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Distributed Coverage Verification in Sensor
Networks Without Location Information
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Abstract—In this paper, we present three distributed algorithms
for coverage verification in sensor networks with no location in-
formation. We demonstrate how, in the absence of localization de-
vices, simplicial complexes and tools from algebraic topology can
be used in providing valuable information about the properties of
the cover. Our approach is based on computation of homologies of
the Rips complex corresponding to the sensor network. First, we
present a decentralized scheme based on Laplacian flows to com-
pute a generator of the first homology, which represents coverage
holes. Then, we formulate the problem of localizing coverage holes
as an optimization problem for computing a sparse generator of the
first homology. Furthermore, we show that one can detect redun-
dancies in the sensor network by finding a sparse generator of the
second homology of the cover relative to its boundary. We demon-
strate how subgradient methods can be used in solving these op-
timization problems in a distributed manner. Finally, we provide
simulations that illustrate the performance of our algorithms.

Index Terms—Combinatorial Laplacians, coverage, homology,
sensor networks.

I. INTRODUCTION

R ECENT advances in computing, communication,
sensing, and actuation technologies have brought net-

works composed of hundreds or even thousands of inexpensive
mobile sensing platforms closer to reality. This has induced a
significant amount of interest in development of analytical tools
for predicting the behavior, as well as controlling the complex-
ities of such large-scale sensor networks. Designing algorithms
for deployment, localization, duty-cycling, communication,
and coverage verification in sensor networks form the core of
this active area of research.

Of the most fundamental problems in this domain is the cov-
erage problem. In general, this reflects how well a region of in-
terest is monitored or tracked by sensors. In most applications,
we are interested in reliable monitoring of the environment in
such a way that there are no gaps in the coverage. Different
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algorithms for this purpose have been extensively studied [1].
One of the most prominent approaches for addressing the cov-
erage problem has been the computational geometry approach,
in which standard geometric tools (such as Delaunay triangu-
lations or Voronoi diagrams) are used to determine coverage
[2]–[5]. A well-known example of utilizing this geometric ap-
proach is in solving the Art Gallery Problem, where one deter-
mines the number of observers necessary to cover an art gallery
(or an area of interest) such that every point in the gallery is
monitored by at least one observer [6], [7].

Such geometrical approaches often suffer from the drawback
that they can be too expensive to compute in real-time. More-
over, in most applications, they require exact knowledge of
the locations of the sensors. Although, this information can be
made available in real-time by a localization algorithm or by the
means of localization devices (such as GPS), it can only be used
most effectively in an offline, pre-deployment analysis for large
networks or when there are strong assumptions on geometrical
structure of the network and the environment. This drawback
becomes more evident if the network topology changes due
to node mobility or sensor failure. In such cases, a continuous
monitoring of the network coverage becomes prohibitive if
the algorithm is too expensive to run or is sensitive to location
uncertainty. Finally, localization equipments add to the cost of
the network, which can be a limiting factor as the size of the
network grows. Consequently, a minimal geometry approach
for addressing these issues becomes essential.

More recently, topological spaces and their topological in-
variants have been used in addressing the coverage problem in
the absence of geometric data, such as location or orientation
[8]–[14]. One notable characteristic of these studies is the use
of topological abstractions which preserve many global geomet-
rical properties of the network while abstracting away the small
scale redundant details. For instance, Ghrist and Muhammad
[8] construct the Rips complex corresponding to the commu-
nication graph of the network, and use the fact that the first ho-
mology of this simplicial complex contains sufficient informa-
tion about the cover. Their work is followed by [9] and [11], in
which a relative homological criterion for coverage is presented.
These results are further extended in [10] to networks without
boundary, the pursuit-evasion problem, and barrier coverage
in 3-D. The first steps for implementation of the above men-
tioned ideas as distributed algorithms are taken by Muhammad
and Egerstedt [12], who show that combinatorial Laplacians are
the right tools for distributed computation of homologies, and
hence, can be used for decentralized coverage verification. They
present a consensus-like scheme based on a dynamical system
whose stability properties determine the existence of coverage
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holes, although it fails to locate them. This idea is further ex-
tended to time-varying networks for verification of sweep cov-
erage in [14].

The contribution of this paper is twofold. First, based on the
ideas in [10] and [12], we present a distributed algorithm which
is capable of localizing coverage holes in a network of sensors
without any metric information. More precisely, we represent
coverage properties of the network by its Rips complex and
show that given a generator in its first homology, the problem
of finding the tightest cycle encircling a hole can be formulated
as an integer programming problem. We also present conditions
under which the linear programming relaxation of this combi-
natorial problem is exact; establishing that the problem of de-
tecting coverage holes without the use of any coordinate infor-
mation is efficiently solvable. This optimization-based approach
is a direct generalization of network flow algorithms on graphs
to simplicial complexes. Finally, we show that if subgradient
methods ([15]–[17]) are used for solving the relaxed problem,
the subgradient updates are distributed in nature and can be im-
plemented in a decentralized fashion. Our approach is interdis-
ciplinary and combines results from agreement and consensus
problems in multi-agent systems ([18] and [19]), with recent ad-
vances in coverage maintenance in sensor networks using com-
putational algebraic topology methods, and optimization tech-
niques. This novel approach is different from algorithms pre-
sented in [20] and [21], where it is explicitly assumed that the
simplicial complex is embedded on an orientable surface. It is
also more general than the results in [22]: our hole detection al-
gorithm is not limited to Rips complexes, is implementable in a
distributed fashion, and does not use node coordinates.

A second contribution of the paper concerns detecting re-
dundancies in the sensor network. Using tools from algebraic
topology, we introduce a novel approach for computing a min-
imal set of sensors required to cover the entire domain. We for-
mulate the problem of computing the sparsest generator of the
second homology of the Rips complex relative to its boundary
as an integer-programming problem and solve its LP relaxation
in a distributed way, using subgradient methods. To the best of
our knowledge, such an algorithm has not been proposed in any
other study.

The rest of the paper is organized as follows. We present the
basic setup and assumptions of our model in Section II. Sec-
tion III provides a brief review on the concepts of simplicial
complexes, homology, and combinatorial Laplacian operators.
Section IV summarizes the results already known regarding dis-
tributed coverage verification in networks with no metric in-
formation. Section V contains our main results: we show how
one can “localize” coverage holes in a location-free sensor net-
work by solving a linear programming problem using subgra-
dient methods. We extend this idea to a higher dimension in Sec-
tion VI in order to find a sparse cover of the region. Simulations
of the two algorithms are presented in Section VII. Section VIII
concludes.

II. PROBLEM FORMULATION

Consider a collection of stationary sensors, denoted by ,
deployed over a region of interest . The sensors are
equipped with local communication and sensing capabilities:

each sensor is capable of communicating with a limited number
of other sensors in its proximity, and has a bounded sensing
range. Furthermore, we assume a complete absence of localiza-
tion capabilities and metric information, in the sense that sen-
sors in this network can determine neither distance nor direction.
Under these assumption, we are interested in distributed algo-
rithms for coverage verification. In particular, we are interested
in verifying the existence of coverage holes, compute their lo-
cations, and detect redundancies in the network.

We adopt the following two frameworks as coverage models
for which we present our verification algorithms:

A. Simplicial Coverage

In this framework, we assume that each sensor is capable of
communicating with other sensors within a radially symmetric
domain of radius , called the broadcast disk. As for the cov-
erage, we assume a “capture” modality in which any subset of
nodes which are in pairwise communication cover their entire
convex hull. In other words, the region covered by the sensors
is given by

where is the set of sensor locations and represents the the
location of the -th sensor. This model, inspired by [23], guar-
antees that coverage and communication capabilities of the sen-
sors are limited and based on proximity.

B. Symmetric Coverage

Similar to the previous framework, we assume that each
sensor can communicate with other agents within a distance

. However, instead of the capture modality, we assume that
sensors cover radially symmetric areas of radius , known
as coverage disks. Thus, the region covered by the sensors is

, where is
the coverage disk corresponding to the sensor located at point

. Clearly, region of interest is completely covered if it is a
subset of . For technical reasons that will become clear in
the following sections, we assume that . The study of
this framework is motivated by networks consisting of sensors
with omni-directional communication and sensing capabilities.

In addition to the assumptions on the above mentioned frame-
works, we also impose some regularity conditions on the geom-
etry of domain : we assume that is connected and compact,
with a connected and piecewise linear boundary . Finally, to
avoid boundary effects, we assume that there are sensors, known
as fence nodes, located on such that each fence node is ca-
pable of communicating with its two closest neighbors on ,
on either side.

In the rest of the paper, we develop the required tools and
present algorithms that can verify different coverage properties
for the frameworks mentioned in this section.

III. SIMPLICIAL COMPLEXES, HOMOLOGY,
AND COMBINATORIAL LAPLACIANS

In this section, we provide a brief review on simplicial com-
plexes and homologies as they are the main mathematical tools
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used in this paper. A thorough treatment of the subject can be
found in [24] and [25].

Given a finite set of points , a -simplex (or a simplex of
dimension ) is an unordered set where

for all . A face of the -simplex
is a -simplex of the form
for some . Clearly, any -simplex has exactly
faces.

Definition 1: A simplicial complex is a finite collection of
simplices which is closed with respect to inclusion of faces, i.e.,
if , then all faces of are also in .

Roughly speaking, a simplicial complex is a generalization
of a graph, in the sense that in addition to binary relations be-
tween the elements of , it also captures higher order relations
between them. For example, Fig. 1 depicts a simplicial com-
plex consisting of 11 vertices, 14 edges, five 2–simplices, and
one 3–simplex. Note that due to the requirement of closure with
respect to the inclusion of the faces, a simplicial complex is dif-
ferent from a hypergraph, in which any subset of the power set
of is considered a hyperedge.

The dimension of a simplicial complex is the maximum di-
mension of any of its simplices. A subcomplex of is a sim-
plicial complex . A particular subcomplex of is its

-skeleton consisting of all simplices of dimension or less,
denoted by . Therefore,
the 1-skeleton of any non-empty simplicial complex is a graph.
Given a graph , its flag complex is the largest simplicial
complex whose 1-skeleton is ; every -clique in de-
fines a -simplex in .

Given a simplicial complex , two -simplices and
are upper adjacent (denoted by ) if both are faces of a

-simplex in . Two -simplices are said to be lower adja-
cent (denoted by ) if both have a common face. Having
defined the concept of adjacency, one can define upper and lower
adjacency matrices, and respectively, in order to rep-
resent the adjacency relations between different -simplices.
The upper adjacency matrix of order zero of a simplicial com-
plex, , coincides with the well-known notion of the adja-
cency matrix of the graph capturing its 1-skeleton.

A. Boundary Homomorphism

Let denote a simplicial complex. Similar to graphs, an ori-
entation can be defined for by defining an ordering on every

-simplex. We denote the -simplex with an or-
dering by . For each , define to be the
vector space whose basis is the set of oriented -simplices of

, where a change in the orientation corresponds to a change
in the sign of the coefficient as

. We let , if is larger
than the dimension of . Therefore, by definition, elements of

, called -chains, can be written as finite formal sums
where are real coefficients and are the

oriented -simplices of .1 Note that is a finite-dimensional

1To be more precise, this is the definition of �-chains with coefficients in .
In most algebraic topology texts such as [24], �-chains are defined over integers
rather than reals. In such cases, � ��� is defined as a free abelian group with
the set of oriented �-simplices as its basis. However, as in [26], we find it more
convenient to define the chains over .

vector space with the number of -simplices as its dimension.
We now define the boundary map.

Definition 2: For an oriented simplicial complex ,
the -th simplicial boundary map is a homomorphism

, which acts on the basis elements of
its domain via

(1)

Intuitively, the above operator maps a -chain to its faces. For
example, the boundary of a directed path in a graph (which is
an oriented 1-chain) is simply the difference between its two
endpoints.

Since for any finite simplicial complex is a finite di-
mensional vector space for all , has a matrix representation.
We denote the matrix representation of the -th boundary map
relative to the bases of and by , where

is the number of -simplices of . In particular, the matrix
representation of the first boundary map is nothing but the
edge-vertex incidence matrix of a graph, mapping edges (1-sim-
plices) to vertices (0-simplices).

Finally, using (1), it is an easy exercise to show that
Lemma 1: The map is

uniformly zero for all .
In other words, the boundary of any -chain has no boundary.

B. Simplicial Homology

Let denote a simplicial complex. Consider the following
two subspaces of :

An element in is a subcomplex without a boundary and
therefore represents a -dimensional cycle. On the other hand,
elements of are boundaries of higher dimensional
chains and thus, are known as -boundaries.

The -cycles are the basic objects that count the presence
of “ -dimensional holes” in the simplicial complex [10]. But,
certainly, many of the -cycles in are measuring the same
hole; still other cycles do not really detect a hole at all—they
bound a subcomplex of dimension in . We say two -cy-
cles and are homologous if their difference is a boundary:

. Therefore, as far as measuring holes is con-
cerned, homologous cycles are equivalent [10]. Consequently,
it makes sense to define the quotient vector space

(2)

known as the -th homology of , as the proper vector space
for distinguishing homologous cycles. Note that according to
Lemma 1, we have , implying that
is a subspace of , and therefore, making a well-
defined vector space.2

2If we define �-chains over integers, then ���� becomes a normal sub-
group of ���� . In that case, the homology is defined as the quotient group
� 	 ���� ����� .
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Fig. 1. A simplicial complex consisting of 11 vertices (0-simplices), 14 edges
(1-simplices), 5 2-simplices, and one 3-simplex.

Roughly speaking, when constructing the homology, we are
removing cycles that are boundaries of a higher order subcom-
plex from the set of all -cycles, so that the remaining ones
carry information about the -dimensional holes of the complex.
A more precise way of interpreting (2) is that any element of

is an equivalence class of homologous -cycles. More-
over, it inherits the structure of a vector space in the natural way:

and for , where rep-
resents the equivalence class of all -cycles homologous to .
Therefore, each non-trivial homology class3 in a certain dimen-
sion identifies a corresponding “hole” in that dimension [10].
In fact, the dimension of the -th homology of (known as its

-th Betti number) identifies the number of -dimensional holes
in . For example, the dimension of is the number of
connected components of , whereas the dimension of
is equal to the number of holes in its 2-skeleton.

C. Relative Homology

In some applications, one may need to compute the holes
modulo some region of space, such as the boundary. The con-
cept of relative homology is defined for this purpose.

Given a simplicial complex and a subcomplex ,
let be the quotient vector space ; thus,
chains in are trivial in . Since the boundary map

takes to , it induces
a quotient boundary map . It is
easy to verify that subspaces defined by the kernel and image
of the quotient map are well-defined and satisfy

. Therefore, as before, one can define the
-th relative homology as the quotient vector space [24]

(3)

Elements of are equivalence classes of homol-
ogous relative -cycles. A relative -cycle is a -chains

such that . Relative -cycle is
trivial in if and only if it is a relative boundary:

for some and . Fig. 2
gives examples of trivial and non-trivial relative 1-cycles.

D. Combinatorial Laplacians

The graph Laplacian [27] has various applications in image
segmentation, graph embedding, dimensionality reduction for
large data sets, machine learning, and more recently, in con-

3By the trivial homology class, we mean the equivalence class of all null-
homologous �-cycles on the simplicial complex.

Fig. 2. 2-skeleton of a simplicial complex � and the subcomplex � � �
consisting of all boundary vertices and edges (heavy lines). Both � and �
(dashed lines) are relative 1-cycles, but only � represents a non-trivial element
in � �����.

sensus and agreement problems in distributed control of multi-
agent systems [18] and [19]. For a graph , the Laplacian matrix
is defined as where is the vertex-by-edge-dimen-
sional incidence matrix of . It is well-known that the positive
semi-definite Laplacian matrix can be written in terms of the ad-
jacency and degree matrices of : , which implies
that the -th row of the Laplacian matrix only depends on the
local interactions between vertex and its neighbors. In this sub-
section, we present the generalization of the Laplacian matrix to
simplicial complexes and investigate its properties. The impor-
tance of these generalized Laplacian matrices (known as combi-
natorial Laplacians) lies in the observation that, when working
with real coefficients, their null spaces span subspaces isomor-
phic to the homologies.

The definitions and results of this subsection can be found in
[26], [28], and [29].

Definition 3: Let be a finite oriented simplicial complex.
The -th combinatorial Laplacian of is the homomorphism

given by

(4)

where is the adjoint of operator with respect to the inner
product that makes the basis orthonormal.

The Laplacian operator, as defined above, is the sum of two
positive semi-definite operators and therefore, any -chain

satisfies

In other words, the null space of the -th combinatorial Lapla-
cian consists of -cycles which are orthogonal to , and
therefore, are not -boundaries. This implies that non-zero el-
ements in are representatives of non-trivial equivalence
classes of cycles in the -th homology. This property was first
observed by Eckmann [28] and is formalized in the following
theorem [26].

Theorem 1: If vector spaces are defined over , then
for all there is an isomorphism

(5)

where is the -th homology of and is its -th
combinatorial Laplacian. Moreover, there is an orthogonal di-
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rect sum decomposition of the vector space in the form
of

in which the first two summands comprise the set of -cycles
, and the first summand is the set of -boundaries.

An immediate implication of the above theorem is that the di-
mension of null space of -th combinatorial Laplacian operator
is equal to -th Betti number of the simplicial complex.

Note that one can use matrix representations of the boundary
operators to represent the combinatorial Laplacian operators
with finite dimensional matrices. We define the -th combina-
torial Laplacian matrix as

(6)

where is the matrix representation of and is the
number of -simplices of . It is easy to verify that the expres-
sion for reduces to the well-known graph Laplacian matrix.
Similarly, combinatorial Laplacian matrices can be represented
in terms of the adjacency and degree matrices of the simplicial
complex [12], [29]. More precisely, for

(7)

where and are the upper and lower adjacency ma-
trices, and represents the upper degree matrix. Equation
(7) implies that the -th row of only depends on the local
interactions between -th -simplex and its upper and lower ad-
jacent -simplices. This is the higher-dimensional counterpart
of the locality property of the graph Laplacian.

Example 1: Consider the oriented simplicial complex de-
picted in Fig. 3, which consists of 6 vertices, 8 edges, and 2
triangles. Its first combinatorial Laplacian matrix is given by

where edges are ordered as , , , , ,
, , and . Null space of is a one dimensional

subspace spanned by vector . In
Fig. 3, these values are depicted as flows on the edges of the
simplicial complex. Notice that dimension of is equal to
the number of 1-dimensional holes in the simplicial complex,
as suggested by Theorem 1. Moreover, for any the
value of the algebraic sum of the flows entering each vertex is
equal to zero. This is a consequence of the fact that any element
in is also in . Finally, note that the algebraic sum
of the flows over any filled-in region is also equal to zero. This
is due to the fact that if is in , then , and
therefore, is orthogonal to img .

Fig. 3. Simplicial complex of dimension 2. The edge flows correspond to the
components of the eigenvector corresponding to 0 eigenvalue (i.e., the null
space) of the first combinatorial Laplacian matrix.

IV. DISTRIBUTED COVERAGE VERIFICATION IN THE

ABSENCE OF LOCATION INFORMATION

In this section, we present a distributed coverage verification
algorithm for sensor networks with no location or distance in-
formation. Unlike computational geometry approaches to cov-
erage, the presented algorithm does not use any metric informa-
tion and instead, is based on tools from algebraic topology. The
main idea is to compute the null space of the first combinatorial
Laplacian of a simplicial complex corresponding to the cover,
and extract the information it provides on the first homology.
The contents of this section are mainly based on the works of
de Silva and Ghrist [10] and Muhammad and Egerstedt [12].

A. Simplicial Coverage Framework

We first consider the simplicial coverage framework. Let
denote the locations of sensors deployed over a

region , satisfying the assumptions presented in Sec-
tion II. Sensors are equipped with local communication capa-
bilities, enabling them to exchange data with other agents in
their proximity. More specifically, two sensors can communi-
cate with one another if the distance between them is less than
or equal to . As for coverage, recall that any subset of nodes
in pairwise communication cover their entire convex hull. This
implies that the region covered by the sensors is given by

We are interested in verifying whether all points within are
monitored by the sensors, i.e., whether . Our as-
sumptions of Section II regarding fence nodes guarantee that

.
Since no location information is available, we capture the

coverage and communication relations of sensors combinatori-
ally. For this purpose, we define the Vietoris-Rips complex cor-
responding to a given set of points [30].

Definition 4: Given a set of points in
a finite dimensional Euclidean space and a fixed radius , the
Vietoris-Rips complex of , , is the abstract simplicial
complex whose -simplices correspond to unordered -tu-
ples of points in which are pairwise within Euclidean distance

of each other. Equivalently, the Rips complex is the flag com-
plex of the proximity graph of , whose edges are pairs of points

with .
The key observation is that the Rips complex corresponding

to the set of sensors contains information about the region cov-
ered by them. In particular, is the image of the canonical
projection map that maps each simplex
affinely onto the convex hull of its vertices in ; that is, the
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image of , also known as the Rips shadow, is exactly the re-
gion covered by the sensors. The following theorem, proved by
Chambers et al. [23], indicates that Rips complex is rich enough
to capture the relevant topological and geometric properties of
its shadow.

Theorem 2: Let denote a finite set of points in the plane,
with the corresponding Rips complex . Then the induced
homomorphism between the
fundamental groups of the Rips complex and its shadow is an
isomorphism.

Theorem 2 states that a cycle in the Rips complex is con-
tractible if and only if its projection is contractible in the
Rips shadow [22]. As a consequence, the first homologies of the
complex and its shadow are also isomorphic, creating a neces-
sary and sufficient condition for hole-free coverage of : every
point within is monitored by some sensor, if and only if the
first homology of is trivial. This observation, coupled
with Theorem 1, implies that the information in null space of the
first combinatorial Laplacian of is sufficient to verify
coverage. In particular, if and only if all
1-cycles in the Rips shadow are null-homologous.

Given the above, the coverage verification problem is reduced
to the study of the null space of , leading to the following
theorem, first stated and proved in [12].

Theorem 3: Linear dynamical system

(8)

is globally asymptotically stable if and only if ,
where is a vector of dimension (the number of 1-sim-
plices of the simplicial complex) and is the first combinato-
rial Laplacian matrix of the Rips complex .

Note that for any initial condition , the trajectory
always converges to a point in . Thus,

the asymptotic stability of the system is an indicator of
an underlying trivial homology. In different terms, since

is an element in the null space of , it
is a representative of a homology class of the Rips complex.
Clearly, if for all initial conditions, then the first
homology of the simplicial complex consists of only a trivial
class and therefore, the simplicial complex is hole-free.

The importance of stating the coverage verification criterion
in terms of the first combinatorial Laplacian is not limited to
the above theorem. The very specific structure of the Lapla-
cian guarantees that update (8) is effectively a local update rule,
whereby the local state value of an edge is updated using esti-
mates from edges that are adjacent to it.4 The reader may also
note the connection between distributed update (8) and the dis-
tributed, continuous-time consensus algorithms, in which the
graph Laplacian is used in order to reach a consensus (a point
in the kernel) over a connected graph [19].

In summary, in order to verify coverage in a network of fixed
sensors, it is sufficient to setup distributed linear dynamical
system (8) for a random initial condition and observe the
asymptotic state value as . If (8) converges to zero,

4Recall that Rips complex is the flag complex of the proximity graph and
therefore, solely depends on connectivity information. As a result, its corre-
sponding combinatorial Laplacian matrix can be formed locally by the agents.

then the first Betti number of the Rips complex is zero, and
therefore, its shadow (which is the actual region covered by the
sensors) is hole-free. Conversely, if the asymptotic value of (8)
is non-zero for some initial condition, then the first homology
of the Rips complex is non-trivial and therefore, Theorem 2
implies the existence of a non-trivial 1-cycle in the shadow
and hence, the presence of holes in the cover. Note that our
assumption regarding the existence of fence nodes located on
the boundary of are crucial in avoiding boundary effects.
The fence nodes guarantee that if a coverage hole exists, it is
located in the interior of the domain.

B. Symmetric Coverage Framework

We now consider the symmetric coverage framework, in
which each sensor is capable of covering a disk of radius and
communicate with other agents within distance .
In this case, the region covered by the sensors is union of
disks of radius centered at the location of the sensors:

. Similar to the
previous framework, we define a combinatorial object, known
as the ech or Nerve complex, that captures the topological
properties of .

Definition 5: Given a finite collection of disks
with radius centered at points , the ech complex of the
collection denoted by is the abstract simplicial complex
whose -simplices correspond to non-empty intersections of

distinct elements of .
In other words, this complex is simply formed by associating

a vertex to each disk, and then adding edges and other higher
order simplices based on the overlap of the disks. The following
theorem, known as the ech Theorem or the Nerve Lemma, in-
dicates why ech complex captures the topological properties
of the region covered by sensor footprints [31], [32].

Theorem 4 (The ech Theorem): Given a finite collection of
disks centered at points , the ech complex has
the homotopy type of the union of the disks in the collection,

.5

Theorem 4 implies that ech complex contains information
about homological properties of the union of the sets. In par-
ticular, both objects have isomorphic homologies in all dimen-
sions.6 Therefore, in order to verify coverage in the symmetric
framework, one only needs to look at the homologies of the un-
derlying ech complex. If this simplicial complex has no holes,
neither does the sensor cover. However, computation of this sim-
plicial complex and hence, its homologies is not an easy task, as
it requires localization of each sensor as well as distance mea-
surements in order to verify overlaps of footprints. Furthermore,
as shown in [8], the ech complex is very fragile with respect
to uncertainties in distance and location measurements.

In the absence of location information, an alternative would
be to use the Rips complex instead, which can be formed

5The statement of this theorem holds for any collection of contractible sets
when all nonempty intersections of all subcollections are contractible.

6Note that homotopy equivalence of two topological spaces is much stronger
than having isomorphic fundamental groups, as was the case in Theorem 2. In
other words, the ��ech complex contains much more information about the union
of disks than the Rips complex does about its shadow.



TAHBAZ-SALEHI AND JADBABAIE: DISTRIBUTED COVERAGE VERIFICATION IN SENSOR NETWORKS 1843

uniquely from the communication graph of the network. De-
spite the fact that the Rips complex is not rich enough to contain
all the topological and geometric information of the ech com-
plex, in certain cases, it carries the relevant information about
homological properties of the cover. Namely, de Silva and
Ghrist [10] show that a Rips complex with parameter , ,
is a subcomplex of ech complex corresponding to disks of
radius centered at its vertices. As a result, our assumption
of leads to

implying , where is the shadow of the Rips
complex with parameter and is the actual region cov-
ered by the sensors in the symmetric coverage framework with
coverage radius . Hence, if the Rips complex with parameter

is hole-free, so is the sensor cover. This observation serves as
a sufficient homological criterion for coverage verification.

In summary, in order to verify successful coverage in a dis-
tributed fashion, sensors need to compute the first homology
of the Rips complex using the local neighborhood infor-
mation available to them. The triviality of the first homology
of this simplicial complex provides a sufficient condition for
hole-free coverage of . Therefore, one can set up linear dy-
namical system (8) corresponding to the Rips complex with pa-
rameter and observe its asymptotic behavior. Similar to the
simplicial coverage framework, the asymptotic stability of this
dynamical system guarantees a hole-free coverage.

As a last remark, note that (8) is an edge-dimensional dynam-
ical system, where each element of vector corresponds to
a 1-simplex. However, in both frameworks, edges and all other
higher order simplices are simply combinatorial objects, and the
only real physical entities with computational capabilities are
sensors themselves. Therefore, in order to implement (8) in a
sensor network, one needs a protocol for assigning the compu-
tation required by each edge to its adjacent nodes. One such
algorithm is suggested by Muhammad and Jadbabaie [13], who
obtain a local representation of the Rips complex and imple-
ment the dynamical system in Theorem 3 at the node level. They
also show that node-level implementation of (8) is achievable
by using at the most 2-hops of communications between neigh-
boring vertices.

V. HOLE LOCALIZATION: DISTRIBUTED COMPUTATION

OF A SPARSE GENERATOR

In the previous section, we presented a coverage verification
algorithm which was based on the close topological relationship
between the actual cover and the Rips complex as its combina-
torial representation. Although capable of verifying coverage in
a distributed manner, the algorithm in Section IV does not re-
veal any further information (such as the location, number, or
size of coverage holes) about the region covered by the sensors.

In this section, we present a distributed algorithm which is ca-
pable of “localizing” coverage holes in a sensor network with no
location or metric information. By hole localization, we mean
detecting tight cycles over the proximity graph of the network
that encircle regions not monitored by the sensors. Similar to
the previous algorithm, the results of this section are based on

the algebraic topological invariants, namely the homology, of
the cover and the Rips complex of the network.7

The main idea behind our algorithm is to compute sparse gen-
erators of a non-trivial class of homologous 1-cycles in the first
homology of the Rips complex. Such sparse generators corre-
spond to tight cycles around coverage holes, and hence pro-
vide information about their sizes and locations. Starting from
a given representative cycle of a homology class, our algorithm
removes components that correspond to boundaries of 2-chains
in the complex, and hence, “tightens” the representative cycle
around the holes. Any non-zero point in can potentially
serve as an initial 1-cycle to be tightened around the holes. The
immediate advantage of using is that one can easily
compute such a point in a distributed manner as the limit of
linear dynamical system (8). The following example clarifies
the idea behind our algorithm.

Example 2: Consider the 2-dimensional simplicial complex
depicted in Fig. 3. As was shown in Example 1, the null space
of its first combinatorial Laplacian is one-dimensional. There-
fore, distributed linear dynamical system (8) converges to a non-
zero vector in the span of for al-
most all initial conditions. Notice that all edges, including edges

, , , and that are not adjacent to the
hole, have non-zero values asymptotically. In other words, no
element of is “tight” around the hole of the simplicial
complex. Another key observation is that any can
be written as a linear combination of three fundamental cycles
in the 1-skeleton of the simplicial complex:

where

and is some real number. Among these cycles, only the first
one corresponds to the hole, whereas the other two are simply
contractible cycles corresponding to boundaries of 2-simplices.
Therefore, in order to find a tight cycle around the hole, one
needs to subtract the right amount of null-homologous 1-cy-
cles encircling 2-simplices (in this case, and , respectively)
from . What remains is simply a 1-cycle with non-zero values
only over the edges that are adjacent to the hole. Note that this
cycle is also the sparsest generator of the non-trivial element of
the first homology.

Due to the simple structure of the simplicial complex in the
above example, computing the tightest cycle around its hole is
simple. However, once the simplicial complex becomes large,
it is not immediately clear how to compute the right amount of
null-homologous cycles to subtract from any given element in

, and obtain a sparse representative. Moreover, in the ab-
sence of a centralized scheme, it is reasonable to assume that el-
ements of are only known locally to the nodes. This
is indeed the case if is computed in a distributed fashion using

7Note that in the simplicial framework, the Rips shadow coincides with the
actual cover, whereas in the symmetric framework it is only a subset of the
region covered by the sensors.
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Fig. 4. Simplicial complexes corresponding to the above sensor configurations
are combinatorially equivalent. In both cases, the shortest cycle encircling the
hole has length 4.

Fig. 5. Sparsest generator of the homology class of the cycles that encircle each
hole once clockwise is not necessarily tight around both.

dynamical system (8). Therefore, we need an algorithm which
is capable of finding sparse non-trivial generators of homology
classes of a simplicial complex by using only local information.

Before presenting our algorithm, a few remarks are in order.
It is important to keep in mind that our approach is based on sim-
plicial complexes which are combinatorial objects. As a result,
in the absence of metric information, it is not possible to identify
sensors which are closer in distance to the uncovered regions.
For instance, consider two different sensor configurations and
the regions covered by them as depicted in Fig. 4. Even though
the regions covered by the sensors are different, the two config-
urations are combinatorially equivalent as far as Rips complex
is concerned. Therefore, in both cases, any hole localization al-
gorithm leads to the same result.

Another scenario worth mentioning is when the corre-
sponding simplicial complex contains multiple holes next to
one another. For example, consider the situation of Fig. 5, in
which two holes are “close” relative to their “sizes”.8 In this
case, the sparsest generator of the homology class of cycles
that encircle each hole once is not tight: it encircles both simul-
taneously, rather than each one separately. Nevertheless, the
sparsest 1-cycle provides valuable information on the location
and size of the hole.

A. Computing the Sparsest Generator: IP Formulation

Consider a simplicial complex with first combinatorial
Laplacian . By construction, any element in the null space
of is a 1-cycle orthogonal to the subspace spanned by the
boundaries of 2-simplices. In other words,
implies and . Therefore, as stated in
Section III, any non-zero in the null space of the first com-
binatorial Laplacian is a representative element of a non-trivial

8By terms such as close or large, we simply mean combinatorially close (in
terms of hop count) and combinatorially large (in terms of the length of the
shortest cycle).

homology class of . However, as in Example 2, is not nec-
essarily the sparsest representative of the homology class it be-
longs to. In general, given a generator of a homology class, the
sparsest generator of that class can be computed as the solution
to the following integer programming optimization problem:

(9)

where is the -norm of a vector, equal to the number of
its non-zero elements, and is the matrix representation of the
second boundary operator . Note that if is a 1-cycle, then
the minimizer is also a 1-cycle in the null space of . More-
over, the constraint guarantees that both and

are representatives of the same homology class, simply be-
cause adding and subtracting null-homologous cycles does not
change the homology class. Therefore, any solution of the above
optimization problem is the sparsest generator of the homology
class that belongs to, and has the desired property that it is
the tightest possible cycle (in terms of length) around the holes
represented by that homology class.

B. LP Relaxation

Optimization problem (9) has a very simple formulation.
However, due to the 0–1 combinatorial element in the problem
statement, solving it is not, in general, computationally
tractable. In fact, Chen and Freedman [33] show that com-
puting the sparsest generator of an arbitrary homology class is
NP-hard.

A popular relaxation for solving such a problem is to min-
imize the -norm of the objective function rather than its

-norm [34]

(10)

This relaxation is a linear programming (LP) problem and can
be solved quite efficiently.9 An argument similar to before
shows that the minimizer of the above optimization problem is
also a 1-cycle homologous to the initial , since their difference
is simply a null-homologous cycle in the image of .

In general, the minimizer of (10) is simply an approximation
to the minimizer of (9) and has a larger -norm. Nevertheless,
in certain cases the solutions of the two problems coincide. In
the next theorem, we present conditions under which the two
minimizers have the same zero/non-zero pattern. Under such
conditions, we would be able to compute the sparsest generator
of the homology class of efficiently.

Before formally presenting the theorem, we need to define
some notation and present a lemma. Consider an oriented Rips
complex with first Betti number , where the holes are labeled
1 through . By we denote the class of homolo-
gous 1-cycles that encircle the -th hole many times in a given
direction. Note that for any , is an affine subset of

, where is the number of 1-simplices in .

9Strictly speaking, (10) is not a relxation of (9), as the two problems have
identical feasible sets. However, one can show, [35], that there exists an LP
equivalent to (10) which is a relaxation of an IP equivalent to (9).
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We assume that the shortest representative cycle encircling
the -th hole is unique, and is denoted by ; that is

where is the -th coordinate vector. Since is the sparsest
1-cycle that encircles the -th hole once, we have the following
lemma:

Lemma 2: ; that is, the elements of be-
long to the set .

We now present the main theorem of this section, character-
izing sufficient conditions for the exactness of the relaxation
problem.

Theorem 5: Given a Rips complex , suppose that the
shortest representative cycle that encircles the -th hole, de-
noted by , is unique for all . Also assume that for any simple
loop

(11)

with the inequality binding only if . Then, for all
, we have, .

Proof: Assume that edges in are labeled 1 through .
We first prove that the two minimizers have identical zero/non-
zero patterns. Given a class , suppose that the -minimizer,
denoted by , does not have the same pattern as the -mini-
mizer, . This means that there exists an edge in the sim-
plicial complex, over which has a non-zero value, whereas
the -minimizer does not. That is

Since is a 1-cycle, there exists another edge lower-adja-
cent to with a non-zero value. Reapplying the same argument
implies that belongs to a set of edges, all with non-zero
values on , forming a simple loop over the simplicial com-
plex. Note that without loss of generality we can assume that
the edge directions are defined such that the elements of
are non-negative. Therefore

Given set , we define 1-chain as , where
denotes the indicator function. Note that is a 1-cycle which

belongs to some homology class . We set to be the
smallest value that edges in take in the -minimizer ; i.e.

Finally, we define 1-cycle ,
for which we have

The first equality is due to the fact that we defined to be
the smallest value that takes on . In the second equality,
we used that fact that and all are 1-cycles with values in

, implying that their and -norms are equal. Fi-
nally, the last inequality is a consequence of assumption (11).

In summary, there exists a 1-cycle homologous to with
a smaller -norm, which contradicts the fact that is the

-minimizer. Therefore, the two 1-cycles
and have the same zero/non-zero pattern for
all . Finally, the fact that both 1-cycles belong to the same
homology class, , implies that the two must be equal.

The above theorem states that, under the given conditions, the
-minimizer is the sparsest generator of its homology class, and

therefore, its non-zero entries indicate the edges of the 1-cycle
that is tight around the holes. As a consequence, one can ef-
ficiently compute the set of edges adjacent to the holes, using
methods known for solving LPs.

It is important to notice that Theorem 5 requires the unique-
ness of the sparsest generator of each homology class in order
to guarantee that the minimizers of the two problems coincide.
When (11) holds but the -minimizer is not unique, not only
every -minimizer is a solution to (10), but so is any convex
combination of them. This is due to the fact that if two vec-
tors have the same -norm, then any vector in their convex hull
cannot have a larger -norm. In such cases, solving (10) can
result in a 1-cycle in the convex hull of the minimizers of (9).

The intuition behind assumption (11) is also worth exploring.
It requires the shortest representative cycle of any homology
class to be equal to a linear combination of the shortest cycles
encircling the holes separately. This condition is trivially satis-
fied when the simplicial complex has only one hole, or when
the holes are far from each other relative to their sizes. Never-
theless, even when the condition is not satisfied, the solution of
(10) is a relatively sparse (although not necessarily the sparsest)
1-cycle, and therefore, can be used as a good approximation for
hole localization.

C. Decentralized Computation: The Subgradient Method

As mentioned before, unlike the original IP problem (9), one
can convert (10) to a linear programming problem and solve
it efficiently using methods known for solving LPs. However,
applying the subgradient method enables us to compute the

-minimizer in a distributed manner [36], [37].
Consider optimization problem (10) reformulated as

(12)

where is the number of 2-simplices of the simplicial com-
plex. A subgradient for the objective function of (12) is the
sign function. Therefore, the subgradient update for solving the
above problem is given by

(13)
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with initial condition . Note that is a face-dimensional
vector and the iteration updates an evaluation on the 2-simplices
of the simplicial complex. The most important characteristic of
(13) is that, due to the local structure of , it can be imple-
mented in a distributed manner, if the initial is known lo-
cally. By picking small enough step sizes , it is guaranteed
that the update (13) gets arbitrarily close to the optimal value
[36], which under the conditions of Theorem 5 is the sparsest
generator (or a convex combination of the sparsest generators
if the minimizers are not unique) of the homology class of the
initial 1-cycle . In Section VII we provide simulations of this
algorithm.

VI. DISTRIBUTED DETECTION OF REDUNDANT SENSORS

In the previous sections we presented a homological criterion
for coverage. Namely, based on the results of [9], we argued
that a sufficient condition for successful coverage is to have no
holes in the flag complex of the proximity graph, i.e., the Rips
complex of the network. This condition is translated into alge-
braic topological terms as , which means that
every 1-cycle in the communication graph can be realized as
the boundary of a surface built from 2-simplices of . We
also showed that the first combinatorial Laplacian can be used
to verify our homological criterion for coverage in a distributed
manner.

In this section, we present a distributed algorithm which is
capable of computing a sparse cover of domain and detect
redundancies in the sensor network, in the absence of location
information. In other words, the algorithm enables us to “turn
off” redundant sensors without impinging upon the coverage in-
tegrity. As before, we formulate the problem of finding a sparse
cover as an optimization problem to compute the sparsest gen-
erator of a certain homology class, and use subgradient methods
to solve it in a distributed way. However, in contrast to the pre-
vious sections, we use the second homology of the Rips complex
relative to its boundary. The advantage of the second relative ho-
mology lies in the fact that it is more robust to extensions and
yields stronger information about the actual cover [10].

Consider Rips complex corresponding to the network of
sensors deployed over region . We denote the subcomplex that
is canonically identified with the fence nodes over with

. If the 1-cycles defined over are null-homologous—that is,
if in —then, the coverage is hole-free. In such a
case, there exists a 2-chain which bounds

1-cycle

Therefore, when translated into the language of algebraic
topology, such a 2-chain , which is not necessarily unique,
represents a relative 2-dimensional homology class, a certain
generator in . As a result, the condition for a hole-fee
successful coverage can be rewritten in terms of second relative
homology classes:

Theorem 6: For a set of nodes in a domain sat-
isfying the assumptions of Section II, the sensor cover contains

if there exists such that .
This theorem is first stated and proved by de Silva and Ghrist

[10]. Intuitively, 2-chain has the appearance of “filling in”

Fig. 6. If the first homology of � is non-trivial, then the second relative ho-
mology � ����� has no generator with values on the boundary. Conversely,
if the second homology relative to the boundary has a non-trivial generator with
a non-vanishing boundary, then � ��� � �.

Fig. 7. Eight faces of the octahedron form a non-trivial 2-cycle � such that
��� � � ���. However, � has a vanishing boundary � � � �, and does not
correspond to a true relative 2-cycle.

with triangles composed of projected 2-simplices from .
Note that relative homology captures the second ho-
mology of the quotient space , in which all simplices in

are identified. This can be done by adding a “super node”
to the complex, as depicted in Fig. 6. If the Rips complex is
hole-free, then the topology of this quotient space is that of a
sphere, and therefore, the second relative homology
has a non-trivial generator. On the other hand, if the 1-cycles de-
fined over subcomplex are not boundaries of any 2-chain, then
the relative homology has no generator with non-zero values on
the boundary.

Note that the dimension of the second relative homology
may be greater than one. This can happen if there

exists a 2-cycle which is a generator of as well as
, as depicted in Fig. 7. Such 2-cycles do not represent

a true relative class, as they may still exist even if the fence
cycle is not the boundary of any 2-chain. Hence, Theorem
6 requires the existence of a relative 2-cycle with a non-zero
boundary.

Given the above, it is easy to see that the minimal cover is
simply the sparsest generator of the second homology class of

relative to . Therefore, one can formulate the problem of
finding the sparsest cover over as an optimization problem,
simply by extending the results of the previous section to a
higher dimension. The only difference lies in the fact that in-
stead of the Rips complex corresponding to the network, we use
the quotient complex which is obtained by identi-
fying all the simplices of with a super node. Once this quotient
simplicial complex is formed,10 we compute its second combi-
natorial Laplacian in a distributed manner, and by running the
decentralized linear dynamical system with a

10Note that this object can be formed in a distributed fashion. The only re-
quirement is that fence nodes take the local neighborhood relations of each other
into account and update their values together.
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random initial condition, obtain a point asymptot-
ically. The limit of this dynamical update is a relative 2-cycle
which does not vanish on the boundary, for almost all initial
conditions. Once such a 2-cycle is computed, the minimizer
of the optimization problem

(14)

represents the sparsest generator of the relative homology class
that belongs to. In the above problem, is the triangle-by-
tetrahedron incidence matrix of the quotient complex ,
and are 2-cycles and is a 3-chain. Similar to problem (9), the
constraint guarantees that and are homol-
ogous 2-cycles. Since (14) is NP-hard, one can instead solve its

-relaxation

(15)

which can be solved by the means of the distributed subgradient
update

(16)

in a distributed manner.
Distributed iteration (16) leads to a sparse generator of the

second relative homology, in which most 2-simplices have a cor-
responding value equal to zero. Any vertex that only belongs to
2-simplices with zero valuations in the optimal solution can be
removed from the network, without generating a coverage hole.
The next section contains simulations that demonstrate the per-
formance of our algorithm.

VII. SIMULATIONS

In this section, we present the simulation results for the algo-
rithms presented in Sections V and VI, for hole localization and
computation of the minimal cover, respectively.

A. Hole Localization

We demonstrate the performance of our distributed hole lo-
calization algorithm with a randomly generated numerical ex-
ample. Fig. 8(a) depicts the Rips shadow of a simplicial complex
on vertices distributed over . The 2-skeleton of this
simplicial complex consists of 81 vertices, 372 edges, and 66 tri-
angles (2-simplices). As Fig. 8(a) suggests, the null space of the
first combinatorial Laplacian of this Rips complex is 2-dimen-
sional. The two non-trivial homology classes correspond to two
eigenvectors of the Laplacian matrix corresponding to eigen-
value zero. We generated a point by running dis-
tributed linear dynamical system (8) with a random initial con-
dition . The value of is depicted in Fig. 8(b),
where the thickness of an edge is directly proportional to the
magnitude of its corresponding component in . It can be seen
that all components of the generated 1-cycle in null space of

are more or less of the same order of magnitude. In order
to localize the two holes, we ran subgradient update (13) with a
diminishing square summable but not summable step size. The
edge evaluation of the 1-cycles after 1000 and 4000 iterations

Fig. 8. Subgradient methods can be used to localize holes in a distributed
fashion. (a) The Rips shadow (b) Initial point in ���� (c) 1000 iterations (d)
4000 iterations.

are depicted in Figs. 8(c) and 8(d), respectively. These figures
illustrate that after enough iterations, the subgradient method
converges to a 1-cycle that has non-zero values only over cy-
cles that are tight around the holes. In Fig. 8(d), the value of the
12 edges adjacent to the holes are 3 orders of magnitude higher
than the rest.

Recall that our algorithm is only capable of finding the
tightest minimal-length cycles surrounding the holes, which
do not necessarily coincide with the cycles that are closer
in distance to the holes. This is due to the fact that we are
not using any metric information for our computations and
the combinatorial relations between vertices is the only in-
formation available. Moreover, in the case that there are two
minimal-length cycles surrounding the same hole (as in the
upper hole in Fig. 8), any convex combination of those is also
a minimizer of the LP relaxation problem (10). In such cases,
the subgradient method in general converges to a point in the
convex hull of the two solutions, rather than a corner solution.
Note that the holes in the Rips complex are far relative to their
sizes and therefore, Theorem 5 guarantees that the solution
obtained by the -minimization lies in the convex hull of the

-minimizers.

B. Computing a Sparse Cover

Fig. 9 illustrates the performance of the algorithm presented
in Section VI. The Rips complex used for this simulation con-
sists of 62 vertices, 22 of which function as fence nodes [Fig.
9(a)]. The second relative homology of this simplicial complex
contains one non-trivial class of relative 2-cycles.

In order to compute a non-trivial representative of the second
relative homology, we introduced an extra node, connected to
all the fence nodes. We computed the second combinatorial
Laplacian of the resulting complex and used the linear update

to obtain a point in the null space of .
Subgradient update (16) is used to solve optimization problem
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Fig. 9. Finding the minimal generator of the second relative homology
� ����� leads to a minimal cover. 32 of the sensors can be turned off without
generating any coverage holes. (a) The Rips shadow of the original cover (b)
The Rips shadow of the minimal cover.

(14). The minimizer 2-cycle is depicted in Fig. 9(b). We have
removed vertices that do not belong to any 2-simplex with a
non-zero value at the optimal point. As illustrated in Fig. 9(b),
32 sensors can be removed from the network, without impinging
upon the coverage integrity.

As a last remark, note that we can get an even sparser cover
by removing either vertex or in Fig. 9(b). This is due to the
fact that the generator computed using the subgradient update
is a convex combination of two distinct solutions to the original
integer programming problem (14). As in the earlier example,
whenever the original problem has more than one minimizer,
any relative 2-cycle in their convex hull is also a minimizer of
its LP relaxation problem (15).

VIII. CONCLUSION

In this paper, we presented distributed algorithms for cov-
erage verification in a sensor network, when no metric informa-
tion is available. We used simplicial complexes and combinato-
rial Laplacians to capture topological properties of the network,
and showed how simplicial homologies of the Rips complex can
be used in verifying coverage. In particular, we illustrated the re-
lationship between the kernel of the first combinatorial Lapla-
cian of the Rips complex and the number of coverage holes.
We formulated the problem of localizing coverage holes (in the
sense of finding tight cycles encircling them) as an optimization
problem that can be solved in a distributed fashion using subgra-
dient methods. Along the same lines, we showed how one can
compute a sparse cover, and detect redundancies in the network.
We presented a subgradient update that is capable of computing
a sparse generator of the second homology classes of the Rips
complex relative to its boundary, in a decentralized manner, and
used the minimizer to detect redundant sensors. Finally, we pro-
vided simulations to demonstrate the performance of our algo-
rithms.
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