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Proof of Proposition 1

We characterize the equilibrium via backward induction. Starting with the firms’ decisions at t = 1,

recall that firms optimally choose their labor input and flexible intermediate input quantities to meet

the realized demand. Taking the prices, its realized demand, and their rigid input demands as given,

firm k in industry i faces the following cost-minimization problem:

min
lik,{xij,k}j∈Fi

wlik +
∑
j∈Fi

pjxij,k

subject to yik = ziζil
αi
ik

n∏
j=1

x
aij
ij,k.

Solving this problem implies that the firm’s expenditure on labor and flexible input demands are given

by

wlik = αi(yik/Qik)
1/(1−

∑
j∈Ri

aij) (A.1)

pjxij,k = aij(yik/Qik)
1/(1−

∑
j∈Ri

aij) for all j ∈ Fi (A.2)

respectively, whereQik only depends on the firm’s productivity, its input prices, the nominal wage, and

the intermediate input decisions that are sunk by t = 1:

Qik = ziw
−αi

∏
j∈Fi

p
−aij
j

∏
j∈Ri

(xij,k/aij)
aij . (A.3)

Therefore, the firm faces the following problem when deciding on its nominal price at t = 1:

max
pik

(1− τi)pikyik − wlik −
∑
j∈Fi

pjxij,k (A.4)

subject to yik = (pik/pi)
−θiyi (A.5)
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as well as the labor and intermediate input demand constraints (A.1) and (A.2). The first-order

conditions of this optimization implies that

(1− τi)(1− θi)(pik/pi)−θiyi − (yik/Qik)
1/(1−

∑
j∈Ri

aij) 1

yik

dyik
dpik

= 0. (A.6)

Solving this optimization problem implies that the nominal price set by firm k in industry i is given

by

pik =
(

(pθii yi)
∑
j∈Ri

aijQ−1
ik

)1/(1+(θi−1)
∑
j∈Ri

aij)
, (A.7)

where Qik is given by (A.3) and we are using the assumption that τi = 1/(1 − θi). With the firm’s price

and quantity decisions at t = 1 in hand, we can now turn to the rigid intermediate input decisions

of the firm at t = 0. Recall that firms choose their rigid intermediate inputs in order to maximize the

expected real value of their profits given their information set. Therefore, firm k in industry i faces the

following optimization problem at t = 0:

max
{xij,k}j∈Ri

Ei

U ′(C)

P

(1− τi)pikyik − wlik −
n∑
j=1

pjxij,k


subject to constraints (A.1)–(A.2), (A.5), and (A.7), where Ei[·] denotes the expectation operator with

respect to the information set of firms in industry i, U ′(C) = 1/C is the household’s marginal utility,

and P is the price of the consumption good bundle. Note that, PC = m. Therefore, the first-order

condition of the firm’s problem at t = 0 is given by

Ei
[

1

m

(
(1− τi)(1− θi)(pik/pi)−θiyi − (yik/Qik)

1/(1−
∑
j∈Ri

aij) 1

yik

dyik
dpik

)
dpik

dxij,k

]
+Ei

[
1

m

(
(yik/Qik)

1/(1−
∑
j∈Ri

aij) 1

Qik

dQik
dxij,k

− pj
)]

= 0.

Equation (A.6) implies that the first term on the right-hand side of the above equation is equal to zero.

Furthermore, note that (A.3) implies that dQik/dxij,k = aijQik/xij,k. Therefore,

xij,k =
aij

Ei[pj/m]
Ei
[

1

m
(yik/Qik)

1/(1−
∑
j∈Ri

aij)

]
for all j ∈ Ri. (A.8)

To simplify the above, note that given that all firms within the same industry are symmetric, they all set

the same prices and produce the same quantities, that is, pik = pi and yik = yi. Therefore, we can drop

the firm index k from (A.7) and solve for Qik in terms of the price of firms in industry i:

Qik = (piyi)
∑
j∈Ri

aij/pi. (A.9)

Plugging this expression back into (A.2) and (A.8), we obtain

xij,k =

{
aijλim/pj if j ∈ Fi
aijEi[λi]/Ei[pj/m] if j ∈ Ri,

(A.10)
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where we are using the fact that the Domar weight of industry i is given by λi = piyi/m. This expression

together with the market-clearing condition (6) for sectoral good i implies that

yi = ci +
∑
j∈Fi

aji
λj
pi/m

+
∑
j∈Ri

aji
Ej [λj ]

Ej [pi/m]
.

Multiplying both sides of the above equation by pi/m and using the fact that ci = βim/pi—which is a

consequence of the household’s optimization problem—then establishes (11).

We next establish (10). To this end, note that equations (A.3) and (A.10) imply that

Qik = ziw
−αi

∏
j∈Fi

p
−aij
j

∏
j∈Ri

(Ei[λi]/Ei[pj/m])aij .

Combining the above equation with the expression for Qik in (A.9) then establishes (10).

Proof of Lemma 1

As a first observation, note that combining (A.1) with the expression for Qik in (A.9) implies that the

labor demand of firm k in industry i is given by lik = αiλim/w. Therefore, aggregate demand for labor

in the economy is equal to

n∑
i=1

∫ 1

0
likdk = (m/w)

n∑
i=1

αiλi.

Furthermore, note that the first-order conditions of the household’s problem imply that total labor

supply is given by L = (mχ/w)−η. Combining the above two equations therefore implies that the labor

market equilibrium condition (5) is given by

(w − w̄)

(
(mχ/w)−η − (m/w)

n∑
i=1

αiλi

)
= 0, w ≥ w̄, χm/w ≤

(
1

χ

n∑
i=1

αiλi

)−1/(1+η)

.

We consider two separate cases. First, suppose that w > w̄. The first condition above implies

that w = mχη/(1+η) (
∑n

i=1 αiλi)
1/(1+η). This is consistent with the original conjecture as long as

w̄ < mχη/(1+η) (
∑n

i=1 αiλi)
1/(1+η). As the second case, suppose w = w̄. In that case, the last inequality

above implies that w̄ ≥ mχη/(1+η) (
∑n

i=1 αiλi)
1/(1+η). Putting the two cases together establishes (13).

Finally, note that taking η →∞ in (13) implies that w = max {χm, w̄}.

Proof of Proposition 2

We prove this result by establishing that the optimality conditions corresponding to the planner’s

problem coincide with the equilibrium conditions in equations (10)–(13). As a first observation, note

that since all firms in the same industry have identical production technologies and information sets,

we can drop the firm index k in the planner’s problem.

To express the planner’s problem, let

s = (z,m, (ω1, . . . , ωn)) ∈ S = Rn+1
+ × Ω1 × · · · × Ωn
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denote the aggregate state of the economy, consisting of all realized productivity and demand shocks,

as well as the cross-sectional profile of signals, where ωi ∈ Ωi denotes the component of the state

observable to firms in industry i. To ensure that the planner is subject to the same information and

quantity adjustment frictions as the firms, we impose the following measurability constraint on the

quantities: if j is a rigid input of industry i (so that j ∈ Ri), then xij can be contingent on ωi, but not

on the aggregate state s. We capture this measurability constraint by denoting corresponding input

quantity by xij(ωi). In contrast, if j is a flexible input for firms in industry i (so that j ∈ Fi), then xij

can be contingent on the economy’s aggregate state, in which case we denote this quantity by xij(s).

Finally, note that since labor supply, labor demand, and consumption are not subject to informational

frictions, they can depend on the economy’s aggregate state. We therefore denote the corresponding

quantities by li(s), L(s), and ci(s), respectively.

Using the above notation, we can now express the planner’s problem as follows. The planner

maximizes the household’s expected utility∫
s∈S

(
n∑
i=1

βi log ci(s)− χ
L1+1/η(s)

1 + 1/η

)
dG(s) (A.11)

subject to the following resource and technology constraints:

yi(s) = ci(s) +
∑
j:i∈Rj

xji(ωj) +
∑
j:i∈Fj

xji(s) (A.12)

L(s) =

n∑
i=1

li(s) (A.13)

yi(s) = ziFi(li(s), {xij(s)}j∈Fi , {xij(ωi)}j∈Ri), , (A.14)

where G(s) denotes the probability distribution of the economy’s aggregate state and Fi denotes the

production function of firms in industry i and is given by (1). The Lagrangian corresponding to the

above problem is thus given by

L =

∫
s∈S

(
n∑
i=1

βi log ci(s)− χ
L1+1/η(s)

1 + 1/η

)
dG(s) +

∫
s∈S

ν0(s)

(
L(s)−

n∑
i=1

li(s)

)
dG(s)

+

n∑
i=1

∫
s∈S

ψi(s)
(
yi(s)− ci(s)−

∑
j:i∈Rj

xji(ωj)−
∑
j:i∈Fj

xji(s)
)

dG(s)

+

n∑
i=1

∫
s∈S

νi(s)
(
ziFi(li(s), {xij(s)}j∈Fi , {xij(ωi)}j∈Ri)− yi(s)

)
dG(s).

where νi(s)dG(s) is the Lagrange multiplier corresponding to good i’s resource constraint (A.12),

ν0(s)dG(s) is the multiplier corresponding to labor resource constraint (A.13), and ψi(s)dG(s) is the

multiplier for industry i’s technology constraint, (A.14). Therefore, the first-order conditions with

respect to ci(s), L(s), and yi(s) are given by

βi/ci(s) = ψi(s), χL1/η(s) = ν0(s), ψi(s) = νi(s), (A.15)
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respectively, whereas the first-order conditions with respect to li(s) and xij(s) for j ∈ Fi are given by

ν0(s) = νi(s)zi
∂Fi
∂li

(s) = αiνi(s)yi(s)/li(s) (A.16)

ψj(s) = νi(s)zi
∂Fi
∂xij

(s) = aijνi(s)yi(s)/xij(s), (A.17)

respectively. Finally, the first-order condition with respect to the rigid input xij(ωi) is given by∫
s∈Ωi

ψj(s)dG(s) = aij

∫
s∈Ωi

νi(s)yi(s)/xij(ωi)dG(s),

where Ωi ⊆ S denotes the subset of states with corresponding element ωi. Note that dividing both

sides of the above equation by G(Ωi) leads to

Ei[ψj(s)] = aijEi[νi(s)yi(s)]/xij(ωi). (A.18)

Plugging in the expressions for ci(s), xij(s), and xij(ωi) in (A.15), (A.17), and (A.18) into the resource

constraint (A.12) implies that

ψi(s)yi(s) = βi +
∑
j:i∈Rj

ajiψi(s)Ej [ψj(s)yj(s)]/Ej [ψi(s)] +
∑
j:i∈Fj

ajiψj(s)yj(s), (A.19)

where we are using the fact that νi(s) = ψi(s), established in (A.15). Next, note that plugging the same

expressions and the expression for li(s) in (A.16) into the technology constraint in (A.14) leads to

yi(s) = zi (ψi(s)yi(s)/ν0(s))αi
∏
j∈Fi

(ψi(s)yi(s)/ψj(s))
aij
∏
j∈Ri

(Ei[ψi(s)yi(s)]/Ei[ψj(s)])aij . (A.20)

Finally, plugging the expressions for L(s) and li(s) in (A.15) and (A.16) into the resource constraint for

labor (A.13) implies that

n∑
i=1

αiψi(s)yi(s) = v1+η
0 (s)/χη. (A.21)

The proof is complete once we verify that equations (A.19)–(A.21) coincide with equilibrium conditions

(10)–(13). We do so by a simple change of variables. Let

λi(s) = ψi(s)yi(s), pi(s) = ψi(s)m(s), w(s) = ν0(s)m(s),

where m(s) is an arbitrary function. Using this change of variables, it is then immediate to verify that,

as long as the downward nominal wage rigidity constraint does not bind (that isw > w̄), then equations

(A.19)–(A.21) reduce to (10)–(13).

An Auxiliary Result

We now state and prove a result that provides an exact expression for aggregate output in terms of

model primitives and the nominal wage when there is only a single rigid industry. We will use this

result in proving Propositions 3 and 4.
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Proposition A.1. If r is the only industry that is subject to frictions and Assumption 1 is satisfied, then,

logC =

n∑
j=1

λss
j log zj − log(w/m)− λss

r

∑
j∈Rr

arjKr

(
log(w/m)−

n∑
s=1

`js log zs

)
, (A.22)

where Kr(x) = logEr[exp(x)]− x.

Proof. We first show that λr = λss
r . Since industry r is the only industry subject to informational

frictions, equation (11) implies that

λi = βi +

n∑
j=1

ajiλj + ari

(
Er[λr]

pi/m

Er[pi/m]
− λr

)
I{i∈Rr}. (A.23)

Taking expectations from both sides of the above equation with respect to the information set of

industry r implies that Er[λi] = βi +
∑n

j=1 ajiEr[λj ] for all i. Solving this system of equations for Er[λi]
implies that Er[λi] = λss

i , where is the steady-state Domar weight of industry i. Consequently, we can

rewrite equation (A.23) as follows:

λi = βi +

n∑
j=1

ajiλj + ari

(
λss
r

pi/m

Er[pi/m]
− λr

)
I{i∈Rr},

Furthermore, note that the steady-state Domar weights satisfy the following system of equations: λss
i =

βi +
∑n

j=1 ajiλ
ss
j for all i. Subtracting this equation from the previous one therefore implies that

∆i =

n∑
j=1

aji∆j + ari

(
λss
r

pi/m

Er[pi/m]
− λr

)
I{i∈Rr}.

where ∆i = λi − λss
i . Solving the above system of equations for ∆i implies that

∆i =

n∑
j=1

`jiarj

(
λss
r

pj/m

Er[pj/m]
− λr

)
I{j∈Rr}, (A.24)

where `ji denotes the (j, i) element of the economy’s Leontief inverse L = (I−A)−1. Setting i = r in the

above equation and using Assumption 1 then implies that the right-hand side of the above equation is

equal to zero, thus establishing that λr = λss
r .

Next, note that since industry r is the only industry that is subject to frictions, equation (10) implies

that the (log) nominal price of industry i 6= r is given by

log pi = − log zi + αi logw +

n∑
j=1

aij log pj .

Let p̃ ∈ Rn−1 denote the vector of nominal prices for all industries i 6= r and let Ã ∈ R(n−1)×(n−1) denote

the sub-block of the input-output matrix A corresponding to all industries except for r. Writing the

above equation in vector form therefore implies that log p̃ = − log z̃+ α̃ logw+ Ã log p̃+ ãr log pr, where

α̃ and z̃ denote the vectors of labor shares and productivity shocks for all i 6= r and ãr ∈ Rn−1 is a vector

with elements ais for all i 6= r. Consequently,

log p̃ = L̃α̃ logw − L̃ log z̃ + L̃ãr log pr,
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where L̃ = (I−Ã)−1. Under Assumption 1, the elements of L̃ can be expressed in terms of the elements

of the economy’s Leontief inverse L. In particular, ˜̀
ij = `ij − `ir`rj for all i, j 6= r. Hence,

log pi = logw
∑
j 6=r

(`ij − `ir`rj)αj −
∑
j 6=r

(`ij − `ir`rj) log zj + log pr
∑
j 6=r

(`ij − `ir`rj)ajr

for all i 6= r. Consequently,

log pi = (1− `ir) logw + `ir log pr −
∑
j 6=r

(`ij − `ir`rj) log zj (A.25)

for all i 6= r, where we are using the fact that
∑n

j=1 `ijαj = 1 for all i and `rr = 1, the latter of which

is a consequence of Assumption 1. The above equation expresses all prices in terms of the price of

industry r and the nominal wage. With the above in hand, we can therefore obtain an expression

for aggregate output in terms of the nominal price of industry r. In particular, the fact that logC =

logm−
∑n

i=1 βi log pi together with (A.25) implies that

logC = log(m/w)− λss
r log(pr/w) +

∑
j 6=r

(λss
j − λss

r `rj) log zj , (A.26)

where λss
j denotes the steady-state Domar weight of industry j. Therefore, to obtain the expression for

aggregate output is sufficient to characterize log pr. To this end, note that setting i = r in equation (10)

implies that

log pr = − log zr + αr logw +
∑
j∈Fr

arj log pj + logm
∑
j∈Rr

arj +
∑
j∈Rr

arj logEr[pj/m],

where we are also using the fact that λr = λss
r . Replacing for log pj from (A.25) for all j 6= r into the

above equation and using the implication of Assumption 1 that arj`jr = 0 for all j ∈ Fr implies that

log(pr/m) = − log zr +

αr +
∑
j∈Fr

arj

 log(w/m)−
∑
j∈Fr

n∑
s=1

arj`js log zs

+
∑
j∈Rr

arj logEr

[
exp

(
log(w/m)−

n∑
s=1

`js log zs

)]
.

(A.27)

Plugging the above into the expression for logC in (A.26) and using Assumption 1 then establishes

(A.22).

Proof of Proposition 3

Proof of part (a) Recall from the proof of Proposition A.1 that ∆i = λi−λss
i satisfies (A.24). As a result,

n∑
i=1

αiλi =

n∑
i=1

αi(λ
ss
i + ∆i) = 1 + λss

r

∑
j∈Rr

arj

(
pj/m

Er[pj/m]
− 1

)
,

where we are using
∑n

i=1 αiλ
ss
i =

∑n
i=1 αi`ji = 1 and the fact that λr = λss

r , established in the proof of

Proposition A.1. Therefore, to a first-order approximation

log

(
n∑
i=1

αiλi

)
= λss

r

∑
j∈Rr

arj

(
pj/m

Er[pj/m]
− 1

)
= λss

r

∑
j∈Rr

arj (log(pj/m)− Er[log(pj/m)]) .
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Combining the above with equation (13), together with the assumption that the downward constraint

on nominal wage does not bind, implies that

log(w/m) =
η

1 + η
logχ+

1

1 + η
λss
r

∑
j∈Rr

arj

(
log(pj/m)− Er[log(pj/m)]

)
. (A.28)

Next, recall from the proof of Proposition A.1 that log(pr/m) is given by (A.27). Thus, to a first-order

approximation,

log(pr/m) = − log zr +

αr +
∑
j∈Fr

arj

 log(w/m)−
∑
j∈Fr

n∑
s=1

arj`js log zs

+
∑
j∈Rr

arjEr

[
log(w/m)−

n∑
s=1

`js log zs

]
.

Plugging this back into the expression for log pi in (A.25) we get

log(pi/m) = log(w/m)−
n∑
j=1

`ij log zj − `ir

∑
j∈Rr

arj

( log(w/m)− Er[log(w/m)]
)

− `ir
∑
j∈Rr

arj

n∑
p=1

`jpEr ([log zp]− log zp)

for all i 6= r. Taking expectations from both sides of the above equation and subtracting it from both

sides therefore implies that∑
i∈Rr

ari(log(pi/m)− Er[log(pi/m)]) =
∑
i∈Rr

ari

(
log(w/m)− Er[log(w/m)]

)
−
∑
i∈Rr

ari

n∑
j=1

`ij(log zj − Er[log zj ]),

Note that (A.28) implies that Er[log(w/m)] = η
1+η logχ. Therefore, we can rewrite the above equation as

follows: ∑
i∈Rr

ari(log(pi/m)− Er[log(pi/m)]) =
∑
i∈Rr

ari

(
log(w/m)− 1

1 + 1/η
logχ

)
−
∑
i∈Rr

n∑
j=1

ari`ij(log zj − Er[log zj ]),

Combining the above equation with (A.28) and solving for log(w/m) we obtain,

log(w/m) =
1

1 + 1/η
logχ− λss

r

1 + η − λss
r

∑
i∈Rr ari

∑
i∈Rr

n∑
j=1

ari`ij(log zj − Er[log zj ]).

Now, plugging the above expression into the expression for logC in (A.22) and performing a first-order

approximation establishes (14).
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Proof of part (b) Recall from Proposition A.1 that log aggregate output is given by (A.22).

Furthermore, note that by Lemma 1, when labor supply is fully elastic and the downward constraint

on the nominal wage does not bind, log(w/m) = logχ. Therefore, the expression in (A.22) simplifies as

follows:

logC =

n∑
j=1

λss
j log zj − logχ− λss

r

∑
j∈Rr

arjKr

(
−

n∑
s=1

`js log zs

)
,

where we are using the fact that Kr(x + a) = Kr(x) for any constant a. Noting that logC∗ =∑n
j=1 λ

ss
j log zj − logχ then establishes (15).

Proof of Proposition 4

Recall from Proposition A.1 that log aggregate output is given by (A.22). Therefore, when the downward

constraint on the nominal wage binds (that is, w = w̄) and the absence of productivity shocks, the

expression for log aggregate output reduces to

logC = logm− log w̄ −Kr (− logm)λss
r

∑
j∈Rr

arj ,

which coincides with the expression in (19). Also note that (20) follows immediately from the

observation that logP = logm− logC.

Proof of Propositions 5

Let Eω[·] denote the expectation operator conditional on the public signal, ω. Taking conditional

expectations from both sides of (11) implies that Eω[λi] = βi +
∑n

j=1 ajiEω[λj ] for all i. On the other

hand, note that the steady-state Domar weights of all industries also satisfy the following system of

equations: λss
i = βi +

∑n
j=1 ajiλ

ss
j . Comparing the two equations then implies that

Eω[λi] = λss
i for all i.

Plugging this into equation (10) and taking logarithms from both sides then implies that

log(pi/m) = − log zi + αi log(w/m) +
∑
j∈Fi

aij log(pj/m) +
∑
j∈Ri

aij (logEω[pj/m] + log(λi/λ
ss
i ))

To simplify notation, define p̂i = pi/m and ŵ = w/m. Writing the above equation in matrix form, we

get

log p̂ = − log z + α log ŵ + Af log p̂+ Ar logEω[p̂] + diag(Ar1) log(λ/λss),

where Af is the matrix whose (i, j) element is equal to aij if j ∈ Fi and is equal to zero otherwise and

Ar = A−Af . Consequently,

log p̂ = ξ + Lfα log ŵ + LfAr logEω[p̂], (A.29)
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where Lf = (I−Af )−1 and

ξ = −Lf log z + Lf diag(Ar1) log(λ/λss). (A.30)

Exponentiating both sides of (A.29), taking conditional expectations, and then taking logarithms

implies that

logEω[p̂] = logEω[eξ] + Lfα log ŵ + LfAr logEω[p̂],

where note that since η → ∞, Lemma 1 implies that ŵ = w/m = χ, which is deterministic and hence

is measurable with the respect to the firms’ common information structure. Solving for logEω[p̂] and

using the observation that (I− LfAr)
−1 = (I− Lf (A−Af ))−1 = L(I−Af ), we can rewrite the above

equation as follows:

logEω[p̂] = L(I−Af ) logEω[eξ] + 1 logχ,

Plugging the above expression back into (A.29) leads to the following expression for log prices in terms

of vector ξ defined in (A.30):

log p̂ = 1 logχ+ ξ + LAr logEω[eξ].

Combining this equation with the observation that logC = logm −
∑n

i=1 βi log pi we get the following

expression for log aggregate output in terms of vector ξ:

logC = − logχ− λss′(I−A)ξ − λss′Ar logEω[eξ],

which to a second-order approximation is equal to

logC = − logχ− λss′(I−A)ξ − λss′Ar

(
Eω[ξ] +

1

2
varω(ξ)

)
. (A.31)

To express log output in (A.31) in terms of model primitives, we next need to solve for ξ and its first two

conditional moments. We thus turn to (11), which can be rewritten as follows:

λ = β + A′fλ+ diag(A′rλ
ss)

p̂

Eω[p̂]
.

Solving for the vector of Domar weights and using (A.29), we get

λ = L′fβ + L′f diag(A′rλ
ss)

eξ

Eω[eξ]
= λss + L′f diag(A′rλ

ss)

(
eξ

Eω[eξ]
− 1

)
,

and as a result,

λ/λss = 1 + diag−1(λss)L′f diag(A′rλ
ss)
(
eξ−logEω[eξ] − 1

)
. (A.32)

Therefore, to a second-order approximation,

λ/λss = 1 + H′
(
ξ − logEω[eξ] +

1

2
diag

(
(ξ − logEω[eξ])(ξ − logEω[eξ])′

))
= 1 + H′

(
ξ − Eω[ξ]− 1

2
varω(ξ) +

1

2
diag

(
(ξ − Eω[ξ])(ξ − Eω[ξ])′

))
,
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where H′ = diag−1(λss)L′f diag(A′rλ
ss). Plugging the above expression into equation (A.30) and

performing a second-order approximation, we get

ξ = −Lf log z + Lf diag(Ar1)H′
(
ξ − Eω[ξ]− 1

2
varω(ξ) +

1

2
diag((ξ − Eω[ξ])(ξ − Eω[ξ])′)

)
− 1

2
Lf diag(Ar1) diag(H′(ξ − Eω[ξ])(ξ − Eω[ξ])′H).

(A.33)

Taking conditional expectations from both sides of the above equation implies that

Eω[ξ] = −LfEω[log z]− 1

2
Lf diag(Ar1) diag(H′varω(ξ)H), (A.34)

where varω(ξ) denotes the variance-covariance matrix of ξ conditional on the common signal ω.

Subtracting the above equation from (A.33) leads to

ξ − Eω[ξ] = −Lf (log z − Eω[log z])

+ Lf diag(Ar1)H′
(
ξ − Eω[ξ]− 1

2
varω(ξ) +

1

2
diag((ξ − Eω[ξ])(ξ − Eω[ξ])′)

)
− 1

2
Lf diag(Ar1) diag(H′(ξ − Eω[ξ])(ξ − Eω[ξ])′H) +

1

2
Lf diag(Ar1) diag(H′varω(ξ)H).

As a result,

varω(ξ) = varω(Lf log z) + Lf diag(Ar1)H′varω(ξ)Hdiag(Ar1)L′f .

Solving for varω(ξ) from the above equation, we get

varω(ξ) =

∞∑
k=0

(Lf diag(Ar1)H′)kvarω(Lf log z)(H diag(Ar1)L′f )k. (A.35)

Plugging the expressions in (A.34) and (A.35) into (A.31) and taking conditional expectations then

implies that

Eω[logC] = Eω[logC∗] +
1

2
λss′ diag(Ar1) diag(H′varω(ξ)H)− 1

2
λss′Arvarω(ξ).

Taking unconditional expectations from both side of the above equation and letting Q = E[varω(ξ)]

then establishes the result.

Proof of Propositions 6

Recall from the proof of Proposition 5 that log p̂i = log pi − logm satisfies equation (A.29), where vector

ξ is given by (A.30). In the absence of productivity shocks, and when the downward constraint on the

nominal wage binds, this implies that

log p̂ = θ + Lfα log w̄ + LfAr logEω[p̂],

where

θ = −Lfα logm+ Lf diag(Ar1) log(λ/λss). (A.36)
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Exponentiating both sides of the above equation, taking conditional expectations, and then taking

logarithms implies that

logEω[p̂] = logEω[eθ] + Lfα log w̄ + LfAr logEω[p̂].

Solving for logEω[p̂] and using the observation that (I − LfAr)
−1 = (I − Lf (A −Af ))−1 = L(I −Af ),

we can rewrite the above equation as follows:

logEω[p̂] = L(I−Af ) logEω[eθ] + 1 log w̄.

Plugging the above back into the expression for log p̂ leads to the following expression for log prices:

log p̂ = 1 log w̄ + θ + LAr logEω[eθ].

Combining this equation with the observation that logC = −
∑n

i=1 βi log p̂i we get the following

expression for log aggregate output:

logC = − log w̄ − λss′(I−A)θ − λss′Ar logEω[eθ].

Next, note that steps identical to those in the proof of Proposition 5 imply that we can write the ratio of

Domar weights to their steady-state values as follows:

λ/λss = 1 + diag−1(λss)L′f diag(A′rλ
ss)
(
eθ−logEω[eθ] − 1

)
,

and hence, to a second-order approximation,

λ/λss = 1 + H′
(
θ − Eω[θ]− 1

2
varω(θ) +

1

2
diag

(
(θ − Eω[θ])(θ − Eω[θ])′

))
,

Plugging the above expression into equation (A.36) and performing a second-order approximation, we

get

θ = −Lfα logm+ Lf diag(Ar1)H′
(
θ − Eω[θ]− 1

2
varω(θ) +

1

2
diag((θ − Eω[θ])(θ − Eω[θ])′)

)
− 1

2
Lf diag(Ar1) diag(H′(θ − Eω[θ])(θ − Eω[θ])′H).

(A.37)

Taking conditional expectations from both sides of the above equation implies that

Eω[θ] = −LfαEω[logm]− 1

2
Lf diag(Ar1) diag(H′varω(θ)H). (A.38)

Subtracting the above equation from (A.37) leads to

θ − Eω[θ] = −Lfα(logm− Eω[logm])

+ Lf diag(Ar1)H′
(
θ − Eω[θ]− 1

2
varω(θ) +

1

2
diag((θ − Eω[θ])(θ − Eω[θ])′)

)
− 1

2
Lf diag(Ar1) diag(H′(θ − Eω[θ])(θ − Eω[θ])′H) +

1

2
Lf diag(Ar1) diag(H′varω(θ)H).
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As a result,

varω(θ) = varω(Lfα logm) + Lf diag(Ar1)H′varω(θ)Hdiag(Ar1)L′f .

Solving for varω(θ) from the above equation, we get

varω(θ) =

∞∑
k=0

(Lf diag(Ar1)H′)kvarω(Lfα logm)(H diag(Ar1)L′f )k. (A.39)

Plugging the expressions in (A.38) and (A.39) into the expression for aggregate output and taking

conditional expectations then implies that

Eω[logC] = Eω[logC∗] +
1

2
λss′ diag(Ar1) diag(H′varω(θ)H)− 1

2
λss′Arvarω(θ).

Taking unconditional expectations from both side then establishes the result.

Proof of Proposition 7

We consider a more general vertical production network with industries 1 through n arranged on a

chain, with industry 1 as the final good producer. We then specialize this economy to the case of n = 3

in Proposition 7.

Recall from Proposition 1 that nominal prices and Domar weights satisfy the system of equations

in (10) and (11). Applying these equations to the vertical production network economy, we obtain

pi =
1

zi
w1−ai

(
m
Ei[pi+1/m]

Ei[λi]/λi

)ai
for 1 ≤ i ≤ n, (A.40)

λi+1 = aiEi[λi]
pi+1/m

Ei[pi+1/m]
for 1 ≤ i ≤ n− 1 (A.41)

with the initial conditions that λ1 = 1 and the convention that an = 0. Solving for Ei[λi]/Ei[pi+1/m]

from (A.41) and plugging it back into (A.40) implies that pi = 1
zi
aaii (λi/λi+1)ai w1−aipaii+1. Hence,

log pi = ai(ϕi − ϕi+1)− log zi + ai log pi+1 + (1− ai) logw,

for 1 ≤ i ≤ n, where ϕi = log λi − log λss
i and we are using the fact that λss

i+1 = aiλ
ss
i . Solving the above

recursion, we can express nominal prices in terms of Domar weights:

log pi = logw −
n∑
j=i

(aiai+1 . . . aj−1) log zj +

n−1∑
j=i

(aiai+1 . . . aj)(ϕj − ϕj+1). (A.42)

Next, note that, to a first-order approximation, (A.41) can be expressed as

log λi+1 = log ai + log(pi+1/m) + Ei[log λi]− Ei[log pi+1/m],

and as a result,

ϕi+1 = Ei[ϕi] + log(pi+1/m)− Ei[log pi+1/m]. (A.43)
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We now have a system of linear expectations (A.42) and (A.43) that fully pins down equilibrium nominal

prices and Domar weights in terms of the productivity shocks, nominal aggregate demand, and the

nominal wage.

Specializing these equations to the case of n = 3 and shutting off all productivity shocks, it is

immediate that log p3 = logw, and hence, we get the following equations:

log p2 = logw + a2(ϕ2 − ϕ3)

ϕ2 = log p2 − E1[log p2]− logm+ E1[logm]

ϕ3 = E2[ϕ2] + log(w/m)− E2[log(w/m)].

Replacing for ϕ3 into the expression for log p2, we get

log p2 = a2(ϕ2 − E2[ϕ2]) +Q+ logm, (A.44)

where

Q = (1− a2) log(w/m) + a2E2[log(w/m)]. (A.45)

Consequently, we get the following equation for ϕ2:

ϕ2 = a2(ϕ2 − E2[ϕ2])− a2(E1[ϕ2]− E1E2[ϕ2]) +Q− E1[Q]

Noting that E1[ϕ2] = 0, we get

ϕ2 = − a2

1− a2
E2[ϕ2] +

a2

1− a2
E1E2[ϕ2] +

1

1− a2
(Q− E1[Q]). (A.46)

Taking expectations with respect to the information set of firms in industry 2 from both sides of (A.46)

and solving for E2[ϕ2] implies that

E2[ϕ2] = a2E2E1E2[ϕ2] + E2[Q]− E2E1[Q].

We can thus solve for E2[ϕ2] in terms of the infinite regress of expectations as follows:

E2[ϕ2] =

∞∑
s=0

as2(E2E1)s(E2[Q]− E2E1[Q]) =

∞∑
s=0

as2(E2E1)sE2[Q]−
∞∑
s=0

as2(E2E1)s+1[Q].

Plugging the above expression into (A.46), we get

ϕ2 =
1

1− a2

( ∞∑
s=0

as+1
2 (E1E2)s+1[Q]−

∞∑
s=0

as+1
2 (E2E1)sE2[Q] +

∞∑
s=0

as2(E2E1)s[Q]−
∞∑
s=0

as2E1(E2E1)s[Q]

)
.

Hence, combining this equation with (A.44) and using the observations that log p1 = a1(ϕ1 − ϕ2) +

a1 log p2 + (1− a1) logw and ϕ1 = 0, we get the following expression for log p1:

log(p1/m) = a1

( ∞∑
s=0

as2E1(E2E1)s[Q]−
∞∑
s=0

as+1
2 (E1E2)s+1[Q]

)
+ (1− a1) log(w/m).
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Rearranging terms, we get

log(p1/m) = a1

∞∑
s=0

as2(E1E2)sE1

[
Q− a2E2[Q]

]
+ (1− a1) log(w/m).

On the other hand, note that (A.45) implies that Q− a2E2[Q] = (1− a2) log(w/m). Therefore,

log(p1/m) = a1(1− a2)

∞∑
s=0

as2(E1E2)sE1[log(w/m)] + (1− a1) log(w/m).

By Lemma 1, the assumption that m < w̄/χ implies that w = w̄, in which case the above equation

immediately reduces to (28). Furthermore, noting that logm = log(PC) then establishes (27).
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