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Proof of Proposition 1

We characterize the equilibrium via backward induction. Starting with the firms’ decisions at ¢ = 1,
recall that firms optimally choose their labor input and flexible intermediate input quantities to meet
the realized demand. Taking the prices, its realized demand, and their rigid input demands as given,
firm £ in industry i faces the following cost-minimization problem:

min wl;p + Z PiTij k
Lin {zijntjer, jeF:
n
subjectto vy, = 2 Gl3) H xfjfk

j=1
Solving this problem implies that the firm’s expenditure on labor and flexible input demands are given
by

wlip, = Oéi(yik/Qik)l/(lfszRi 2 (A.1)

Piij = i (yin/ Qi) /e @) forall j € Fy (A.2)

respectively, where Q;; only depends on the firm’s productivity, its input prices, the nominal wage, and
the intermediate input decisions that are sunk by ¢t = 1:

Qie = zw ™ [ p; ™ [ @ij/ais)™ . (A.3)
JEF: JER,
Therefore, the firm faces the following problem when deciding on its nominal price at ¢ = 1:

max (1= 7)piryie — whik — Y PiTijik (A.4)
' jEF:

subject to v, = (pix/pi) "yi (A.5)
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as well as the labor and intermediate input demand constraints (A.1) and (A.2). The first-order
conditions of this optimization implies that
1 dyar

(1= 7) (1 = 0:) (pir/p) " vi — (yar/ Qure) /(12w 0) — dp:
Yik APik

=0. (A.6)

Solving this optimization problem implies that the nominal price set by firm & in industry i is given
by

>1/(1+(9i*1) 2jer,; i)

pir = (') =rem o Q! , (A7)

where Q)i is given by (A.3) and we are using the assumption that r; = 1/(1 — ;). With the firm’s price
and quantity decisions at t = 1 in hand, we can now turn to the rigid intermediate input decisions
of the firm at ¢ = 0. Recall that firms choose their rigid intermediate inputs in order to maximize the
expected real value of their profits given their information set. Therefore, firm £ in industry 7 faces the
following optimization problem at ¢ = 0:

/
max E; G

n
w2 D (1 — 7)piryir — wlip, — ijﬂfij,k
ij,kfjER,

j=1
subject to constraints (A.1)-(A.2), (A.5), and (A.7), where E;[-] denotes the expectation operator with
respect to the information set of firms in industry i, U’'(C') = 1/C is the household’s marginal utility,
and P is the price of the consumption good bundle. Note that, PC = m. Therefore, the first-order
condition of the firm’s problem at ¢t = 0 is given by

1 —0; S na) L dyig ) dpik
Ei | — (1 —7)(1 = 0:)in/pi) ""yi — (yin/ Qure) 1 2em @) —
L (=)= 0 /@) L) o

AL (i =S, a) L dQik N\
+Ez [TTL <(yzk/sz) R sz dxij,k Dj =0.

Equation (A.6) implies that the first term on the right-hand side of the above equation is equal to zero.

Furthermore, note that (A.3) implies that dQ;,/dx;; 1 = ai;Qix/xij . Therefore,

7 B - 0 ISP PSS VICES DIt e R
ik = g1, ] E [m (yir/ Qir) forall j € R;. (A.8)

To simplify the above, note that given that all firms within the same industry are symmetric, they all set
the same prices and produce the same quantities, that is, p;; = p; and y;x = y;. Therefore, we can drop
the firm index & from (A.7) and solve for Q;; in terms of the price of firms in industry i:

Qir = (piyi) ==~ “ /p;. (A.9)
Plugging this expression back into (A.2) and (A.8), we obtain

ijk =

(A.10)
CLZ]EZ[/\Z]/EZ[pj/m] lfj c Ri,



where we are using the fact that the Domar weight of industry i is given by \; = p;y; /m. This expression
together with the market-clearing condition (6) for sectoral good 7 implies that

i)
Yi =¢ + Qs —F— + i
Zf g 2 Lt
Multiplying both sides of the above equation by p;/m and using the fact that ¢; = g;m/p,—which is a
consequence of the household’s optimization problem—then establishes (11).
We next establish (10). To this end, note that equations (A.3) and (A.10) imply that

Qi = zew™ [T p; ™ [T (EilNil/Eilp; /m))™

JjEF; JER,

Combining the above equation with the expression for Q;; in (A.9) then establishes (10). O

Proof of Lemma 1

As a first observation, note that combining (A.1) with the expression for @;; in (A.9) implies that the
labor demand of firm % in industry i is given by /;; = a;A\im/w. Therefore, aggregate demand for labor

in the economy is equal to

i /1 likdk = (m/w) iai)\i
i=1 70 i=1

Furthermore, note that the first-order conditions of the household’s problem imply that total labor
supply is given by L = (m)/w)~". Combining the above two equations therefore implies that the labor
market equilibrium condition (5) is given by

n —1/(1+n)
1
w— W my,/w (m/w a; N | =0, w > w, m/w < | — Qi .
) ()= ) Yo unis (13 0]

We consider two separate cases. First, suppose that w > w. The first condition above implies
that w = my" 0+ (30 aiAi)l/ (147 This is consistent with the original conjecture as long as
w < myMH (S0 ai)\i)l/ (147) | As the second case, suppose w = w. In that case, the last inequality
above implies that w > my"/ (41 (30 ai/\i)l/ (1), Putting the two cases together establishes (13).
Finally, note that taking » — oo in (13) implies that w = max {xm, w}. O

Proof of Proposition 2

We prove this result by establishing that the optimality conditions corresponding to the planner’s
problem coincide with the equilibrium conditions in equations (10)-(13). As a first observation, note
that since all firms in the same industry have identical production technologies and information sets,
we can drop the firm index & in the planner’s problem.

To express the planner’s problem, let

s=(z,m,(wi,...,wp)) €S =RIT x Q x-- xQ,



denote the aggregate state of the economy, consisting of all realized productivity and demand shocks,
as well as the cross-sectional profile of signals, where w; € ; denotes the component of the state
observable to firms in industry i. To ensure that the planner is subject to the same information and
quantity adjustment frictions as the firms, we impose the following measurability constraint on the
quantities: if j is a rigid input of industry  (so that j € R;), then z;; can be contingent on w;, but not
on the aggregate state s. We capture this measurability constraint by denoting corresponding input
quantity by z;;(w;). In contrast, if j is a flexible input for firms in industry i (so that j € F;), then z;;
can be contingent on the economy’s aggregate state, in which case we denote this quantity by z;;(s).
Finally, note that since labor supply, labor demand, and consumption are not subject to informational
frictions, they can depend on the economy’s aggregate state. We therefore denote the corresponding
quantities by /;(s), L(s), and ¢;(s), respectively.

Using the above notation, we can now express the planner’s problem as follows. The planner
maximizes the household’s expected utility

n 1+1/
/ES (Z Bilogci(s) — xﬂ) dG(s) (A.11)
s i=1

subject to the following resource and technology constraints:

yl(s) = Ci(S) + Z xji(wj) + Z azji(s) (A.12)
JUER,; JueF;
L(s) =Y Li(s) (A.13)
=1
vi(s) = 2z 5(Li(s), {i;(s) }ier {zij(wi) }jer, ), (A.14)

where G(s) denotes the probability distribution of the economy’s aggregate state and F; denotes the
production function of firms in industry ¢ and is given by (1). The Lagrangian corresponding to the
above problem is thus given by

B n | | L1+1/n(s) n |
£ /seS (Z; Bilogea(s) = X1+1/n) dG(s) + /Ses vo(s) (L(s) - lz(s)> dG(s)

30 i) (i) i) = D0 wiilwy) = D wils) )AG(s)

i—1 V/SE€S jicr, =
" ; /ses vils) <ZiFi(l"(5>’ {zij(s)}jer {mij(wi) Yier,) — yi(s))dG(S).

where v;(s)dG(s) is the Lagrange multiplier corresponding to good i’s resource constraint (A.12),
vo(s)dG(s) is the multiplier corresponding to labor resource constraint (A.13), and ;(s)dG(s) is the
multiplier for industry i’s technology constraint, (A.14). Therefore, the first-order conditions with
respect to ¢;(s), L(s), and y;(s) are given by

Bifci(s) = wils),  XLY(s) =wo(s),  wi(s) = wi(s), (A.15)



respectively, whereas the first-order conditions with respect to /;(s) and z;;(s) for j € F; are given by

vo(s) = Vz(S)Zz%}l:l(S) = a;v(8)yi(s)/1i(s) (A.16)
¥(5) = ()3 7 (5) = ala)un(s) ). (A17)

respectively. Finally, the first-order condition with respect to the rigid input z;;(w;) is given by

/ %‘(S)dG(S):%‘/ vi(s)yi(s)/wij(wi)dG(s),
se); s€eQ;

where Q; C S denotes the subset of states with corresponding element w;. Note that dividing both
sides of the above equation by G(£2;) leads to

Ei[vj(s)] = aiiEilvi(s)yi(s)]/mij(wi). (A.18)

Plugging in the expressions for ¢;(s), z;;(s), and z;;(w;) in (A.15), (A.17), and (A.18) into the resource
constraint (A.12) implies that

Gils)yils) = Bi+ S asit()E; [ () () /By du(o)] + 3 it (s)ys(s (A.19)

JUER; JHeF;

where we are using the fact that v;(s) = v;(s), established in (A.15). Next, note that plugging the same
expressions and the expression for /;(s) in (A.16) into the technology constraint in (A.14) leads to

yi(s) = 2 (Gi(s)ya(s) vo(s)™ [T @ils)vals) /()™ T Ealwhi(s)ya(s)] /Bl (s)])™ - (A.20)

JEF; JER,

Finally, plugging the expressions for L(s) and /;(s) in (A.15) and (A.16) into the resource constraint for
labor (A.13) implies that

Zam $)yi(s) = vy "(s)/x"- (A.21)

The proofis complete once we verify that equations (A.19)—(A.21) coincide with equilibrium conditions
(10)—(13). We do so by a simple change of variables. Let

Ai(s) = i(s)yi(s),  pi(s) = i(s)m(s),  w(s) =wo(s)m(s),

where m(s) is an arbitrary function. Using this change of variables, it is then immediate to verify that,
as long as the downward nominal wage rigidity constraint does not bind (thatis w > w), then equations
(A.19)-(A.21) reduce to (10)-(13). O

An Auxiliary Result

We now state and prove a result that provides an exact expression for aggregate output in terms of
model primitives and the nominal wage when there is only a single rigid industry. We will use this
result in proving Propositions 3 and 4.



Proposition A.1. Ifr is the only industry that is subject to frictions and Assumption 1 is satisfied, then,

logC' = Z)\bb log zj — log(w/m) — A5* Z ar; K <log w/m) — Z@slog Zs) ; (A.22)

Jj=1 JER,

whereK, (z) = logE, [exp(z)] — x.

Proof. We first show that A, = A\. Since industry r is the only industry subject to informational
frictions, equation (11) implies that

- pi/m
No=Bi+ ) ai)i+an (ET[AT] - )\T> Lier.t- (A.23)
jzl Jr g Er[pz/m] {ieR.}
Taking expectations from both sides of the above equation with respect to the information set of
industry r implies that E.[\;] = 3; + >0, a;;E,[\;] for all i. Solving this system of equations for E, [\;]
implies that E, [\;] = A{*, where is the steady-state Domar weight of industry i. Consequently, we can
rewrite equation (A.23) as follows:

. pz‘/ m
ANi=PBi+ Y ajiN+ar <)\f«s_>\r>ﬂi72ra

2 " B [pi/m] terd
Furthermore, note that the steady-state Domar weights satisfy the following system of equations: \}* =

Bi + Z;‘Zl a;i A for all i. Subtracting this equation from the previous one therefore implies that

o . ss pl/m
A = Z%Ag’ + ar (M E [pi/m] )‘r> Lier,y-

i=1

where A; = \; — A, Solving the above system of equations for A; implies that

- s bj/m
Ai = ;fjiarj ()\T E [;) /m] )\T> H{jeRT}a (A.24)

where /;; denotes the (j,) element of the economy’s Leontief inverse L = (I— A)~L. Setting i = r in the
above equation and using Assumption 1 then implies that the right-hand side of the above equation is
equal to zero, thus establishing that A, = \}%.

Next, note that since industry r is the only industry that is subject to frictions, equation (10) implies
that the (log) nominal price of industry i # r is given by

n
log p; = —log z; + o logw + Z a;;logp;.
j=1
Let 5 € R"! denote the vector of nominal prices for all industries i # r and let A € R(»~1*("—1) denote
the sub-block of the input-output matrix A corresponding to all industries except for . Writing the
above equation in vector form therefore implies that log p = — log Z + & log w + A log p + @, log p,, where
& and z denote the vectors of labor shares and productivity shocks for all i # r and &, € R"! is a vector
with elements a; for all i # r. Consequently,

log p = Lalogw — Llog Z + La, log p,,



where L = (I— A)~!. Under Assumption 1, the elements of L can be expressed in terms of the elements
of the economy’s Leontief inverse L. In particular, Zij = l;; — Uity forall i, j # r. Hence,

log p; = logw Z ij — lirlrj)o — Z(&j — Yirlyj) log zj + log py Z(&'j — Lirlrj)aj:
J#r J#r J#r

for all i # r. Consequently,

logp; = (1 — 4;) logw + ¢4y log pr — Z(&j — liplyj) log z; (A.25)

J#r
for all i # r, where we are using the fact that 7, /;;a; = 1 for alli and ¢,, = 1, the latter of which
is a consequence of Assumption 1. The above equation expresses all prices in terms of the price of
industry » and the nominal wage. With the above in hand, we can therefore obtain an expression
for aggregate output in terms of the nominal price of industry r. In particular, the fact that logC' =

logm — "7 | B;log p; together with (A.25) implies that

log C' = log(m/w) — X log(p, /w) + Z(Ajs — X\24,5) log zj, (A.26)

JFr
where A3 denotes the steady-state Domar weight of industry j. Therefore, to obtain the expression for

aggregate output is sufficient to characterize log p,. To this end, note that setting i = r in equation (10)
implies that

log p, = —log 2z, + o, logw + Z arjlogp; + logm Z arj + Z arjlog E.[pj/m],
JEF, JER. JER.
where we are also using the fact that A\, = A}°. Replacing for log p; from (A.25) for all j # r into the
above equation and using the implication of Assumption 1 that a,;¢;, = 0 for all j € F, implies that

log(p,/m) = —logz + | ay + Z arj | log(w/m) — Z Za“ ;s log 25
JEFr jEF, s=1

exp <log w/m) — Zﬂjslog zs>] .

Plugging the above into the expression for log C' in (A.26) and using Assumption 1 then establishes
(A.22). O

(A.27)

+ Z arjlogE,
JER.

Proof of Proposition 3

Proofof part (a) Recall from the proof of Proposition A.1 that A; = \; — \}® satisfies (A.24). As aresult,
= . Ss SS p]/m
ai)\i = ai(Ai + AZ) =1+ )‘r Qpq ( — 1) s
LNy 2o
where we are using " ; ;A = > | a;¢j; = 1 and the fact that A\, = A*, established in the proof of
Proposition A.1. Therefore, to a first-order approximation

log (Z m) = Y s (2L 1) =00 3 o st ) — By /)
=1

JER, rlp J /m] JER,



Combining the above with equation (13), together with the assumption that the downward constraint
on nominal wage does not bind, implies that

log(u/m) = I 1og X+ TN Y ey (10g(ps/m) — Exllog(o/m)]) (828
JER,

Next, recall from the proof of Proposition A.1 that log(p./m) is given by (A.27). Thus, to a first-order
approximation,

log(py/m) = —log 2, + | ar + Z arj | log(w/m) — Z Zam js log 2
JEF- jEF, s=1

+ Z ar;E, [log(w/m) — Zﬁjs long] .

JER,

Plugging this back into the expression for log p; in (A.25) we get

log(p;/m) = log(w/m) — ZEU log z; — 4y Z arj (log(w/m) - Er[log(w/m)])

jeRr

— Yy Z arj ZZJPE [log zp] — log 2p)

JER,

for all i # r. Taking expectations from both sides of the above equation and subtracting it from both
sides therefore implies that

S avillog(pi/m) — By log(pi/m)]) = > api( log(w/m) — B, log(w/m) )

1ER,. I€ER,.
n
= an Y tij(logz; — Eflog z)),
1ER, 7=1

Note that (A.28) implies that E, [log(w/m)] = # log x. Therefore, we can rewrite the above equation as
follows:

Z ari(log(pi/m) — E,[log(p;/m)]) = Z am-(log(w/m) — 1+11/?7 log X)

1ER, 1€ER,

— E Z am-&-j(log Zj — Er[log Zj]),

1€R, j=1

Combining the above equation with (A.28) and solving for log(w/m) we obtain,

log(w/m) = og X —

Ar > ) aritij(log z; — E,flog 2]).

1
—F1
1+1/n L+n = AP Yier, ari ieR, =1

Now, plugging the above expression into the expression for log C' in (A.22) and performing a first-order
approximation establishes (14). O



Proof of part (b) Recall from Proposition A.1 that log aggregate output is given by (A.22).
Furthermore, note that by Lemma 1, when labor supply is fully elastic and the downward constraint
on the nominal wage does not bind, log(w/m) = log x. Therefore, the expression in (A.22) simplifies as
follows:

n n
logC = Z)\j-s log z; — log x — A Z ari K, (— ijs log z3> ,
j=1 JER, s=1
where we are using the fact that K,.(x + a) = K,(x) for any constant a. Noting that logC* =

> j—1 AT log z; — log x then establishes (15). O

Proof of Proposition 4

Recall from Proposition A.1 thatlog aggregate output is given by (A.22). Therefore, when the downward
constraint on the nominal wage binds (that is, w = w) and the absence of productivity shocks, the
expression for log aggregate output reduces to

log C' = logm — logw — K, (—logm) A}® Z arj,
JER,

which coincides with the expression in (19). Also note that (20) follows immediately from the

observation that log P = log m — log C'.

Proof of Propositions 5

Let E,[-] denote the expectation operator conditional on the public signal, w. Taking conditional
expectations from both sides of (11) implies that E,[\;] = 8; + >_7_; a;;E,[)\;] for all i. On the other
hand, note that the steady-state Domar weights of all industries also satisfy the following system of

equations: A\3* = f3; + Z?:1 a;iA;*. Comparing the two equations then implies that
E,[\i] = A® for all 4.
Plugging this into equation (10) and taking logarithms from both sides then implies that

log(pi/m) = —log zi + ailog(w/m) + Y aijlog(p;/m) + Y ayj (logEulps/m] +log(\i/A}))
JEF: jER,

To simplify notation, define p, = p;/m and w = w/m. Writing the above equation in matrix form, we
get

logp = —logz+ alogw + Arlogp + A, logEy[p] + diag(A,1) log(A/A*),

where A is the matrix whose (7, j) element is equal to a;; if j € F; and is equal to zero otherwise and
A, = A — A;. Consequently,

logp =&+ Lyalogw + LA, log E, [p], (A.29)



where Ly = (I- Ay)~!and
§ = —Lylogz + Ly diag(A,1) log(A/A*). (A.30)

Exponentiating both sides of (A.29), taking conditional expectations, and then taking logarithms
implies that

log E,[p] = logE,, [eg] + Lyalogw + LA, log E, D],

where note that since 7 — oo, Lemma 1 implies that & = w/m = x, which is deterministic and hence
is measurable with the respect to the firms’ common information structure. Solving for log E,, [p] and
using the observation that (I — LfA,)™! = (I - L;(A — Af))~! = L(I — Ay), we can rewrite the above
equation as follows:

log Ey[p] = L(I — Af)log E,[ef] 4+ 1log x,

Plugging the above expression back into (A.29) leads to the following expression for log prices in terms
of vector ¢ defined in (A.30):

logp = 1log x 4+ &€ + LA, logE,[e%].

Combining this equation with the observation that log C' = logm — >, ; log p; we get the following
expression for log aggregate output in terms of vector &:

log C' = —log x — A (I — A)¢ — XA, log E,, [ef],

which to a second-order approximation is equal to
1
logC = —logx — A (I — A)¢ — A\¥A, <Ew €]+ 2varw(§)> . (A.31)
To express log output in (A.31) in terms of model primitives, we next need to solve for £ and its first two
conditional moments. We thus turn to (11), which can be rewritten as follows:
p
E.[p]

Solving for the vector of Domar weights and using (A.29), we get

A=+ AlX + diag(ALN*)

¢ ot
)\ — Ll L/ d A/ Ss € — )\SS L/ d A/ )\SS _ 1
fﬁ + f 1ag( 'r)‘ )Ew[ef] + f lag( r ) (Ew[eq > )
and as a result,
AN = 1+ diag ™ (A®)L; diag(ALX*) <ei—1°ng €] 1) . (A.32)

Therefore, to a second-order approximation,
AN =1+H (5 — log By [ef] + % diag ((5 —log By, [e¥]) (¢ — log B, [eﬂ)’))

= 1 B (€ Bule] - gan () + g ding ((€ - ELED(E - B16D)).

10



where H' = diag_l()\SS)L} diag(A/)*). Plugging the above expression into equation (A.30) and
performing a second-order approximation, we get

€ = ~Lylog + Ly diag(A D' (€~ B - van(6) + 5 diag((€ - EED(E - EL[€)))

) (A.33)
- iLf dia’g(Arl) diag(H/(§ - Ew[ﬂ)(& - Ew[ﬂ)/H)
Taking conditional expectations from both sides of the above equation implies that
E,[¢] = —LsE,[log 2] — %Lf diag(A,1) diag(H'var,, (£)H), (A.34)

where var,(£) denotes the variance-covariance matrix of ¢ conditional on the common signal w
Subtracting the above equation from (A.33) leads to

§—-Eu[¢] = *Lf(IOgZ — E,[log 2])

+ Ly ding (A, DR (€ - Bofg] ~ pvara(6) + 5 ding((¢ ~ BLJEDE ~ E. )
— Sy diag(A,1) diag(H'(€ — B [€) (€ — EL[€))'H) + 5Ly diag(A,1) diag(H'var, (§)H).
As aresult,
var, (€) = vary (L log 2) + Ly diag(A,1)H'var,,(¢)H diag(A, 1)L.

Solving for var, (£) from the above equation, we get
var,, (€ Z (L diag(A,1)H')*var,, (L log 2) (H diag(A., 1)L’) (A.35)
k=0
Plugging the expressions in (A.34) and (A.35) into (A.31) and taking conditional expectations then
implies that
1 1
E,[log C| = E, [log C*] + 5)\55’ diag(A, 1) diag(H'var, (§)H) — ~ X A,var,(€).

2

Taking unconditional expectations from both side of the above equation and letting Q = E[var,(£)]
then establishes the result. O

Proof of Propositions 6

Recall from the proof of Proposition 5 that log p; = log p; — log m satisfies equation (A.29), where vector
¢ is given by (A.30). In the absence of productivity shocks, and when the downward constraint on the
nominal wage binds, this implies that

logp =0+ Lyalogw + LA, log B, [p],
where

0 = —Lyalogm + Ly diag(A, 1) log(A/A®). (A.36)

11



Exponentiating both sides of the above equation, taking conditional expectations, and then taking
logarithms implies that

log B, [p] = log B, [e?] + Lyalogw + LA, log By [p].

Solving for log E,, [p] and using the observation that (I — LfA,)! = (I-L;(A - Ay))" ' =L(I- Ay),
we can rewrite the above equation as follows:

log B, [p] = L(I — Af)log E,[e’] + 1log w.
Plugging the above back into the expression for log p leads to the following expression for log prices:
logp = 1logw + 0 + LA, logE,[¢’].

Combining this equation with the observation that logC = —>"" | 8;logp; we get the following
expression for log aggregate output:

logC' = —logw — A (I — A)f — XA, log E, [¢Y].

Next, note that steps identical to those in the proof of Proposition 5 imply that we can write the ratio of
Domar weights to their steady-state values as follows:

A/AS =1+ diag ™ ()L diag(A)A*) (ee—ngm €] _ 1) ’
and hence, to a second-order approximation,

AN® =1+ H (9 ~E,[0] - %varw(H) + %diag ((0 —E,[0])(0 — Ew[9])')> :

Plugging the above expression into equation (A.36) and performing a second-order approximation, we

get
6= —Ljalogm + L; diag(A,1)H' <9 CE[0] - %Varww) + %diag((@ CE0))(0— Ew[e])’)> o
- %L + ding(A, 1) diag(H'(0 — E,,[0])(0 — E,[0])'H). .
Taking conditional expectations from both sides of the above equation implies that
E[6] = —LaE,[log m] — %L + diag(A, 1) diag(E'var,,(9)H). (A.38)

Subtracting the above equation from (A.37) leads to

0 — E,[0] = —Lya(logm — E,[log m])

+ Lf diag(Arl)H, (9 —E, [0] - %Varw(e) + % diag((9 - Ew[e])(g - Ew[e])/)>

- %L - ding(A, 1) diag(H'(6 — . [6])(8 — E.[0])H) + %L - ding(A, 1) diag(H'var,,(9)H).

12



As aresult,
var,(0) = var, (Lyalogm) + Ly diag(A,1)H'var,,(6)H diag(A,1)L}.

Solving for var, () from the above equation, we get
var,, (0 E L diag(A,1)H')*var, (Lo log m)(H diag(A., 1)L} )k (A.39)
k=0

Plugging the expressions in (A.38) and (A.39) into the expression for aggregate output and taking
conditional expectations then implies that

1 1
E,[log C] = E,[log C*] + 5)\SS’diag(AT1) diag(H'var, (0)H) — iASS'ATvarw(Q).

Taking unconditional expectations from both side then establishes the result. O

Proof of Proposition 7

We consider a more general vertical production network with industries 1 through »n arranged on a
chain, with industry 1 as the final good producer. We then specialize this economy to the case of n = 3
in Proposition 7.

Recall from Proposition 1 that nominal prices and Domar weights satisfy the system of equations
in (10) and (11). Applying these equations to the vertical production network economy, we obtain

Uy g (o Eipiea/m]\™ :
;= —w!' T (et forl <i<n, A4
P Ziw <m BN/ orl <i:<n (A.40)
pz’+1/’m .
>\i = aiEi )\z —_— for1 <i1<n-1 (A.41)
i [ ]Ei[pz‘ﬂ/m}

with the initial conditions that A\; = 1 and the convention that a, = 0. Solving for E;[\;]/E;[pi+1/m]
from (A.41) and plugging it back into (A.40) implies that p; = (Ai/Aig1)™ w'™%pf . Hence,

log pi = ai(pi — @it1) — log z; + a;log pit1 + (1 — a;) logw,

for 1 <i < n, where ¢; = log \; — log A\{® and we are using the fact that A5, = a;A}*. Solving the above
recursion, we can express nominal prices in terms of Domar weights:

n n—1
log p; = logw — Z(aiai+1 ...aj—1)logzj + Z(aiai+1 o a) (@5 — Qi) (A.42)
j=i j=i

Next, note that, to a first-order approximation, (A.41) can be expressed as
log Ait1 = log a; +1og(piy1/m) + Ei[log A;] — E;[log pi1/m],
and as a result,

vi+1 = Ei[pi] + log(pit1/m) — Ei[log pi1/m]. (A.43)
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We now have a system of linear expectations (A.42) and (A.43) that fully pins down equilibrium nominal
prices and Domar weights in terms of the productivity shocks, nominal aggregate demand, and the
nominal wage.

Specializing these equations to the case of n = 3 and shutting off all productivity shocks, it is
immediate that log p3 = log w, and hence, we get the following equations:

log p2 = logw + az(p2 — ¢3)
2 = log pa — Eq[log pa] — log m + Eq[log m]
= Ea[po] + log(w/m) — Ea[log(w/m)].

Replacing for o3 into the expression for log p, we get
log pa = aa(p2 — Ea[po]) + @ + logm, (A.44)
where
Q@ = (1 — ag)log(w/m) + azEa[log(w/m)]. (A.45)
Consequently, we get the following equation for ¢,:
P2 = az(p2 — Eafpa]) — aa(Ei[pa] — E1Ea[po]) + Q@ — Ea[Q]

Noting that E, [p2] = 0, we get

o2 = ——"2 Eylipa] + L @-EQ). (A.46)
az — az

as
E/E
1_ . 1 2[@2]4—

1

Taking expectations with respect to the information set of firms in industry 2 from both sides of (A.46)
and solving for E;[¢,] implies that

Eo[pa] = asEoE1Ea[a] + Eo[Q] — EoEq[Q].
We can thus solve for Ez[p2] in terms of the infinite regress of expectations as follows:

o oo o
Ea 2] Za (EoEq)*(E2[Q] — EoEq[@Q Z a5 (EoE)® Za (EoE1)5 Q).
s=0 s=0

Plugging the above expression into (A.46), we get

s+1 s+1 s+1
T (Z;a (E,Es) Za (EoRy)® +Za2 EoE:)® ZagEl (EoE;)* [Q]) .

s=0 s=0

Y2 =

Hence, combining this equation with (A.44) and using the observations that logp; = a1(¢1 — p2) +
aylogps + (1 — a1) logw and ¢ = 0, we get the following expression for log p;:

log(p1/m) = a1 (Z asEq (EqE;)* ZasH (E1Eg) S+1[Q]> + (1 — a1)log(w/m).

s=0
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Rearranging terms, we get

log(p1/m) = a1 Y a3(E1Eo)°E; [Q — asBo[Q]] + (1 — a1) log(w/m).
s=0

On the other hand, note that (A.45) implies that Q — a2E2[Q] = (1 — az) log(w/m). Therefore,

log(p1/m) = a1(1 — az Za (E1E2)°Eq [log(w/m)] + (1 — a1) log(w/m).
s=0

By Lemma 1, the assumption that m < w@w/y implies that w = w, in which case the above equation
immediately reduces to (28). Furthermore, noting that log m = log(PC) then establishes (27). O
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