Application of the Cross-Entropy Method to the Buffer Allocation Problem in a Simulation-Based Environment

G. Allon, D.P. Kroese\(^1\), T. Raviv, R.Y. Rubinstein

Faculty of Industrial Engineering and Management, Technion, Haifa, Israel.

\(^1\) *Department of Mathematics, University of Queensland, Brisbane 4072, Australia.*

Abstract

The *Buffer Allocation Problem* (BAP) is a well-known problem in the design of production lines. The objective is to allocate a fixed number of buffer spaces to the niches between successive machines, in order to optimise the throughput of the system. The BAP is a typical example of a “noisy” combinatorial optimisation problem, in which the exact value of the objective function – the throughput – is difficult or impossible to calculate and has to be *estimated* instead.

In this paper we present a stochastic algorithm for solving the BAP, based on the *Cross-Entropy method*. The algorithm involves the following iterative steps: (a) the generation of a sample of buffer allocations according to a certain random mechanism, followed by (b) the modification of this mechanism on the basis of the estimated throughput for these allocations. The modification rules are derived via cross-entropy minimisation.

Through various numerical experiments we demonstrate the efficiency of the proposed algorithm. In particular, we show numerically that the method can quickly generate optimal or near-optimal buffer allocations for fairly large production lines.

Keywords. Buffer Allocation, Cross-Entropy, Production Lines, Rare Events, Simulation.
1 Introduction

The Buffer Allocation Problem (BAP) is a well-known problem in the design of production lines. The objective is to allocate \(n \) buffer spaces amongst the \(m-1 \) “niches” (storage areas) between \(m \) machines in a serial production line, so as to optimise some performance measure, such as the steady-state throughput. We will shortly give a more detailed description of the BAP, but for general references on production lines we refer to [2], [5], [4], [20] and [28]. Buzacott and Shanthikumar [3] provides a good reference on stochastic modelling of manufacturing systems, while Gershwin and Schor [10] present a comprehensive summary paper on optimisation of buffer allocation models.

There are two reasons why the BAP is a difficult optimisation problem. The first reason is that, for a given buffer allocation, the exact value of the objective function – e.g., the steady-state throughput – is often difficult or impossible to calculate. In fact, complete knowledge of the objective function is only available for relatively small production lines in which the processing times have exponential or (simple) phase-type distributions, [10], [14]. So, in a more general setting the BAP is typically a noisy or simulation-based optimisation problem, i.e., an optimisation problem in which the objective function needs to be estimated, e.g., via discrete-event simulation, [21], [27].

The second reason why the BAP is difficult is that finding the optimum of the objective function, even if this function were completely known, comprises a combinatorial optimisation problem over a potentially very large set with \(\binom{n+m-2}{m-1} \) elements.

In this paper we present a new simulation-oriented approach to the BAP, based on the Cross-Entropy (CE) method. The CE method comprises a suite of techniques and algorithms for rare event simulation and combinatorial optimisation, built around the notion of cross-entropy minimisation. The method was first introduced in [22] for the efficient estimation of rare event probabilities in stochastic networks, and was originally
based on variance minimisation, rather than on cross-entropy minimisation. It was soon realised, [23], that it could also be used for (approximately) solving complicated (e.g., NP-hard) combinatorial optimisation problems (COPs). We wish to demonstrate that the CE method is particularly well-suited to solve noisy optimisation problems as well, and, in particular, that the CE method provides an easy and effective way to tackle the BAP.

For additional references on CE for COP see [15], [17], [19] and [24] - [26], and for an application of simulated annealing to the BAP see [31]. Alternative well-known heuristics for COP, capable of handling the BAP, are tabu search [9], genetic algorithms [11], nested partitioning [29], [30] and the Ant Colony Optimization (ACO) meta-heuristic of Dorigo and colleagues [6]-[8], [12], [13].

The remainder of this paper is organised as follows. In Section 2 we give a detailed description of the BAP, providing the necessary definitions and assumptions. In Section 3 we explain the main ideas behind the CE method as a simulation-based tool for combinatorial optimisation. Section 4 describes our main algorithm for the BAP. In Section 5 we present the results of various numerical experiments and in Section 6 we discuss the merits of the approach and potential directions for further research.

2 The Buffer Allocation Problem

The basic setting of the BAP is the following. Consider a production line consisting of \(m \) machines in series, numbered 1, 2, \ldots, \(m \). Jobs are processed by all machines in consecutive order. The processing time at machine \(i \) has a fixed distribution with rate \(\mu_i \) (hence the mean processing time is \(1/\mu_i \), \(i = 1, \ldots, m \). The machines are assumed to be unreliable, with exponential life- and repair times. Specifically, machine \(i \) has failure rate
\(\beta_i\) and repair rate \(r_i\), \(i = 1, \ldots, m\). All life, repair and processing times are assumed to be independent of each other.

The machines are separated by \(m - 1\) storage areas, or niches, in which jobs can be stored. However, the total number of storage places, or buffer places, is limited to \(n\). When a machine breaks down, this can have consequences for other machines up or down the production line. In particular, an up-stream machine could become blocked (when it cannot pass a processed job on to the next machine or buffer) and a down-stream machine could become starved (when no jobs are offered to this machine). We assume for definiteness that a starved or blocked machine has the same failure rate as a “busy” machine. The first machine in the line is never starved and the last machine is never blocked.

The BAP deals with the question how to optimally allocate the \(n\) buffer places amongst the \(m - 1\) niches. Here “optimally” refers to some performance measure of the flowline. Typical performance measures are the steady-state throughput and the expected amount of work-in-process. We shall only deal with the steady-state throughput.

Note that there are \(\binom{n+m-2}{m-1}\) possible buffer allocations. An illustration of the definitions is given in Figure 1.

Figure 1: A production line with \(m = 4\) machines. The total available buffer space is \(n = 9\). The current buffer allocation is \((3,2,4)\). Machine 1 has an infinite supply, but is currently blocked. Machine 2 has failed and is under repair. Machine 3 is starved. Machine 4 is never blocked.
We will use the following mathematical formulation of the BAP. Each possible Buffer Allocation (BA) will be represented by a vector \(\mathbf{x} = (x_1, \ldots, x_{m-1}) \) in the set \(\mathcal{X} := \{(x_1, \ldots, x_{m-1}) : x_i \in \{0, 1, \ldots, n\}, i = 1, \ldots, m - 1, \sum_{i=1}^{m-1} x_i = n\} \). Here, of course, \(x_i \) represents the number of buffer spaces allocated to niche \(i, i = 1, \ldots, m - 1 \).

For each buffer allocation \(\mathbf{x} \) let \(S(\mathbf{x}) \) denote the exact steady-state throughput of the production line. Thus the BAP can be formulated as the optimisation problem:

\[
\text{maximise } S(\mathbf{x}) \text{ over } \mathbf{x} \in \mathcal{X}.
\]

(1)

In case the actual steady-state output needs to be estimated, we have instead the noisy optimisation problem:

\[
\text{maximise } \hat{S}(\mathbf{x}) \text{ over } \mathbf{x} \in \mathcal{X},
\]

(2)

where \(\hat{S}(\mathbf{x}) \) is an estimate of \(S(\mathbf{x}) \).

3 Combinatorial Optimisation via the CE-Method

Consider the following general maximisation problem. Let \(\mathcal{X} \) be a finite set of states, and let \(S \) be a real function on \(\mathcal{X} \), the score. We wish to find the maximum of \(S \) over \(\mathcal{X} \), and the corresponding state(s) at which this maximum is attained. For simplicity assume there is only one such state \(\mathbf{x}^* \). Let us denote the maximum by \(\gamma^* \). Thus,

\[
S(\mathbf{x}^*) = \gamma^* = \max_{\mathbf{x} \in \mathcal{X}} S(\mathbf{x}).
\]

(3)

The starting point in the methodology of the Cross-Entropy method is to associate an estimation problem with the optimisation problem (3). We thereto define a collection of functions \{\(H(\cdot; \gamma) \)\} on \(\mathcal{X} \), via

\[
H(\mathbf{x}; \gamma) = \begin{cases}
1 & \text{if } S(\mathbf{x}) \geq \gamma, \\
0 & \text{if } S(\mathbf{x}) < \gamma,
\end{cases}
\]

5
for each $x \in \mathcal{X}$ and threshold $\gamma \in \mathbb{R}$. Next, let $\{f(\cdot; \mathbf{v})\}$ be a family of probability mass functions (pmf’s) on \mathcal{X}, parametrised by a real-valued parameter (vector) \mathbf{v}. We associate with (3) the problem of estimating the number

$$
\ell_{\mathbf{v}}(\gamma) = P_{\mathbf{v}}(S(\mathbf{X}) \geq \gamma) = \sum_{x} H(x; \gamma)f(x; \mathbf{v}) = \mathbb{E}_{\mathbf{v}} H(\mathbf{X}; \gamma),
$$

(4)

where $\mathbb{P}_{\mathbf{v}}$ is a probability measure under which the random state \mathbf{X} has pmf $f(\cdot; \mathbf{v})$; and $\mathbb{E}_{\mathbf{v}}$ denotes the corresponding expectation operator. We will call the estimation problem (4) the Associated Stochastic Problem (ASP). To indicate how (4) is associated with (3), suppose for example that γ is equal to γ^*. In that case $\ell_{\mathbf{v}} = f(\mathbf{x}^*; \gamma)$, which typically would be a very small number. A well-known technique for estimating such “rare-event” probabilities is Importance Sampling (IS), where we take a random sample $\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(N)}$ from a different pmf g on \mathcal{X}, and evaluate

$$
\frac{1}{N} \sum_{k=1}^{N} H(\mathbf{X}^{(k)}; \gamma) \frac{f(\mathbf{X}^{(k)}; \mathbf{v})}{g(\mathbf{X}^{(k)})},
$$

(5)

which is an (unbiased) estimator of $\ell_{\mathbf{p}}(\gamma)$. In the special case where $\gamma = \gamma^*$ the best possible choice for g is such that g assigns all its probability mass to \mathbf{x}^*; the estimator then has zero variance. Similarly, if γ is close to the optimal γ^*, it is plausible that the optimal g should assign most of its probability mass close to \mathbf{x}^*. At this point the CE method comes relevant, since it was specifically developed as a fast adaptive estimation method for finding the optimal IS “change of measure”, i.e, g.

To explain how the CE method works for the efficient estimation of (4), consider again the estimator (5). It is well known (and not difficult to see) that the optimal (i.e., zero-variance) way to estimate $\ell_{\mathbf{v}}(\gamma)$ is to use the change of measure with pmf

$$
g(x) := \frac{H(x; \gamma)f(x; \mathbf{v})}{\ell_{\mathbf{v}}(\gamma)}.
$$

(6)

The obvious difficulty is of course that this g depends on the unknown parameter $\ell_{\mathbf{v}}$. However, we can still try to choose an “optimal” pmf $f(\cdot, \mathbf{v})$ in the sense that that the
distance between this pmf and the g above is minimal. A particular convenient measure of “distance” between two pmf’s g and f is the Kullback-Leibler distance, which is defined as

$$
\mathcal{K}(g, f) = \mathbb{E}_g \log \frac{g(X)}{f(X)} = \sum_x g(x) \log g(x) - \sum_x g(x) \log f(x).
$$

The term $C(g, f) := - \sum_x g(x) \log f(x)$ is called the cross-entropy between g and f. For estimating (4) we choose the parameter $\hat{\theta}$ such that $\mathcal{K}(g, f(\cdot; \hat{\theta}))$, with g given in (6), is minimal. Equivalently, we choose $\hat{\theta}$ such that the cross-entropy between g and $f(\cdot; \hat{\theta})$ is minimised. It is easy to see that $\hat{\theta}$ should be such that

$$
\mathbb{E}_\nu H(X; \gamma) \log f(X; \hat{\theta})
$$

is maximal. An appealing aspect of this approach (to find the “near-optimal” change of measure via CE minimisation) is that the parameter (vector) can often be calculated analytically. In particular, for discrete random vectors X the components of $\hat{\theta}$ will always be of the form

$$
\frac{\mathbb{E}_p H(X; \gamma) I_{\{X \in A\}}}{\mathbb{E}_p H(X; \gamma) I_{\{X \in B\}}},
$$

where $I_{\{X \in A\}}$ and $I_{\{X \in B\}}$ are indicator random variables and $A \subset B \subset \mathcal{X}$. This number typically needs to be estimated. For this we can use the estimator

$$
\frac{\sum_{k=1}^N H(X^{(k)}; \gamma) I_{\{X^{(k)} \in A\}}}{\sum_{k=1}^N H(X^{(k)}; \gamma) I_{\{X^{(k)} \in B\}}},
$$

where $X^{(1)}, \ldots, X^{(N)}$ is a random sample from the pmf $f(\cdot; \nu)$. However, it is important to note that the estimator above is only of practical use when numerator and denominator in (9) are positive. This means for example that when γ is close to γ^*, ν needs to be such that $\mathbb{P}_\nu(S(X) \leq \gamma)$ is not too small. Thus, the choice of ν and γ in (3) are closely related. On the one hand we would like to choose γ as close as possible to γ^*, and find
(an estimate) of \hat{v} via the procedure above, which assigns almost all mass to state(s) close to the optimal state. On the other hand, we would like to keep γ relative large in order to obtain a viable estimator for \hat{v}.

The idea is now to construct a sequence of parameter (vectors) v_0, v_1, \ldots, and thresholds $\gamma_0, \gamma_1, \ldots$ such that $\{\gamma_k\}$ converges to a value γ_∞ close to the optimal γ^* and $\{v_k\}$ converges to a parameter v_∞ such that the corresponding pmf assigns high probability mass to the collection of states that give a score.

This strategy is embodied in the following procedure, see e.g., [23]:

Algorithm 3.1 (CE algorithm for Combinatorial Optimisation)

Start with some v_0. Let $k = 0$.

Repeat

1. Draw a random sample $x^{(1)}, \ldots, x^{(N)}$ from $f(\cdot, v_k)$.

2. Calculate the scores $S(x^{(i)})$ for all i, and order them from biggest to smallest, $s_1 \geq \ldots \geq s_N$. Let $\lfloor \rho N \rfloor$ be the integer part of ρN. Define $\gamma_k = s_{\lfloor \rho N \rfloor}$.

3. Define v_{k+1} as the estimate of the optimal \hat{v} in (7) with $v = v_k$. Thus, the components of v_{k+1} are found from (9). Increase k by 1.

Until convergence is reached.

Note that the stopping criterion, the initial state v_0, the sample size N and the number ρ have to be specified in advance, but that for the rest the algorithm is “self-tuning”.
In many applications, the sequence of pmf’s \(f(\cdot; \mathbf{v}_0), f(\cdot; \mathbf{v}_1), \ldots \) converges, or is numerically observed to converge, to a degenerate measure (Dirac measure), assigning all probability mass to a single state \(x_\infty \), for which, by definition, the function value is greater than or equal to \(\gamma_\infty \). For convergence results and proofs we refer to [18], [19] and [23].

The above procedure can, in principle, be applied to any maximisation problem. However, for each individual problem two essential ingredients need to be supplied.

1. We need to specify how the samples are generated. In other words, we need to specify the family of pmf’s \(\{ f(\cdot; \mathbf{v}) \} \).

2. We need to provide explicit updating rules for the parameters, based on cross-entropy minimisation.

In general there are many ways to generate samples from \(\mathcal{X} \), and it is not always immediately clear which way of generating the sample will yield better results or easier updating formulas.

4 Main algorithm

In this section we specify the main algorithm for the Buffer Allocation Problem, based on the Cross-Entropy algorithm.

Consider the BAP (1). In order to apply the CE algorithm we need to specify (a) how to generate random buffer allocations, and (b) how to update the parameters at each iteration. The easiest way to explain how the random buffer allocations are generated and how the parameters are updated is to relate (1) to an equivalent maximisation problem. Specifically, let \(\tilde{\mathcal{X}} = \{ (x_1, \ldots, x_{m-1}) : x_i \in \{0, 1, \ldots, n\} \} \), and define the function \(\tilde{S} \) on \(\tilde{\mathcal{X}} \) such that \(\tilde{S}(\mathbf{x}) = S(\mathbf{x}) \), if \(\mathbf{x} \in \mathcal{X} \) and \(\tilde{S}(\mathbf{x}) = -\infty \), otherwise. Then, obviously (1) is
equivalent to the maximisation problem

\[\text{maximise } \tilde{S}(\mathbf{x}) \text{ over } \mathbf{x} \in \tilde{\mathcal{X}}. \]

(10)

A simple method to generate a random vector \(\mathbf{X} = (X_1, \ldots, X_{m-1}) \) in \(\tilde{\mathcal{X}} \) is to independently draw \(X_1, X_2, \ldots, X_{m-1} \) according to fixed distributions \((p_{i0}, \ldots, p_{in}), i = 1, \ldots, m - 1 \). We can amalgamate the \(p_{ij} \) into the \((m - 1) \times (n + 1)\)-matrix \(P := (p_{ij}) \). Note that the rows of \(P \) sum up to \(1 \). The pmf \(f(\cdot; P) \) of \(\mathbf{X} \) is thus parametrised by the matrix \(P \) and given by

\[f(\mathbf{x}; P) = \prod_{i=1}^{m-1} \sum_{j=0}^{n} p_{ij} \mathbb{1}_{\{\mathbf{x} \in \tilde{x}_{ij}\}}, \]

where \(\tilde{x}_{ij} = \{\mathbf{x} \in \tilde{\mathcal{X}} : x_i = j\} \). The updating rules for this modified optimisation problem follow from the maximisation of (7) (where \(H \) refers to \(\tilde{S} \) and not to \(S \)), under the condition that the rows of \(P \) sum up to \(1 \). Using Lagrange multipliers \(u_1, \ldots, u_{m-1} \) we obtain the maximisation problem

\[\max_{P, u_1, \ldots, u_{m-1}} \left[\mathbb{E}_P H(\mathbf{X}; \gamma) \log f(\mathbf{X}; \tilde{P}) + \sum_{i=1}^{m-1} u_i \left(\sum_{j=0}^{n} \tilde{p}_{ij} - 1 \right) \right]. \]

Differentiating with respect to \(\tilde{p}_{ij} \), yields, for all \(j = 0, \ldots, n, \)

\[\mathbb{E}_P \frac{H(\mathbf{X}; \gamma)I_{\{\mathbf{x} \in \tilde{x}_{ij}\}}}{\tilde{p}_{ij}} + u_i = 0. \]

Summing over \(j = 0, \ldots, n \) gives \(\mathbb{E}_P H(\mathbf{X}; \gamma) = -u_i \), so that

\[\tilde{p}_{ij} = \frac{\mathbb{E}_P H(\mathbf{X}; \gamma)I_{\{\mathbf{x} \in \tilde{x}_{ij}\}}}{\mathbb{E}_P H(\mathbf{X}; \gamma)}. \]

This is of the form (8). The corresponding estimator, as in (9), is

\[\frac{\sum_{k=1}^{N} I_{\{\tilde{s}(\mathbf{x}^{(k)}) \geq \gamma\}} I_{\{\mathbf{x}^{(k)} \in \tilde{x}_{ij}\}}}{\sum_{k=1}^{N} I_{\{\tilde{s}(\mathbf{x}^{(k)}) \geq \gamma\}}}. \]

(11)
This has a very simple interpretation. We simply count how many of the $X^{(i)}$ have a function value greater than γ and of those we count how many have their ith coordinate equal to j. Dividing this last number by the former gives the updated value for p_{ij}.

This is how we could, in principle, carry out the sample generation and parameter updating for problem (10). We first generate X_1 from the first row of P, then independently generate X_2 from the second row of P, etcetera. And, for a sample of size N, we use updating formula (11). However, in practice, we would never generate the vectors in this way, since the majority of these vectors would be irrelevant (their components would not sum up to n, and therefore their S values would be $-\infty$). In order to avoid the generation of irrelevant vectors, we proceed as follows.

Algorithm 4.1 (Generation of buffer allocations) For $P = (p_{ij})$, generate X_1 according to (p_{11}, \ldots, p_{1n}). Given $X_1 = j$, generate X_2 from the truncated distribution $(p_{20}, \ldots, p_{2(n-j)}, 0, \ldots, 0)/(p_{20} + \cdots + p_{2(n-j)})$. Given $X_1 + X_2 = k$, generate X_3 from the truncated distribution $(p_{30}, \ldots, p_{3(n-k)1}, 0, \ldots, 0)/(p_{30} + \cdots + p_{3(n-k)})$. And continue this procedure for all other rows.

Algorithm 4.1 is further illustrated in Figure 2.

The updating formula remains the same, of course. But since we only generate vectors in X, the updated value for p_{ij} can be estimated as

$$\frac{\sum_{k=1}^{N} I_{\{S(X^{(k)}) \geq \gamma\}} I_{\{X^{(k)} \in X_{ij}\}}}{\sum_{k=1}^{N} I_{\{S(X^{(k)}) \geq \gamma\}}}.$$ \hspace{1cm} (12)

which has the same “natural” interpretation as discussed for (11).
Figure 2: Generation of the BA vector \((2, 4, 2, 1)\), for the case \(m = 5, n = 9\). For the first niche there are initially 9 possible buffer places; 2 buffer places are allocated. This reduces the number of available buffer places for the second niche to 7; 4 buffer places are allocated. Etcetera.

To complete the algorithm, we need to specify the initialisation and stopping conditions. For the initial matrix \(P_0\) we simply take all elements equal to \(1/(n + 1)\). The stopping criterion is based on the convergence of the sequence of matrices \(P_0, P_1, \ldots, P_m\), which (see also Section 3) is found to converge to a degenerate matrix \(P_\infty\), i.e., a matrix in which each row has exactly one 1 and \(n\) 0’s. Specifically, the algorithm is terminated if for some integer \(c\), e.g., \(c = 5\),

\[
\xi_k(i) = \xi_{k-1}(i) = \cdots = \xi_{k-c}(i), \quad \text{for all } j = 1, \ldots, m - 1, \tag{13}
\]

where \(\xi_k(i)\) denotes the index of the maximal element of the \(i\)th row of \(P_k\).
Summarising the results above, the main algorithm can be written as follows.

Algorithm 4.2 (Main Algorithm for the BAP)

\begin{align*}
\text{Start} & \quad \text{with } P_0 \text{ such that all elements are equal to } 1/(n + 1). \text{ Let } k = 0. \\
\text{Repeat} & \\
1. & \quad \text{Draw a random sample of buffer allocations } \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(N)} \text{ according to Algorithm 4.1, with } P = P_k. \\
2. & \quad \text{Calculate the throughputs } S(\mathbf{x}^{(i)}), i = 1, \ldots, N, \text{ and order these from biggest to smallest, } s_1 \geq \ldots \geq s_N. \text{ Let } [\rho N] \text{ be the integer part of } \rho N. \text{ Define } \gamma_k = s_{[\rho N]}. \\
3. & \quad \text{Using the same sample, calculate } P_{k+1} \text{ via formula (12). Increase } k \text{ by } 1. \\
\text{Until} & \quad \text{convergence condition (13) is met.}
\end{align*}

For fast generation of the buffer allocations one can use the well-known Alias method, similar as it is used in [23].

For the noisy BAP, i.e., problem (2), the only change in Algorithm 4.2 is that item 2. is replaced by

\begin{itemize}
\item [2’.] \text{Find the estimates of the throughputs, } \hat{S}(\mathbf{x}^{(i)}), i = 1, \ldots, N, \text{ and } \ldots .
\end{itemize}

It is intuitively clear that the noisy BAP converges in some sense to the “deterministic” BAP problem, if we decrease the relative error of the estimated throughputs to 0. For more details on these convergence aspects we refer to [23].

For the parameter values \(\rho \) and \(N \) in the algorithm we choose \(0.01 < \rho < 0.1 \) and \(N = 2mn. \) The explanation for the latter being that we have to estimate the components of the \((m - 1) \times (n + 1) \) matrices \(P_k \), for which we need in the order of \(nm \) replications.
Remark 4.1 Instead of updating the matrix P_k to P_{k+1} via formula (12) we could use a *smoothed* updating procedure in which

$$P_{k+1} = \alpha Q_{k+1} + (1 - \alpha) P_k,$$

where Q_{k+1} is the matrix derived via (12). Clearly for $\alpha = 1$ we have the original updating rule in Algorithm 4.2. We found empirically that a value of α between $0.7 \leq \alpha \leq 0.9$ gives the best results. The main reason why the smoothed updating procedure performs better than the non-smoothed version is that it prevents the occurrences of 0’s and 1’s in the matrices P_k. In the non-smoothed version, once an entry of P_k is 0 or 1, it will remain so for for all $P_\ell, \ell < k$, which is not desirable, especially in the beginning iterations.

5 Numerical results

To evaluate the effectiveness of Algorithm 4.2 we applied it to various test problems. Specifically, we applied Algorithm 4.2 to a suite of 70 test cases in Vouros and Papadopolous [32]. In all these cases the machine processing times have exponential or Erlang2 distributions. Since, in addition, the life- and repair times are assumed to be exponentially distributed, we can in principle calculate the exact optimal buffer allocation and corresponding steady-state throughput for these systems, using Markov Chain theory, as described in [14]. It should be noted, however, that the solutions are in practice only obtainable for relatively small n and m. In addition to the 70 test cases, we applied Algorithm 4.2 to various relatively large systems for which the “solutions” were not available from [32]. In this section we summarise the results on a selection of these test problems.

In all test cases below we set $\rho = 0.1$, took $c = 5$ in our stopping rule (13). We generated at each iteration $N = 2mn$ random buffer allocations and updated the parameter
matrices P_k according to the smoothed updating rule (14), with $\alpha = 0.7$. Similar results
where obtained with $0.05 \leq \rho \leq 0.2$ and $0.5 \leq \alpha \leq 0.95$. The algorithm was implemented
in Matlab 5.2 without compilation and ran on an Intel Pentium III 500MHz processor. For
a given buffer allocation we used the batch means method [27] to estimate the steady-state
throughput, each simulation run starting with a sufficiently long warm-up period.

For each test case we generated 10 independent solutions via Algorithm 4.2, say $\gamma^{(i)}$, $i = 1, \ldots, 10$. These were compared with either the optimal solution (steady-state output)
γ^*, or with the best known solution γ^1. In the tables below, we use the following notation.

The percentage average relative error of the 10 solutions is defined either as

$$\varepsilon = \frac{1}{10} \sum_{i=1}^{10} \frac{\gamma^* - \gamma^{(i)}}{\gamma^*} \times 100\%,$$

or as

$$\varepsilon = \frac{1}{10} \sum_{i=1}^{10} \frac{\gamma^1 - \gamma^{(i)}}{\gamma^1} \times 100\%,$$

(15)
depending on whether the true optimal solution is known or not. Also, below γ_{∞} denotes
the average of the 10 generated solutions, and ε_* and ε^* denote the worst and the best
relative error (percentage) among the 10 generated solutions. Here, we take again γ^1
instead of γ^* when the optimal solution is not known. Finally, BA denotes the optimal
buffer allocation, and Π and CPU denote the average total number of iterations needed
before stopping and the average CPU time in seconds, respectively.

Tables 1, 2 and 3 present the results for a number of test cases in [32]. In particular,
in Tables 1 and 2 we consider systems with exponential processing times with rates
$\mu_i, i = 1, \ldots, m$, and in Table 3 we consider systems with Erlang2 processing times,
with rates $\mu_i, i = 1, \ldots, m$; thus, for each machine i the processing time consists of two
exponential phases with rates $2\mu_i$. We recall that the machine life and repair times are
assumed to be exponential with rates $\beta_i, i = 1, \ldots, m$ and $r_i, i = 1, \ldots, m$, respectively.
We see that the allocations found by the CE method are very close to the exact optimal
ones (γ^*) of Vouros and Papadopolous [32].
<table>
<thead>
<tr>
<th>n</th>
<th>n_T</th>
<th>BA</th>
<th>γ_∞</th>
<th>γ^*</th>
<th>ε</th>
<th>ε^*</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>(1,0)</td>
<td>.6341</td>
<td>.6341</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>(1,1)</td>
<td>.6715</td>
<td>.6744</td>
<td>.94</td>
<td>0.88</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2.6</td>
<td>(2,1)</td>
<td>.6798</td>
<td>.7113</td>
<td>1.64</td>
<td>5.00</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3.5</td>
<td>(3,1)</td>
<td>.7349</td>
<td>.7361</td>
<td>0.16</td>
<td>0.54</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3.8</td>
<td>(3,2)</td>
<td>.7574</td>
<td>.7587</td>
<td>0.18</td>
<td>0.59</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>4.3</td>
<td>(4,2)</td>
<td>.7688</td>
<td>.7777</td>
<td>0.37</td>
<td>2.11</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>6.2</td>
<td>(5,2)</td>
<td>.7811</td>
<td>.7922</td>
<td>0.52</td>
<td>1.71</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>5.1</td>
<td>(5,3)</td>
<td>.8040</td>
<td>.8060</td>
<td>0.25</td>
<td>0.84</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>9.1</td>
<td>(6,3)</td>
<td>.8142</td>
<td>.8178</td>
<td>0.44</td>
<td>1.63</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>8.3</td>
<td>(7,3)</td>
<td>.8255</td>
<td>.8274</td>
<td>0.24</td>
<td>0.95</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1: Performance of Algorithm 4.2 for BAPs with $m - 1 = 2$ niches and different values of n, exponential processing times with rates $\mu_1 = 1$, $\mu_2 = 1.2$, $\mu_3 = 1.4$, failure rates $\beta_i = 0.05$ and repair rates $r_i = 0.5$, $i = 1, \ldots, 3$.

<table>
<thead>
<tr>
<th>n</th>
<th>n_T</th>
<th>γ_∞</th>
<th>γ^*</th>
<th>ε</th>
<th>ε^*</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.6</td>
<td>.5213</td>
<td>.5213</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4.6</td>
<td>.5479</td>
<td>.5514</td>
<td>0.60</td>
<td>1.10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3.6</td>
<td>.5824</td>
<td>.5824</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>6.4</td>
<td>.6015</td>
<td>.6027</td>
<td>0.20</td>
<td>0.85</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>9.0</td>
<td>.6202</td>
<td>.6213</td>
<td>0.18</td>
<td>0.32</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>5.7</td>
<td>.6420</td>
<td>.6422</td>
<td>0.03</td>
<td>0.31</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>7.7</td>
<td>.6572</td>
<td>.6585</td>
<td>0.20</td>
<td>0.87</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>7.2</td>
<td>.6731</td>
<td>.6744</td>
<td>0.20</td>
<td>1.20</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>9.1</td>
<td>.6885</td>
<td>.6894</td>
<td>0.13</td>
<td>0.67</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>10.7</td>
<td>.7004</td>
<td>.7005</td>
<td>0.02</td>
<td>0.03</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2: Performance of Algorithm 4.2 for $m - 1 = 4$ niches, different values of n, exponential processing times with rates $\mu_1 = 1$, $\mu_2 = 1.1$, $\mu_3 = 1.2$, $\mu_4 = 1.3$, $\mu_5 = 1.5$, failure rates $\beta_i = 0.05$ and repair rates $r_i = 0.5$, $i = 1, \ldots, 5$.

16
Table 3: Performance of Algorithm 4.2 for $m - 1 = 4$ niches, with Erlang$_2$ processing times with rates $\mu_1 = 1$, $\mu_2 = 1.1$, $\mu_3 = 1.2$, $\mu_4 = 1.3$, $\mu_5 = 1.5$, failure rates $\beta_i = 0.05$ and repair rates $r_i = 0.5$, $i = 1, \ldots, 5$.

<table>
<thead>
<tr>
<th>n</th>
<th>\bar{T}</th>
<th>$\bar{\gamma}_\infty$</th>
<th>γ^*</th>
<th>ε</th>
<th>ε^*</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.8</td>
<td>.5968</td>
<td>.5968</td>
<td>0</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>3.5</td>
<td>.6331</td>
<td>.6338</td>
<td>0.11</td>
<td>1.14</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>3.9</td>
<td>.5824</td>
<td>.5824</td>
<td>0</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>5.8</td>
<td>.6802</td>
<td>.6808</td>
<td>0.09</td>
<td>0.73</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>8.3</td>
<td>.6985</td>
<td>.6996</td>
<td>0.16</td>
<td>0.28</td>
<td>159</td>
</tr>
<tr>
<td>6</td>
<td>6.9</td>
<td>.7180</td>
<td>.7195</td>
<td>1.14</td>
<td>0</td>
<td>187</td>
</tr>
<tr>
<td>7</td>
<td>12.5</td>
<td>.7335</td>
<td>.7341</td>
<td>0.18</td>
<td>0.07</td>
<td>202</td>
</tr>
<tr>
<td>8</td>
<td>9.8</td>
<td>.7496</td>
<td>.7501</td>
<td>0.43</td>
<td>0.07</td>
<td>181</td>
</tr>
<tr>
<td>9</td>
<td>9.7</td>
<td>.7620</td>
<td>.7627</td>
<td>0.68</td>
<td>0.09</td>
<td>177</td>
</tr>
<tr>
<td>10</td>
<td>13.6</td>
<td>.7714</td>
<td>.7740</td>
<td>1.24</td>
<td>.33</td>
<td>261</td>
</tr>
</tbody>
</table>

Tables 4 and 5 present the performance of Algorithm 4.2 for $m = 6$ and $m = 10$, respectively, with exponential processing times and different values of n. We could not compare the results of Tables 4 and 5 with any alternatives since to the best of our knowledge no case studies are available yet for such relatively large systems. We argue, however, that our results are accurate and reliable and could serve as case studies to compare different algorithms. Note also that γ^1 in Tables 4 and 5 corresponds to our best solution obtained (on the basis of 10 different runs) for each fixed n.

We obtained similar accuracies for different processing time distributions (i.e., exponential, normal, Erlang, uniform and deterministic), provided $0.05 \leq \rho \leq 0.2$ and $0.5 \leq \alpha \leq 0.95$.

17
<table>
<thead>
<tr>
<th>n</th>
<th>\bar{T}</th>
<th>γ_{∞}</th>
<th>γ^1</th>
<th>ε</th>
<th>ε_*</th>
<th>ε^*</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4.2</td>
<td>5.4935</td>
<td>5.5027</td>
<td>0.17</td>
<td>0.84</td>
<td>0</td>
<td>32.80</td>
</tr>
<tr>
<td>4</td>
<td>5.4</td>
<td>5.9245</td>
<td>5.9334</td>
<td>0.15</td>
<td>0.76</td>
<td>0</td>
<td>65.80</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>6.2443</td>
<td>6.2555</td>
<td>0.18</td>
<td>0.50</td>
<td>0</td>
<td>156.00</td>
</tr>
<tr>
<td>8</td>
<td>13.4</td>
<td>6.5197</td>
<td>6.5253</td>
<td>0.09</td>
<td>0.22</td>
<td>0</td>
<td>198.80</td>
</tr>
<tr>
<td>10</td>
<td>25.6</td>
<td>6.7510</td>
<td>6.7589</td>
<td>0.12</td>
<td>0.57</td>
<td>0</td>
<td>386.40</td>
</tr>
<tr>
<td>12</td>
<td>49</td>
<td>6.9316</td>
<td>6.9360</td>
<td>0.06</td>
<td>0.11</td>
<td>0</td>
<td>766.40</td>
</tr>
<tr>
<td>14</td>
<td>28.2</td>
<td>7.0684</td>
<td>7.0934</td>
<td>0.35</td>
<td>0.79</td>
<td>0</td>
<td>603.60</td>
</tr>
<tr>
<td>16</td>
<td>59.2</td>
<td>7.1783</td>
<td>7.1846</td>
<td>0.09</td>
<td>0.26</td>
<td>0</td>
<td>1128.60</td>
</tr>
<tr>
<td>18</td>
<td>92.6</td>
<td>7.4149</td>
<td>7.4291</td>
<td>0.19</td>
<td>0.36</td>
<td>0</td>
<td>2048.40</td>
</tr>
</tbody>
</table>

Table 4: Performance of Algorithm 4.2 for $m-1=5$ niches and various n, exponential processing times with rates $\mu_1 = 8$, $\mu_2 = 11$, $\mu_3 = 14$, $\mu_4 = 14$, $\mu_5 = 11$, $\mu_6 = 8$, failure rates $\beta_i = 0.05$ and repair rates $r_i = 0.5$, $i = 1,\ldots, 6$.

<table>
<thead>
<tr>
<th>n</th>
<th>\bar{T}</th>
<th>γ_{∞}</th>
<th>γ^1</th>
<th>ε</th>
<th>ε_*</th>
<th>ε^*</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4.00</td>
<td>3.8281</td>
<td>3.8749</td>
<td>1.22</td>
<td>3.76</td>
<td>0</td>
<td>110.00</td>
</tr>
<tr>
<td>4</td>
<td>11.67</td>
<td>4.1160</td>
<td>4.1236</td>
<td>0.18</td>
<td>0.28</td>
<td>0</td>
<td>402.33</td>
</tr>
<tr>
<td>6</td>
<td>19.67</td>
<td>4.3220</td>
<td>4.3289</td>
<td>0.16</td>
<td>0.24</td>
<td>0</td>
<td>964.00</td>
</tr>
<tr>
<td>8</td>
<td>23.33</td>
<td>4.5325</td>
<td>4.5420</td>
<td>0.21</td>
<td>0.58</td>
<td>0</td>
<td>1199.67</td>
</tr>
<tr>
<td>10</td>
<td>12.67</td>
<td>4.6146</td>
<td>4.6426</td>
<td>0.60</td>
<td>1.84</td>
<td>0</td>
<td>1164.67</td>
</tr>
<tr>
<td>12</td>
<td>14.33</td>
<td>4.7814</td>
<td>4.7946</td>
<td>0.28</td>
<td>0.84</td>
<td>0</td>
<td>1718.67</td>
</tr>
<tr>
<td>14</td>
<td>37.00</td>
<td>4.8852</td>
<td>4.8895</td>
<td>0.08</td>
<td>0.20</td>
<td>0</td>
<td>3325.00</td>
</tr>
<tr>
<td>16</td>
<td>49.33</td>
<td>4.9832</td>
<td>4.9891</td>
<td>0.18</td>
<td>0.33</td>
<td>0</td>
<td>5117.00</td>
</tr>
<tr>
<td>18</td>
<td>186.67</td>
<td>5.0414</td>
<td>5.0638</td>
<td>0.45</td>
<td>1.17</td>
<td>0</td>
<td>20714.00</td>
</tr>
</tbody>
</table>

Table 5: Performance of Algorithm 4.2 for $m-1=9$ niches, exponential processing times with rates $\mu_1 = 8$, $\mu_2 = 8$, $\mu_3 = 11$, $\mu_4 = 14$, $\mu_5 = 14$, $\mu_6 = 11$, $\mu_7 = 8$, $\mu_8 = 8$, $\mu_9 = 6$, $\mu_{10} = 6$, failure rates $\beta_i = 0.05$ and repair rates $r_i = 0.5$, $i = 1,\ldots, 11$.
Dynamics

We illustrate the dynamics of the matrices P_k for a benchmark problem with 4 niches, 10 buffer spaces, normally distributed processing times with $\mu = 6, \sigma = 2$ and $N = 80$.

$$P_0 = \begin{pmatrix} 0.0000 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 \\ 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 \\ 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 \\ 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 \\ 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 & 0.0009 \end{pmatrix}$$

$$P_k = \begin{pmatrix} 0.0002 & 0.0013 & 0.0139 & 0.4484 & 0.5349 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0002 \\ 0.0002 & 0.0002 & 0.0303 & 0.8226 & 0.1432 & 0.0014 & 0.0013 & 0.0002 & 0.0002 & 0.0002 \\ 0.0002 & 0.0483 & 0.9410 & 0.0089 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0002 \\ 0.0014 & 0.6007 & 0.3913 & 0.0051 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0002 \end{pmatrix}$$

$$P_0 = \begin{pmatrix} 0.0000 & 0.0000 & 0.0038 & 0.0179 & 0.9783 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0001 & 0.9996 & 0.0003 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0001 & 0.9445 & 0.0554 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.9801 & 0.0199 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \end{pmatrix}$$

It follows from the results above that starting from P_0 with the elements $\frac{1}{n+1} = \frac{1}{11} = 0.0909$ Algorithm 4.2 stopped after 9 iterations allocating 4, 3, 2, 1 buffer spaces to niches 1, 2, 3, 4, respectively.

6 Conclusions and directions for future research

This paper presents an application of the cross-entropy method to the Buffer Allocation Problem. The proposed algorithm involves the generation of buffer allocations according to an auxiliary random mechanism, followed by an updating of the parameters of this
mechanism, on the basis of the simulated performance of these buffer allocations. The
updating mechanism, derived via cross-entropy minimisation, is very simple and involves
a sequence of (stochastic) matrices P_k which are (numerically) found to converge to a
degenerate matrix, from which the optimal or near optimal BA is directly found.

Our numerical studies suggest that the proposed algorithm is fast and typically per-
forms well, in the sense that in approximately 99% of the cases the relative error ε does
not exceed 1%.

Further topics for investigation include (a) establishing convergence of Algorithm 4.2
for finite sampling (i.e., $N < \infty$) with emphasis on the complexity and the speed of con-
vergence under the suggested stopping rules; (b) establishing confidence intervals (regions)
for the optimal solution; (c) application of parallel optimisation techniques to the pro-
posed methodology; and (d) investigations regarding a further speed-up of the algorithm.

With respect to (d), we note that initially the throughputs do not need to be estimated
very accurately, since the procedure just needs a rough idea which buffer allocations are
good or not. However, further-on in the procedure the accuracy needs to be increased
to distinguish between competing “good” solutions. In the present test cases the same
accuracy was used for all iterations, since the goal of this paper was to show that for the
“noisy” BAP high accuracy could be achieved within a reasonable time.

References

[2] Adan, I. and J. van der Wal, Monotonicity of the throughput in single server produc-
tion and assembly networks with respect to the buffer sizes, in *Queueing Networks*

