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(1) First we obtain the reduced form of system ¥ by Algorithm 3.2.
(2) Obtain characteristic polynomial ¢(z) = Y(Aszz) of the unreach-
able part. (3) Check if f(z) is a multiple of ¢(z). (4) If answer to (3)
is YES then (4) obtain polynomials x(Ar:r ), X(Ar—1:rs ..., X(A1:r)
and (5) solve modular identities arising from Theorem 2.3.

Collecting the costs of all procedures give us a total of O(rn®)
arithmetic operations in R plus the calculation of the characteristic
polynomial y(A22) of degree n — 7. This characteristic polynomial
can be computed deterministically (see [15, Th. 5.1]) up to a cost of
O(((n = r)*T1/3)1*°MW)) arithmetic operations in R.

If R is an infinite domain then generic case for a single input system
is rank » = n. Hence neither line (3) in the above procedure nor the
calculation of y(A22) are needed in most cases. The generic case on
an infinite Euclidean domain involves a cost of O(n*) arithmetic op-
erations in R.
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Consensus Over Ergodic Stationary Graph Processes

Alireza Tahbaz-Salehi and Ali Jadbabaie

Abstract—In this technical note, we provide a necessary and sufficient
condition for convergence of consensus algorithms when the underlying
graphs of the network are generated by an ergodic and stationary random
process. We prove that consensus algorithms converge almost surely, if and
only if, the expected graph of the network contains a directed spanning
tree. Our results contain the case of independent and identically distributed
graph processes as a special case. We also compute the mean and variance
of the random consensus value that the algorithm converges to and provide
a necessary and sufficient condition for the distribution of the consensus
value to be degenerate.

Index Terms—Consensus algorithm, ergodic stationary process, random
graph.

I. INTRODUCTION

Due to their wide range of applications, distributed consensus algo-
rithms have attracted significant amount of attention over the past few
years. The main focus in the study of these algorithms is to derive con-
ditions under which a group of agents in a network with local commu-
nication capabilities can reach global agreement, using simple, linear
information exchange protocols. Applications include distributed and
parallel computing [1], motion coordination of autonomous agents [2],
[3], distributed sensor fusion [4], as well as opinion dynamics [5] and
belief formation in social networks [6], [7].

More recently, there has been much interest in understanding the be-
havior of consensus algorithms in random settings. The randomness
can be either due to the choice of a randomized network communi-
cation protocol or, simply caused by the potential unpredictability of
the environment in which the distributed consensus algorithm is imple-
mented [8]. Hatano and Mesbahi [9] provide one of the earliest studies
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of consensus algorithms over random networks. They prove that if com-
munication links between any pair of agents are activated indepen-
dently with some exogenously specified probability p (what is known
as the Erd6s-Rényi random graph model), then agents reach agreement
asymptotically. Wu [10] and Porfiri and Stilwell [11] extend the re-
sults of [9] to more general settings. In [12], Tahbaz-Salehi and Jad-
babaie study the asymptotic properties of random consensus algorithms
over the general class of i.i.d. weighted and directed random graph se-
quences, where different communication links at a given time are corre-
lated, even though realizations of the network at two different time steps
are independent. They prove that randomized consensus algorithms
over i.i.d. networks converge to consensus if and only if |2 (EW})| <
1, where matrix EW}, captures the expected weights that agents assign
to one another’s states, with A, representing its eigenvalue with the
second largest modulus. Put differently, over i.i.d. random networks,
asymptotic consensus is achieved if and only if the graph of the network
contains a directed spanning tree in expectation. In a related paper, Fag-
nani and Zampieri [8] study the speed of convergence to consensus and
provide concentration results for general i.i.d. network processes.

The common crucial assumption of the works mentioned above
is that the realizations of underlying communication network among
agents at different time steps are independent and identically dis-
tributed. However, in many realistic applications, this is too strong of
an assumption. For example, the existence of a communication link
in a wireless network at a given time is strongly correlated with its
existence at previous time steps.

In this note, we relax the independence assumption and assume that
the graphs representing the communication network among agents are
generated by an ergodic and stationary process. Building on the results
of Picci and Taylor [13] and by applying Birkhoff’s ergodic theorem,
we show that condition | A2 (EW3 )| < 1 appeared in [12] is a necessary
and sufficient condition for almost sure convergence to consensus. This
condition implies that existence of a directed path in the expected graph
of the network from some node to all other nodes is both necessary
and sufficient for reaching consensus with probability one. The results
presented in this note are more general than [8]-[12], which assume
independence over time. Also contrary to Picci and Taylor [13], who
consider unweighted edges one at a time, we consider a general ergodic
stationary process of stochastic matrices.

As a second contribution, we characterize the mean and variance of
the random consensus value that the algorithm converges to in terms of
the first and second moments of weight matrices ;.. We also provide
a necessary and sufficient condition for the distribution of the random
consensus value to be degenerate.

II. ERGODIC STATIONARY MATRIX PROCESSES

Let (20, B) be a measurable space, where 2 = {set of stochastic
matrices of order n with strictly positive diagonal entries} and
B is the Borel o-algebra on €. Consider probability measure P de-
fined on the sequence space (€2, F)

SZ:{(wl7w23'--):wlv S SZO}
F=BxBx...

such that (€2, 7, P) forms a probability space. Let ¢ : €2 — € be the
shift operator defined as ¢ (w1, w2,...) = (w2,ws,...) and define the
first coordinate map W :  — Qo as W(w) = wy. Forw € €, we
define the sequence of stochastic matrices { Wi (w) : k > 1}, where
Wi(w) £ W(p* 'w) = wg. For notational simplicity, we denote
Wi (w) by Wy.

Definition 1: A sequence of random stochastic matrices
Wi, Wa,... is stationary if the families {Wi,, We,,..., Wi, }
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and {Wi,4n, Wigtn, .-, Wi, 45} have the same joint distribution
for all k1, ko,..., k- and all h > 0.

In other words, {W}, : k& > 1} is a stationary process if all of its finite
dimensional distributions are invariant under time shifts. Equivalently,
the process is stationary if the shift operator is a measure-preserving
transformation, i.e., P(yxB) = P(B) for all sets B € F.

Definition 2: Consider the probability space (€2, F, P) and suppose
that the shift operator ¢ : 2 — € is measure-preserving. ¢ is said to
be ergodic if every invariant set B € F is trivial.

In other words, transformation ¢ is ergodic if for every B € F sat-
isfying P(BA@ ™' B) = 0, we have P(B) € {0, 1}, where A denotes
the symmetric difference between the two sets.!

Finally, we say random matrix process {Wj : k > 1} is ergodic
stationary, if the shift operator defined over (£2, 7, P) is measure-pre-
serving and ergodic. For example, a time-invariant Markov chain with
its unique stationary distribution as the initial distribution forms a sta-
tionary and ergodic process. Clearly, any i.i.d. sequence of matrices is
also both ergodic and stationary. We have the following lemma for er-
godic stationary processes.

Lemma 1: Suppose Wi, W, ... is an ergodic stationary process
of stochastic n X n matrices. If the event {W}, € A} has positive
probability p > 0, then such events occur infinitely often almost surely,
that is, P(W,, € A for infinitely many k) = 1.

Proof: Since the process {W}, : k > 1} is ergodic stationary, so
is the process {l;w,cay : & > 1}, where [ is the indicator function.
Therefore, by Birkhoff’s ergodic theorem [14], [15]

T
% Z L, eay — P{W1 € A} = p almost surely

k=1

which implies

P <Z II{VVA,EA} = OO) =1.
k=1

Thus, the events {W}, € A} occur infinitely often almost surely. ®

III. CONSENSUS OVER RANDOM NETWORKS

In this section, we present our framework for consensus algorithms
over ergodic and stationary graph processes.
Consider the discrete-time autonomous dynamical system

(k) = Wi(w)z(k — 1) (€Y
where k& € {1,2,...} is the discrete time index, z(k) € R" is the
state vector at time &k and {Wj(w) : k > 1} is an ergodic stationary
process of stochastic matrices with strictly positive diagonals, defined
in Section II. We say dynamical system (1) reaches consensus asymp-
totically on some path w € €, if along that path, |z;(k) — x; (k)| — 0
ask — oo foralli,j = 1,...,n. In other words, the system reach
consensus on some path, if the difference between any two elements of
the state vector, on that path, converges to zero. We now define almost
sure convergence to consensus:

Definition 3: Dynamical system (1) reaches consensus almost
surely, if for any initial state value x(0)

|2:(k) — xj (k)] = 0 P-almost surely
ask — oo foralli,j =1,...,n.

A. Random Graph Interpretation
One can interpret linear dynamical system (1) as a randomized dis-
tributed scheme where a collection of agents, labeled 1 through n, up-

IThe symmetric difference between two sets X and Y is defined as X AY =
(X\Y)Uu Y\ X).
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date their state values as a convex combination of the state values of
their neighbors at the previous time step. In this interpretation, x; (k)
corresponds to the state value of agent i at time k, and W}, captures
the neighborhood relations between different agents at time k. To fur-
ther clarify this point, we define the graph corresponding to weight ma-
trix Wy, denoted by G (W), as a weighted directed graph on n ver-
tices, with an edge (7, j) from vertex 7 to vertex j with weight W;
if and only if W;; # 0. Given this definition, linear update x(k) =
Wia(k — 1) represents a distributed update scheme over the vertices
of G(W}), where the value of z; (%) only depends on the elements of
the set {x;(k — 1) : (j,7) is an edge of G(W})}, which is the set of
neighbors of agent i at time k.

If both (7, j) and (j,i) are edges of G(W},), we say vertices ¢ and
j communicate at time k. Communication relation is an equivalence
relation and defines equivalence classes on the set of vertices. If the
vertices in a specific communication class have no neighbors outside
of that class, such a class is called initial. Later in the note, we use the
following lemma, the proof of which can be found in [16].

Lemma 2: Suppose that W is a stochastic matrix for which its
corresponding graph G (W) has s communication classes named
. Class a- is initial, if and only if the spectral radius of
a, [W’] equals to one, where «,[W] is the submatrix of W corre-
sponding to the vertices in the class o,.

Finally, notice that the assumption that the sequence {Wj, : k > 1}
is a general stationary and ergodic process implies that the edges of
{G (W) : k > 1} are not necessarily independent over time. Instead,
the existence of an edge in the network at some time step k; might be
correlated with the weights of other edges at some other time k-.

B. Weak Ergodicity

Given (1), the state vector at time & can be written as

(k) = Wi ... WalW12(0) 2)
where x(0) denotes the vector of initial state values. Equation (2) sug-
gests that asymptotic behavior of linear dynamical system (1) depends
on the behavior of infinite products of stochastic matrices Wy,. This
motivates us to borrow the concept of weak ergodicity of a sequence of
stochastic matrices from the theory of Markov chains.

Definition 4: The sequence {W; }72, = Wi, Wa,...
stochastic matrices is weakly ergodic, if for all 7, 5,s = 1,...
all integer p > 0

,of n X n
,n and

L,YZ_("‘;-,P) _ U‘J(ivﬁ) -0
as k — oo, where Ukr) — Wotk ..
of the matrices in the sequence.

As the definition suggests, a sequence of stochastic matrices is
weakly ergodic if the difference between any two rows of the product
matrix converges to zero, as the number of terms in the product grows.2
Note that weak ergodicity does not require the left products ko)
to converge as k — oc. The following theorem, however, shows that
in the presence of weak ergodicity, all infinite left products converge
[17], [18].

Theorem 1: Suppose that matrix sequence {W3 } 5=, is weakly er-
godic. Forall¢,s = 1,...,n and all integers p > O there exist vectors
d® not depending on ¢ such that

WptoWhpiy is the left product

Uk g

2To be more precise, we have stated the definition of weak ergodicity in the
backward direction.
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as k — oo.

Proof: For any € > 0, weak ergodicity implies that for large
enough %, we have —e < U“‘ ») UJ(I‘ )" < ¢ uniformly for all
i,j,s=1,...,n.Since U (h+1p) _ = Wigpt U (5P we have

U}”idﬂ —e< U}(L"C:rlyp) < Ui(,}i’p) +e

which by induction implies that

Uvz'(i’p) €< D(’~+hp) < U 71)) iy
foralli,s,h =1,...,nandr > 0. By setting ¢ = h, it is evident that
U P) is a Cauchy sequence and therefore, limy — oo Ui(vli’p ) exists. m

The above theorem implies that whenever {Wp : k > 1} is weakly
ergodic, a non-negative vector d exists such that 7*®) — 14" where
1 denotes a vector with all entries equal to one. Therefore, almost sure
weak ergodicity of {W}, : k > 1} guarantees that linear dynamical
system (1) reaches consensus almost surely, with the asymptotic con-
sensus value equal to d” #(0). We use this fact as the basis of our proofs
for convergence to consensus. It is important to note that the converse
of this statement is not true in general. In other words, the event of weak
ergodicity of the sequence of matrices is a subset of the event that (1)
reaches consensus asymptotically for all initial state values :(0). For
instance, the existence of a rank one matrix in the sequence implies
asymptotic consensus, while it does not guarantee weak ergodicity.

We now define the coefficient of ergodicity which is an extremely
useful and effective tool in dealing with infinite products of stochastic
matrices.

Definition 5: The scalar continuous function 7(+) defined on the set
of n X n stochastic matrices is called a (proper) coefficient of ergodicity
if 7(-) € [0,1] and

(W) = 0if and only if W = 1d"

where d is a vector of size n satisfying 471 = 1.
It is straightforward to show that weak ergodicity is equivalent to

F(U*PYy 50 VpeNU{0}

as k — oo for some coefficient of ergodicity 7. We have the following
theorem [18].

Theorem 2: Suppose 7(-) is a coefficient of ergodicity that for any
m > 1 stochastic matrices Fs, s = 1,2,...,mn satisfies

T(Fm .. .FzFl) S ﬁT(F3>.

s=1

3

Then the sequence { W } 72, is weakly ergodic if there exists a strictly

increasing sequence of integers k., r = 1,2,... such that
Z (1= 7(Wipyy - Whyg1)) = 0. )
r=1

Proof: Suppose that there exists a strictly increasing sequence of
positive integers k. such that (4) holds. Then, inequality log 2z < =z —1
implies that

(W

Z log

and as a result, [[°2, 7(Wk, ., ... W, 41) = 0. Therefore, (3) guar-
antees the sequence is weakly ergodic. |

R I/I’rkT+l)) = -
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IV. CONVERGENCE OF CONSENSUS ALGORITHMS OVER
ERGODIC STATIONARY GRAPH PROCESSES

In this section, we prove a necessary and sufficient condition for
linear dynamical system (1) to converge to consensus almost surely,
when weight matrix process {Wj, : k > 1} is ergodic and stationary.
Our results contain the results of [9]-[12] as special cases, which
simply assume an i.i.d. matrix process.

Theorem 3: Let {Wy : k > 1} = Wy, Wa, ... denote a sequence
of stochastic matrices with positive diagonals generated by an ergodic
stationary process. Linear dynamical system (1) reaches consensus al-
most surely, if and only if |2 (EW3)| < 1, where A2 is the eigenvalue
with the second largest modulus.3

Proof: Suppose |A2(EW})| = 1, which implies that EW}, is re-
ducible [16].4 Therefore, without loss of generality, EWW}, has the fol-
lowing block triangular form:

Qi 0 ... 0

Q21 Q22 ... 0
e

Qsl QSZ st

where each ();; is an irreducible matrix and represents the vertices
in the :-th communication class of EW}, denoted by «;. Since
M (EWg) = [A2(EWy)| = 1, submatrices corresponding to at least
two classes have unit spectral radii. Therefore, by Lemma 2

Ji # j s.t. o and «j are both initial classes

or equivalently, ();» = O forall » # ¢ and J;; = 0 foralll # j.
In other words, matrix EW}. has two orthogonal rows. This, and the
non-negativity of the matrices in {Wj : k > 1} imply that U*® =
Wi ... Wa W has two orthogonal rows almost surely for any k. There-
fore, there are initial conditions for which random discrete-time dy-
namical system (1) reaches consensus with probability zero.

We now prove the reverse implication. When |[A2(EW3)| < 1,
Lemma 2 implies that G(EW?) has exactly one initial class; that is,
there exists a vertex ¢ such that for all j # 4 there is a sequence of ver-
tices 7 = j(0),5(1),...,5j(s;) = j for which (EW%) ;(¢),j(q—1) > 0.
In other words, there exists a path of length s; from some node ¢ to
any other node j in the expected graph of the network. As a result,
there exists € > 0 such that

P I(Wi)ja)ia—1) > €] >0forallg=1,2,...,s;
for all vertices j. Hence, Lemma 1 implies
P [(W'k)j(q),j(qu > e infinitely often] =1 1<¢<s;

for all j # i. Since finite intersections of these events also occurs with
probability one, there exists a deterministic time 7" for which

P6(Wr...WaW1) > (] >0

for some ¢ > 0, where 6(W) = max;(min; ;). In other words,
there exists a deterministic time 7", for which all entries of at least one
column of the matrix product Wy ... WoW; is bounded away from
zero with positive probability. Now, once again the ergodicity and sta-
tionarity of sequence {W73 : k > 1} implies that such an event occurs
infinitely often almost surely, i.e.,

3Note that EW,, is time-invariant because of the stationarity assumption.
4Note that all diagonal entries of EW)}, are strictly positive.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 1, JANUARY 2010

P (6(W"(r+1)r ... Wer41) > ¢ for infinitely many 7') =1.
Therefore, by defining k.. = »T’, we have

5(””1«T+1 .o . Wk, 41) > ( infinitely often almost surely.
Notice that 1 — §(W) > 7(W) £ (1/2)max;; 3", |(W)is —
(W) ;4. It is straightforward to verify that 7y is a coefficient of ergod-
icity that satisfies (3). Therefore

oo

Z (1 -1 (Wh,yy - I"’/'k,"+1)) = oo almost surely

r=1

which is exactly (4), the sufficient condition for weak ergodicity. Thus,
{Wi :+ k > 1} is weakly ergodic almost surely, which implies that
linear dynamical system (1) reaches consensus with probability one. B

Theorem 3 establishes that | A2 (EW})| < 1 is a necessary and suf-
ficient condition for almost sure asymptotic consensus in (1) when the
weight matrices (and hence, their corresponding graphs) are generated
by an ergodic stationary process. Therefore, asymptotic consensus over
ergodic stationary graph processes is guaranteed if and only if the ex-
pected graph of the network contains a directed spanning tree. This
result is a generalization of our results in [12], which provides a sim-
ilar criterion for the i.i.d. case.

The ergodicity of the graph process can be interpreted as the property
that the ensemble average coincides with the time average. In other
words, when the expected graph of the network contains a directed
spanning tree, then there exists a time sequence {k, : v > 1} such that
collection of graphs {G (W4, +1), ..., G(Wy, ., )} are infinitely often
Jjointly strongly rooted with probability one, and therefore, asymptotic
consensus is guaranteed almost surely [2].

Theorem 3 also states that depending on the second largest eigen-
value modulus of the expected weight matrix, weak ergodicity occurs
with either probability 1 or 0. This was to be expected, as the event
B = {W7,W,,... is weakly ergodic} satisfies B = ¢ B and there-
fore, is invariant, i.e., P(BA¢B) = 0. Due to ergodicity of ¢, such an
event must be trivial.

In order to illustrate the results presented in this section we provide
a simple example.

Example 1: Consider a graph on n vertices with its potential undi-
rected edges numbered 1 through n(n — 1)/2. We assume that the re-
alization of the graph at time % contains edge e with weight 1/n if and
only if the e-th entry of the random vector z, € R™ /2 is non-neg-
ative, where z, is generated by an autoregressive process of order one.
More precisely, for any i # j and edge e = (i, j)

5
(6)

) 1
(We)is = iy, >0

g =vzr—1 + (1 — 7)epl

wherey € [0, 1) isaconstant, zo ~ N (0, %11/[), and{e : k> 1}
is a sequence of i.i.d. unit normal random variables independent from
zo. The diagonal elements of W}, are defined such that the matrix is
stochastic. Note that z; is a convex combination of its value at the
previous time step and an independent noise term €. This means that
existence of an edge at time k is correlated with existence of other edges
at the same time (due to the common noise term), as well as with the
realization of the random vector = at all other times (as long as v # 0).
Equations (5) and (6) together define an ergodic stationary weight
matrix process { W4 : k > 1}. Therefore, we can apply Theorem 3. It is
easy to verify that P(z;, > 0) = 1/2, and as a consequence, EW}, =
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(1/2)I 4+ (1/2r)11%, which is irreducible. Thus, linear dynamical
system (1) reaches consensus with probability one.

V. ASYMPTOTIC DISTRIBUTION OF THE CONSENSUS VALUE

As stated in the previous section, the ergodic stationary matrix
process {W73 : k > 1} of stochastic matrices is weakly ergodic almost
surely, if and only if, |A2(EW})| < 1. Therefore, if the expected
weight matrix has a unique unit-modulus eigenvalue, linear dynamical
system (1) converges to consensus almost surely, and all agents agree
on the random value 2™ = dT:L'(()), where d is a unit vector such that
U0 147,

A natural question to ask is whether one can determine the distribu-
tion of this random consensus value. However, except for some very
special cases, computing the distribution of the consensus value is far
from trivial, even when the weight matrices are independent and identi-
cally distributed. In this section, we investigate a special case, for which
one can compute the distribution analytically. More specifically, we
provide a necessary and sufficient condition for the random consensus
value to be degenerate, i.e., a condition under which the consensus al-
gorithm in (1) converges to a deterministic constant almost surely. We
also compute the mean and variance of the random consensus value z*
for the case of i.i.d. weight matrices.

A. Convergence to a Degenerate Distribution

The next theorem provides a necessary and sufficient condition for
the distribution of the asymptotic consensus value to be degenerate.

Theorem 4: Let {Wy : k > 1} = W, Wa,... denote a se-
quence of stochastic matrices with positive diagonals generated by an
ergodic stationary process with [A2(EWy)| < 1. Also consider the
deterministic vector a satisfying 17 a 1. Then, the left product
UFRO = Ww,... W, converges to 1aT almost surely, if and only if a
is a left eigenvector of W}, corresponding to the unit eigenvalue, with
probability one.

Proof: The sufficiency proof is trivial and quite well-known
[4], [17]: since |A\2(EW}%)| < 1, Theorem 3 guarantees that the
product in (2) converges to a rank one matrix with probability one, i.e.,
We... WoW; — 147 almost surely, for some random vector d. In
the case that almost all weight matrices share the same left eigenvector
a corresponding to the unit eigenvalue with probability one,5, any
product U (#:9) has also the same left eigenvector, and so does its limit
as k — oco. Therefore, Wy ... WaW; — 1a” almost surely, which
means that P(d = a) = 1.

To prove the reverse implication assume |A2(EW;)| < 1. Also,
suppose that there exists a non-random stochastic vector a such that
UFO = W, ... Wy — 1a” almost surely. Since the sequence { W}, :
k > 1} is stationary, Ukl — Wy ... W should also converge to
1la’ almost surely. Combining the above, we have

el

U0 = U(k’])lﬂ — 1(1,TI’V1 almost surely.

As a consequence, P ((LTVV 1= aT) = 1, which means that almost
all weight matrices have the same common left eigenvector a corre-
sponding to the unit eigenvalue, with probability one. ]

A special case of interest is when all matrices that can appear with
positive probability are doubly-stochastic. In this special case, a
(1/n)1 is a common left eigenvector of all matrices in the sequence.
Theorem 4 states that this is a necessary and sufficient condition for
the limiting consensus value to be equal to the average of initial values
2(0) almost surely. In such a case, we say the linear dynamical system
reaches an average consensus with probability one.

As a final remark, note that stationarity of the matrix process plays
a crucial role in proving the necessity part of the above theorem. In

SNote that since |A2(EW},)]| is subunit, there is only one such vector a.
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fact, if the weight matrix process is not stationary, having a common
left eigenvector corresponding to the unit eigenvalue is not necessary
anymore. For instance, consider the following two stochastic matrices:

]

It is easy to verify that neither matrix is doubly stochastic. However, the
product W, W, is a doubly stochastic matrix. Therefore, if matrices W,
that appear in the sequence are doubly stochastic for & > 3, the linear
dynamical system converges to the average consensus, even though W;
and W5 are not doubly stochastic.

W,

—

Wl w
SN
I
SIISEAES

B. Computing First and Second Moments

As stated before, computing the distribution of the consensus value
in terms of the distribution of the weight matrices remains an open
problem. Nonetheless, it is possible to compute the first two moments
of the random consensus value. In the remainder of this section, we
compute the mean and variance of the random consensus value ™
d" x(0) for a general i.i.d. process.

Computing the mean of the consensus value is straightforward. We
showed that whenever | X2 (EW%) | is subunit, Wy, ... Wo W, — 1d”
almost surely, for some random stochastic vector d. By taking expec-
tations and applying the dominated convergence theorem [14], one ob-
tains

E[Wk...WoWi] — E[1d"]

which implies [EW;]* — 1(EdT), due to independence. Therefore,
by the Perron-Frobenius theorem, Ed is simply equal to the normal-
ized left eigenvector of EW},, corresponding to its unit eigenvalue.¢
Thus, the mean of the asymptotic consensus value 2™ conditional on
the initial condition «(0) is given by Ez* = (0)" v, (EW}), where
v1(+) denotes the normalized left eigenvector corresponding to the unit
eigenvalue. For example, if the expected weight matrix is symmetric
(and hence, doubly stochastic), then the expected consensus value is
equal to the average of the initial conditions.
In order to compute the variance, first note that

1 ,
(Wi oo WD)E(Wi .. W) — dd” almost surely
n

which can be rewritten as

1, 7 v\ (v ) V8
~vec [(m...tm (m...m)]

- % (WIT oWl ) (WE ® W;T) . (W,? oW ) vee(I,,)

— vee(dd”) almost surely

where vec is the vectorization operator, & denotes the Kronecker
product and I,, is the identity matrix of size n.” By applying the
dominated convergence theorem once again, and using the assumption
that the weight matrices are independent, we get

1 ~ ~ k
o ['E (WlT & UlT)] vec (I,) — E[vec(dd" )] = E(d & d).

Hence, by the Perron-Frobenius theorem

1
E(d@d) = —vi (E[Wi @ Wi])

=vi (E[Wx @ Wi])

(léT,lvec(In))

%The assumption A2 (EW},)| < Ay (EW}) = 1 guarantees that such an
eigenvector exists and is unique.

7In deriving this expression, we have used the identity vec(ABC) = (CT @
A)vec(B).
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where v1(-) denotes the normalized left eigenvector corresponding to
the unit eigenvalue. Therefore, the covariance matrix of the random
vector d satisfies

vec(cov(d)) = vec(Edd” ) — vec(EdEdT)
=E(d®d)-Ed®Ed
=V ([E [‘/Vk. [624) VV}C]) — Vi [E‘@Yk] & V1 [E‘@Yk] .

By combining all the above, one can compute the conditional vari-
ance of the random consensus value =* = d”z(0) in terms of the
moments of the weight matrices

2
var 2" =[2(0)22(0)] " vi (E[W), © T@",\,,])—[:[j(())Tvl ([EI’VA»,)] .

It is easy to verify that the variance is equal to zero, if and only if al-
most all weight matrices share the same left eigenvector corresponding
to the unit eigenvalue. Therefore, the distribution of the consensus value
is degenerate if and only if there exists a vector a such thata” Wy, = a”
with probability one, as shown in Theorem 4.

VI. CONCLUSION

In this note, we proved a necessary and sufficient condition for al-
most sure convergence of consensus algorithms over general weighted
and directed stationary and ergodic random graph processes. We
showed that linear dynamical system xz(k) = Wia(k — 1) reaches
state consensus almost surely if and only if EW, has exactly one
eigenvalue with unit modulus. Our results contain the cases of i.i.d.
and (ergodic and stationary) Markovian graph processes as special
cases. We also showed that, given the assumptions of ergodicity
and stationarity, the asymptotic consensus value has a degenerated
distribution, if and only if almost all weight matrices share a common
left eigenvector corresponding to their unit eigenvalue. Finally, we
provided expressions for the mean and variance of the consensus value
for i.i.d. random networks, in terms of the first two moments of weight
matrices W..
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Modelling and Control of Bi-Directional
Discrete Linear Repetitive Processes

Jacek Bochniak, Krzysztof Galkowski, and Eric Rogers

Abstract—Repetitive processes are characterized by a series of sweeps or
passes through a set of dynamics defined over a finite duration where the
output produced on any pass acts as a forcing function on, and hence con-
tributes to, the dynamics of the next pass. The resulting control problem
is that the output sequence of pass profiles can contain oscillations that
increase in amplitude in the pass-to-pass direction. This paper considers
bi-directional operation, i.e. a pass is completed and at the end the next
one begins but in the opposite direction. In particular, a model for such a
process in the case of discrete dynamics is first proposed and new results
on stability and control law design for stabilization and performance devel-
oped.

Index Terms—Control, modelling, stability, uni- and bi-directional repet-
itive process.

[. INTRODUCTION

The unique characteristic of a repetitive, or multipass, process is a
series of sweeps, termed passes, through a set of dynamics defined over
a fixed finite duration known as the pass length. On each pass an output,
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