F ≤ G} × {VA(B | F0)}]

)
⊆ Proj∆(Π)

({
(F, µ) ∈ ∆(Π)× R : µ ≤

∫ π̄

0

(π −B(π)) dF (π)

}
∩ [{F ≤ G} × {VA(B | F0)}]

)
= F(B),

since the projection operator is continuous in the product topology (by definition) and

the image of the closure of a set by a continuous mapping is included in the closure of

the image of this set. �
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