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Abstract—We consider the consensus problem for stochastic discrete-
time linear dynamical systems. The underlying graph of such systems at a
given time instance is derived from a random graph process, independent
of other time instances. For such a framework, we present a necessary
and sufficient condition for almost sure asymptotic consensus using simple
ergodicity and probabilistic arguments. This easily verifiable condition uses
the spectrum of the average weight matrix. Finally, we investigate a special
case for which the linear dynamical system converges to a fixed vector with
probability 1.

Index Terms—Consensus problem, random graphs, tail events, weak
ergodicity.

I. INTRODUCTION

Decentralized iterative schemes such as agreement and consensus
problems have an old history [1]–[4]. Over the past few years, they
have attracted a significant amount of attention in various contexts
such as motion coordination of autonomous agents [5], [6], distributed
computation of averages and least squares among sensors [7]–[9], and
rendezvous problems [10]. In all these cases, the dynamical system un-
der study is deterministic. More recently, there has been some interest in
the stochastic variants of the problem. In [11], the authors study the lin-
ear dynamical system x(k) = Wk x(k − 1), where the weight matrices
Wk are independent, identically distributed (i.i.d.) stochastic matrices.
It is shown that all the entries of x(k) converge to a common value
almost surely (with probability 1), if each edge of G(Wk ), the graph
corresponding to matrix Wk , is chosen independently with the same
probability (Erdös–Rényi random graph model). A more general model
is studied in [12], where the edges of G(Wk ) are directed and not nec-
essarily independent. However, the author proves only convergence to a
consensus in probability, rather than the more general notion of almost
sure convergence. Moreover, the assumption in [12] is the occurrence of
scrambling matrices with positive probability, which can be weakened.

The purpose of this note is to provide a necessary and sufficient
condition for an almost sure consensus in the linear dynamical sys-
tem x(k) = Wk x(k − 1), when the weight matrices are general i.i.d.
stochastic matrices. Our results contain the results of [11] and [12] as
special cases. This necessary and sufficient condition is easily verifiable
and only depends on the spectrum of the average weight matrix EWk .
Finally, for a special case, we state a variant of a theorem in [2] that
provides the asymptotic consensus value. Even though it is possible
to derive our main theorem by combining results from ergodic the-
ory of Markov chains in random environments [13]–[15], our proofs
are self-contained and are only based on simple linear algebra ma-
chinery and the concept of coefficients of ergodicity, as introduced by
Dobrushin [16].
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II. PROBLEM SETUP

Let (Ω0 ,B, µ) be a probability space, where Ω0 = Sn = {set of
stochastic matrices of order n with strictly positive diagonal entries},
B is the Borel σ-algebra of Ω0 , and µ is a probability mea-
sure defined on Ω0 . Define the product probability space as
(Ω,F , P) =

∏∞
k=1 (Ω0 ,B, µ). By definition, the elements of the

product space have the following forms

Ω = {(ω1 , ω2 , . . .) : ωk ∈ Ω0}

F = B × B × · · ·

P = µ × µ × · · · .

The above equations mean that the coordinates of the infinite di-
mensional vector ω ∈ Ω are i.i.d. stochastic matrices with positive
diagonals.

Now consider the following random discrete-time dynamical
system:

x(k) = Wk (ω)x(k − 1) (1)

where k ∈ {1, 2, . . .} is the discrete time index, x(k) ∈ R
n is the state

vector at time k, and the mapping Wk : Ω → Sn is the kth coordinate
function, which, for all ω = (ω1 , ω2 , . . .) ∈ Ω, is defined as

Wk (ω) = ωk .

As a result, (1) defines a stochastic linear dynamical system in which the
weight matrices are drawn independently from the common distribution
µ. For notational simplicity, we denote Wk (ω) by Wk through the rest
of the note.

For a general weight matrix W , one can define the correspond-
ing graph G(W ) as a weighted directed graph with an edge (i, j)
from vertex i to vertex j with weight Wji if and only if Wji 
= 0. In
this case, we say vertex j has access to vertex i. We say vertices i
and j communicate if both (i, j) and (j, i) are edges of G(W ). Note
that the communication relation is an equivalence relation and defines
equivalence classes on the set of vertices. If no vertex in a specific
communication class has access to any vertex outside that class, such
a class is called initial. One important observation is the one-to-one
correspondence between W and G(W ). Also, note that because of
the way G(W ) is defined, the relation x(k) = W x(k − 1) represents
a distributed update scheme over the vertices of G(W ). More pre-
cisely, the value of xi (k) only depends on the elements of the set
{xj (k − 1) : Wij 
= 0} = {xj (k − 1) : (j, i) is an edge of G(W )}.

For the given dynamical system, we now define the notions of reach-
ing state consensus in probability and almost surely.

Definition 1: Dynamical system (1) reaches consensus in probability,
if for any initial state value x(0) and any ε > 0

P(|xi (k) − xj (k)| > ε) → 0

as k → ∞ for all i, j = 1, . . . , n.
This notion of reaching state agreement asymptotically, which is ad-
dressed in [12], is a special case of reaching consensus almost surely,
defined next.

Definition 2: Dynamical system (1) reaches consensus almost surely,
if for any initial state value x(0)

|xi (k) − xj (k)| → 0 a.s.

as k → ∞ for all i, j = 1, . . . , n.
Note that reaching almost sure consensus is stronger than reaching

consensus in probability. In this case, not only the probability of the
events {|xi (k) − xj (k)| > ε} goes to zero for an arbitrary ε > 0 as
k → ∞, but also such events occur only finitely many times [17].

III. ERGODICITY

Given (1), if x(0) is the initial state value, one can write the state
vector at time k as

x(k) = Wk · · ·W2W1x(0). (2)

As it is evident from (2), one needs to investigate the behavior of infinite
products of stochastic matrices in order to check for an asymptotic
consensus. This motivates us to borrow the concept of weak ergodicity
of a sequence of stochastic matrices from the theory of Markov chains.

Definition 3: The sequence {Wk }∞k=1 = W1 , W2 , . . . , of n × n
stochastic matrices is weakly ergodic, if for all i, j, s = 1, . . . , n and
all integer p ≥ 0 (

U
(k ,p )
i ,s − U

(k ,p )
j,s

)
→ 0

as k → ∞, where U (k ,p ) = Wp+ k · · ·Wp+2Wp+1 is the left product
of the matrices in the sequence.

As the definition suggests, a sequence of stochastic matrices is
weakly ergodic if the rows of the product matrix converge to each
other, as the number of terms in the product grows. A closely related
concept is strong ergodicity of a matrix sequence.

Definition 4: A sequence of n × n stochastic matrices {Wk }∞k=1 is
strongly ergodic, if for all i, s = 1, . . . , n and all integer p ≥ 0

U
(k ,p )
i ,s → dp

s

as k → ∞, where U (k ,p ) is the left product and dp
s is a constant not

depending on i.
One can easily see that weak and strong ergodicity1 both describe

a tendency to consensus. If either type of ergodicity (weak or strong)
holds for the matrix sequence {Wk }∞k=1 = W1 , W2 , . . ., the pairwise
differences between rows of the product matrix U (k ,p ) converge to
zero. Note that the converse of this statement is not true in general. In
other words, the event of weak ergodicity of the sequence of matrices
is a subset of the event that the linear dynamical system (1) reaches
consensus asymptotically for all initial state values x(0). For instance,
the existence of a rank one matrix in the sequence implies asymptotic
consensus, while it does not guarantee weak ergodicity.

At the first glance, it may seem that there exists a difference between
weak and strong ergodicity. In the case of weak ergodicity, any two
entries of vector x(k) converge to each other, but each entry does not
necessarily converge to a limit. On the other hand, in the presence
of strong ergodicity, not only the difference between any two entries
converges to zero, but also all entries enjoy a common limit. Although
one may consider the difference to be important, as the following
theorem suggests, that is not the case [2], [18].

Theorem 1: Given a sequence of stochastic matrices
{Wk }∞k=0 and their left products U (k ,p ) = Wk+ p · · ·Wp+1 ,
weak and strong ergodicity are equivalent.

Proof: We only need to prove that weak ergodicity implies strong
ergodicity. For any ε > 0, weak ergodicity implies that for large
enough k, we have −ε ≤ U

(k ,p )
i ,s − U

(k ,p )
j,s ≤ ε uniformly for all

i, j, s = 1, . . . , n. Since U (k+1 ,p ) = Wk+ p+1U
(k ,p ) , we have

U
(k ,p )
i ,s − ε ≤ U

(k+1 ,p )
h ,s ≤ U

(k ,p )
i ,s + ε

which, by induction, implies that

U
(k ,p )
i ,s − ε ≤ U

(k+ r,p )
h ,s ≤ U

(k ,p )
i ,s + ε

1To be more precise, we have stated the definitions of weak and strong
ergodicity in the backward direction. Since this is the only type of ergodicity
that we deal with, we simply refer to these properties as ergodicity.
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for all i, s, h = 1, . . . , n and r ≥ 0. By setting h = i, it is evident that
U

(k ,p )
i ,s is a Cauchy sequence, and therefore, limk→∞ U

(k ,p )
i ,s exists. �

Therefore, weak ergodicity is equivalent to the existence of a vector
d satisfying U (k ,p )→1dT , in which 1 is a vector with all entries equal
to one. We now define the coefficient of ergodicity, which is a key
concept in proving weak ergodicity results.

Definition 5: The scalar continuous function τ (·) defined on the set
of n × n stochastic matrices is called a coefficient of ergodicity if it
satisfies 0 ≤ τ (·) ≤ 1. A coefficient of ergodicity is said to be proper
if

τ (W ) = 0, if and only if W = 1dT

where d is a vector of size n satisfying dT 1 = 1.
Two examples of coefficients of ergodicity used in this note are

κ(W ) =
1
2
max

i ,j

n∑
s=1

|Wis − Wjs |

ν(W ) = 1 − max
j

(min
i

Wij ).

Note that ν(·) is an improper coefficient of ergodicity, while κ(·) is
proper, and for any stochastic matrix W , they satisfy

κ(W ) ≤ ν(W ). (3)

Given the above definitions, it is straightforward to show that weak
ergodicity is equivalent to

τ (U (k ,p ) ) → 0 ∀p ∈ N ∪ {0}

as k → ∞ for a proper coefficient of ergodicity τ . Therefore, we can
state the following theorem.

Theorem 2: Suppose τ (·) is a proper coefficient of ergodicity that
for any m ≥ 1 stochastic matrices Wk , k = 1, 2, . . . , m satisfies

τ (Wm · · ·W2W1 ) ≤
m∏

k=1

τ (Wk ). (4)

Then, the sequence {Wk }∞k=1 is weakly ergodic if and only if there
exists a strictly increasing sequence of integers kr , r = 1, 2, . . ., such
that

∞∑
r=1

(1 − τ (Wkr + 1 · · ·Wkr +1 )) = ∞. (5)

Proof: Since only the sufficiency part of this theorem will be used
in this note, we only prove that (5) implies weak ergodicity of the
sequence. A proof for the reverse implication can be found in [18, Th.
4.18].

Suppose that there exists a strictly increasing sequence of positive
integers kr such that (5) holds. Then, the inequality log x ≤ x − 1
implies that

∞∑
r=1

log (τ (Wkr + 1 · · ·Wkr +1 )) = −∞

and, as a result,
∏∞

r=1 τ (Wkr + 1 · · ·Wkr +1 ) = 0. Because we assumed
that τ is proper, (4) guarantees weak ergodicity of the sequence. �

IV. MAIN RESULTS: NECESSARY AND SUFFICIENT CONDITIONS

FOR ERGODICITY

In this section, we study the necessary and sufficient conditions for
ergodicity of an i.i.d. sequence of stochastic matrices based on the
framework presented in Section II.

Lemma 1: The weak ergodicity of the sequence W1 , W2 , . . . is a
trivial event.

Proof: Let k be a positive integer. Define the event

Ak = {The sequence Wk , Wk + 1, . . . is weakly ergodic.}

which is an event in F′
k = σ(Wk , Wk+1 , . . .). These events form a

decreasing sequence of events, satisfying A1 ⊇ A2 ⊇ · · · . As a result,

∞⋂
k=1

Ak ∈ T

where T is the tail σ-field of the sequence of stochastic matrices de-
fined as T =

⋂∞
k=1 F′

k . Therefore, by Kolmogorov’s 0-1 law [17],
P(∩k Ak ) = 0 or 1. Now we have

P

( ∞⋂
k=1

Ak

)
= lim

j→∞
P

( j⋂
k=1

Ak

)
= lim

j→∞
P(Aj ) = P(A1 )

where the first equality is due to continuity of the probability measure.
The last equality holds because the distribution of Wk does not depend
on k. Therefore, weak ergodicity of W1 , W2 , . . . is trivial. �

This lemma indicates that weak ergodicity of random i.i.d. weight
matrices obeys a 0-1 law. In other words, the sequence of stochastic
matrices is weakly ergodic either almost surely or almost never, indicat-
ing a discontinuous behavior. In order to find a criterion to distinguish
between these two cases, we need another lemma, the proof of which
can be found in [19].

Lemma 2: Suppose that W is a stochastic matrix for which its
corresponding graph has s communication classes named α1 , . . . , αs .
Class αr is initial, if and only if the spectral radius of αr [W ] equals to
1, where αr [W ] is the submatrix of W corresponding to the vertices
in the class αr .

Finally, suppose that the average weight matrix EWk has n eigen-
values satisfying

0 ≤ |λn (EWk )| ≤ · · · ≤ |λ2 (EWk )| ≤ |λ1 (EWk )| = 1.

At this point, we state our main theorem.
Theorem 3: For a given random i.i.d. sequence {Wk }∞k=0 =

W1 , W2 , . . . of stochastic matrices with positive diagonals, the fol-
lowing three statements are equivalent.

a) The random sequence {Wk }∞k=0 is (weakly) ergodic almost
surely.

b) The deterministic discrete-time linear dynamical system x(k) =
(EWk )x(k − 1) reaches a consensus asymptotically.

c) |λ2 (EWk )| < 1.
Proof: First, we show that (a) implies (b). If the random sequence

W1 , W2 , . . . is weakly ergodic with probability 1, we have(
U

(k ,p )
i ,s − U

(k ,p )
j,s

)
→ 0 a.s.

Therefore, the dominated convergence theorem [17] implies (EW )k
is −

(EW )k
j s → 0, which is another way of stating (b).

In order to show that (b) implies (c), we assume that |λ2 (EWk )| = 1.
Since all ωk ∈ Ω0 have positive diagonals, EWk has strictly posi-
tive diagonal entries as well. Hence, if EWk is irreducible, then it
is primitive, and, as a result of the Perron–Frobenius theorem [19],
|λ2 (EWk )| < 1, which is in contradiction with our assumption. There-
fore, |λ2 (EWk )| = 1 implies reducibility of EWk . As a result, without
the loss of generality, one can label the vertices such that EWk gets the
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following block triangular form

EWk =


Q11 0 · · · 0

Q21 Q22 · · · 0
...

...
. . .

...

Qs1 Qs2 · · · Qss

 (6)

where each Qii is an irreducible matrix and represents the vertices
in the equivalence class αi . Since |λ2 (EWk )| = 1, submatrices corre-
sponding to at least two of the classes have unit spectral radii (note that
because of irreducibility and aperiodicity of Qii ’s, the multiplicity of
the unit-modulus eigenvalue of each one of them cannot be more than
1). Therefore, lemma 2 implies

∃i 
= j s.t. αi and αj are both initial classes

or equivalently, Qir = 0 for all r 
= i and Qjl = 0 for all l 
= j. In
other words, the matrix EWk has two orthogonal rows, and, as a result,
(b) cannot hold.

The last implication can be proved by combining results from the
ergodic theory of Markov chains in random environments, more specif-
ically by using [13]–[15]. However, here we provide a simpler proof
based on theorem 2. In order to do so, we assume that (c) holds. Since
|λ2 (EWk )| is subunit, lemma 2 implies that G(EWk ) has exactly one
initial class. We investigate the two cases of EWk being irreducible
and reducible separately.

1) Irreducible Case: Suppose EWk is irreducible. Since it has only
one unit-modulus eigenvalue, EWk is primitive [19]. Hence,

∃m s.t. [EWk ]m > 0

where by > 0 for a matrix, we mean entrywise positivity. Independence
over time implies

E(Wm · · ·W1 ) = [EWk ]m > 0.

As a result, for all i, j = 1, . . . , n, the (i, j) entry of U (m ,0) =
Wm · · ·W2W1 is positive with nonzero probability, say pij > 0.
Therefore, since the weight matrices are i.i.d. with positive diagonals,
the matrix Wn 2 m · · ·W2W1 is completely entrywise positive with at
least probability

∏
i ,j

pij > 0, i.e., the event {Wn 2 m · · ·W2W1 > 0}
has nonzero probability.2 As a result, if we define δ(W ) = 1 −
ν(W ) = maxj (mini Wij ), then there exists ε > 0 such that

P(δ(Wn 2 m · · ·W2W1 ) > ε) > 0.

Hence, by the second Borel–Cantelli lemma [17, p. 49], we have

P(δ(W(r+1)n 2 m · · ·Wrn 2 m +1 ) > ε for infinitely many r) = 1.

Once we set kr = rn2m, we have

δ(Wkr + 1 · · ·Wkr +1 ) > ε i.o. a.s.

Also note that (4) hold for τ (·) = κ(·). Therefore, this together with
(3) implies

∞∑
r=1

(1 − κ(Wkr + 1 · · ·Wkr +1 )) = ∞ a.s.

2Selecting n2 m as the number of matrices in the product in order to make
the product matrix entrywise positive is a conservative pick. The product matrix
becomes positive with nonzero probability with less terms, but such a pick
suffices our purpose.

which is exactly (5), the sufficient condition for weak ergodicity. There-
fore, the sequence is weakly ergodic almost surely.

2) Reducible Case: When EWk is reducible, without loss of gener-
ality, it can be written as (6), where all Qii are irreducible matrices.
Since α1 (the class corresponding to submatrix Q11 ) is the only initial
class of G(EWk ), there exists a directed path from a vertex in α1 (e.g.,
say, vertex labeled 1) to any vertex of G(EWk ), such that the length
of the path is at most some positive integer m. In other words, any
vertex of G(EWk ) is at most an m-hop neighbor of vertex 1. This
combined with the fact that EWk has strictly positive diagonals guar-
antees that the first column of [EWk ]m is strictly positive. Therefore,
as in case 1, independence implies the positivity of the first column of
E(Wm · · ·W1 ).

As a result, for j = 1, . . . , n the (j, 1) entry of the matrix Wm · · ·W1

is nonzero with positive probability p̂j 1 . Hence, identical to the discus-
sion of case 1, we have

∃ε > 0 s.t. P (δ(Wn m · · ·W2W1 ) > ε) ≥
n∏

j=1

p̂j 1 > 0.

Now, if we set kr = rnm , once again the second Borel–Cantelli lemma
guarantees that

P(δ(Wkr + 1 · · ·Wkr +1 ) > ε for infinitly many r) = 1.

Therefore, the sum
∑∞

r=1 (1 − κ(Wkr + 1 · · ·Wkr +1 )) diverges to in-
finity with probability 1, and theorem 2 implies that the random se-
quence {Wk }∞k=0 is weakly ergodic almost surely. This completes the
proof. �

Theorem 3 combined with lemma 1 provides a simple criterion to
distinguish between the two cases of almost sure and almost never
weak ergodicity. It suggests that the information in the average weight
matrix EWk suffices to predict the long-run behavior of the left product
matrices U (k ,p ) . The following corollary states that the same informa-
tion is sufficient to extract the asymptotic convergence properties of
the linear dynamical system (1).

Corollary 4: The linear dynamical system (1) reaches consensus
almost surely if and only if |λ2 (EWk )| < 1. Otherwise, it reaches
asymptotic consensus almost never.

Proof: According to theorem 3, |λ2 (EWk )| < 1 guarantees weak
ergodicity with probability 1, and, as a result, the event of asymptotic
consensus occurs with probability 1, since it is a superset of the weak
ergodicity event. To prove the reverse implication, note that when EWk

has more than one unit-modulus eigenvalues, as in the proof of theo-
rem 3, its corresponding graph has more than one initial class, which
implies that EWk has two orthogonal rows. Since Ω0 is a subset of non-
negative matrices, Wk has the same type (zero block pattern) as EWk

for all time k with probability 1. Therefore, U (k ,0) = Wk · · ·W2W1

has two orthogonal rows almost surely for any k, which means that the
random discrete-time dynamical system (1) reaches a consensus with
probability 0. �

Therefore, |λ2 (EWk )| < 1 provides a necessary and sufficient con-
dition for almost sure asymptotic consensus in (1). This should not
come as a surprise to the reader. In fact, when |λ2 (EWk )| is subunit,
there exists a sequence of integer numbers kr , r = 1, 2, . . . such that
κ(Wkr + 1 · · ·Wkr +1 ) < 1 − ε with probability 1, and therefore, the
product of matrices {Wkr + 1 , . . . , Wkr +1} are scrambling. This also
implies that the collection of graphs {G(Wkr +1 ), . . . ,G(Wkr + 1 )} is
jointly connected (i.e., the graph constructed by forming the union of
the edge sets of the graphs in the collection contains a spanning tree) [5]
almost surely. This infinite often connectivity over time guarantees the
possibility of information flow on the graph over time, and therefore,
results in asymptotic consensus with probability 1. On the other hand,
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when |λ2 (EWk )| = 1, no such sequence exists, and therefore, there
are at least two classes of vertices in the graph such that they never
have access to each other, and hence, no consensus.

Moreover, theorem 3 contains the results of [11] and [12] as special
cases. Since in [11], the authors use Erdös–Rényi as their random graph
model, the matrix EWk is completely entrywise positive, which results
in |λ2 (EWk )| < 1, and hence, almost sure consensus. On the other
hand, when the weight matrices are scrambling with positive probabil-
ity, as in [12], EWk is also scrambling, and, as a result, its unit-modulus
eigenvalue has multiplicity 1. Hence, (1) reaches an asymptotic con-
sensus almost surely (and therefore, in probability).

V. CONSENSUS VALUE

As shown in the previous section, if |λ2 (EWk )| is subunit, then
the linear dynamical system (1) converges with probability 1 and

x(k) a.s.−→ c1, where c is a scalar random variable depending on the
initial state value x(0) and the random sequence of weight matrices.
The following theorem states that the distribution of c is concentrated
at one point if all weight matrices have a common left eigenvector
corresponding to their unit eigenvalue.

Theorem 5: For y ∈ R
n , set S(y) = {W ∈ Sn |yT W = yT }. For

a given initial state value vector x(0), if |λ2 (EWk )| < 1 and µ(Sn −
S(y)) = 0 hold, then

lim
k→∞

x(k) =
(
yT x(0)

)
1 a.s.

Proof: A variant of this theorem is proved in [2]. A similar proof
can be used here as well. �

One special case of the above theorem is when the weight matrices
are doubly stochastic almost surely. In such a case, the weight matrices
have vector 1 as their common left eigenvector at all times, and there-
fore, all the entries of the state vector converge to (1/n)(1T x(0))1,
the average of the initial state values, with probability 1. This special
case is addressed in [20].

VI. CONCLUSION

In this note, we showed how the problem of reaching consensus can
be reduced to the problem of weak ergodicity of a sequence of matrices.
In particular, for the case of i.i.d. weight matrices, we showed that
ergodicity is a trivial event. Moreover, we showed that the discrete-time
linear dynamical system x(k) = Wk x(k − 1) reaches state consensus
almost surely if and only if EWk has exactly one eigenvalue with unit
modulus. Finally, we showed how our theorem simply recovers the
other known results in the field of consensus over random graphs.
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