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This appendix contains the proofs and derivations omitted from the main body of the paper.
Section A derives Equation (11) in the paper. Section B provides the proof of Theorem 4.

A CES Production Technologies

In what follows, we derive the expression in Equation (11) in the paper. Suppose that the production
technology of firms in industry i is given by Equation (10) in the paper. The first-order conditions of
firms in industry ¢ are therefore given by

li = a;piyi/w (A.1)
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where we are using the fact that ; + >77_, a;; = 1 for all i. Plugging the above expressions back into
the production function of firms in industry 7 implies that

;> (1—ai)/(1=0)
pizi = w (1 o Zaikp,lg_‘”> )
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Taking logarithms from both sides of the above equation leads to the following system of equations

O'Z'—l ]_—Oéi
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log(pi/w) = —€; + log ( Zaik(pk/w)l ) .
k=1

We make two observations. First, the above system of equations immediately implies that when ¢; = 0
for all industries 4, then all relative prices coincide with another, that is, p;, = w for all <. Second,
differentiating both sides of the above equation with respect to ¢; and evaluating it at e = 0 leads to
dpi/dej = —lg—j + D5 awdpy/ej, where recall that p; = log(p;/w) is the log relative price of good
i and T denotes the indicator function. Rewriting the previous equation in matrix form, we obtain
dp/de; = —e; + Adp/de;, where e; is the j-th unit vector. Consequently, dp/de; = —(I — A)~le;, which
in turn can be rewritten as

dp;

. A3
dﬁj e=0 ’ ( )

*Faculty of Economics, University of Cambridge, The Alan Turing Institute, and CEPR, vmpmdc2@cam.ac.uk.
TKellogg School of Management, Northwestern University, alirezat@kellogg.northwestern.edu.


mailto:vmpmdc2@cam.ac.uk.
mailto:alirezat@kellogg.northwestern.edu
https://doi.org/10.1146/annurev-economics-080218-030212

The above equation therefore illustrates how shocks to industry j change the relative prices of all other
industries up to a first-order approximation.

Next, recall that the market-clearing condition for good i is given by y; = ¢; + >~ ;. Multiplying
both sides by p; and dividing by GDP implies that

Ai=Bi+ > whidk,

k=1
where \; = p;y;/ GDP is the Domar weight of industry i and wy; = p;zk;/pryx. Note that in deriving the
above equation, we are using the fact that the household’s first-order condition requires that p;¢; =
Bi; GDP. Differentiating both sides of the above equation with respect to ¢; implies that
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On the other hand, Equation (A.2) implies that wy; = (1 — ag)app; %/ (>0, agrpr°*). Hence,

differentiating both sides of this expression, evaluating them at e = 0, and plugging the resulting
expression back into Equation (A.4) implies that

n dp; n dp,
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Hence, using Equation (A.3), we obtain

d Za‘k‘l - = Z Ok — 1)akz)\k (
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Multiplying both sides of the above equation by ¢;;, summing over all i, and noting that L = (I — A)~!

leads to

A\ —
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On the other hand, the fact that A\; = p;y;/ GDP implies that

dlogy; dpZ 1 d)\; +i@
de; N dej )\ dej TN dej’

where the second equality is a consequence of Equation (A.3). Plugging for d\;/de; from Equation

I~ Z aksfsi) . (A.5)
s=1

(A.5) into the above equation leads to Equation (11). O

B Proof of Theorem 4

Consider two economies with symmetric circulant input-output matrices A and A and suppose the

latter is more interconnected than the former, that is, there exists ay € [0, 1] such that
A=7A+(1-7)(1-a),

where J = (1/n)11’ is a matrix with all entries equal to 1/n. We first prove statement (b) of the
theorem by showing that the above transformation can only decrease the volatility of each industry,
i.e., var(log ;) < var(logy;) for all i. We then use this result to establish statement (a).
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Proof of statement (b). Recall from Theorem 1 that the output of industry ¢ satisfies logy; =

> i, lije;. Under our assumption that all microeconomic shocks are i.i.d. with a common variance

0? < oo, it is immediate that var(logy;) = Zj 1 Ef] Therefore, sectoral log outputs are more

Volatile in the less interconnected economy (that is, var(log ;) < var(logy;) for all ¢) if and only if

ZJ N J < Z ¢?. for alli. On the other hand the assumption that input-output matrices A and A are

=1 "3
symmetric and circulant implies that 3, /2, = (1/n) 37", 2, = (1/n) trace(L'L) = (1/n) trace(L”).
Hence, it is sufficient to show that
d 3
o trace(L’) =20 (B.1)

To this end, first note that, by definition, L= (I- A)_l. Therefore, differentiating f,2 with respect to v
leads to

dL’ Jdy = L*(dA/d)L + L(dA/dr)L?
On the other hand, dA/dy = A — (1 — «)J. Consequently,
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L S TN U 7\ I (1 — a)(L?JL + LJL?)
d"}/ v=1
=2(L3 - L?) — 2(1 —a)a™?,

where the second equality uses LA = AL = L — I and the fact that the row and column sums of L are
equalto 1/a,i.e., L1 =L'1 = (1/a)1. Hence,

d ~
& trace(LQ) = = 2trace(L3) — 2trace(L?) — 2(1 — a)/a3.
=

Note that the trace of a matrix is equal to the sum of its eigenvalues. Furthermore, the fact that L =
(I — A)~!implies that A\ (L) = (1 — M\x(A))~!, where \;(L) and )\ (A) are the k-th largest eigenvalues of
L and A, respectively. Consequently,
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The second equality above is a consequence of the fact that the row sums of matrix A are all equal to
1 — a, and hence, by the Perron-Frobenius theorem, its largest eigenvalue is given by A\;(A) = 1 — a.
Multiplying and dividing the right-hand side of the above equation by » — 1 and using the fact that the
function g(z) = z/(1 — z)? is convex over the interval (—1, 1) implies that

d 72 2> k2 Ar(A)
- trace(L") N ﬁ S A (B.2)

Next, note that ) ;'_, A\;(A) = trace(A) — A1 (A) = nay; — (1 —«) > 0, where we are using the assumption

that a;; > 1/n for all i. This implies that the numerator of the fraction on the right-hand side of (B.2)
is nonnegative. Furthermore, the fact that A\;(A) < A\;(A) = 1 — « guarantees that the denominator of
the fraction on the right-hand side of (B.2) is strictly positive. Taken together, these two observations
establish inequality (B.1). O



Proof of statement (a). We now use statement (b) to establish statement (a) of the theorem. Recall
from the previous part that the variance-covariance matrix of sectoral log outputs is given by o2LL. On
the other hand, the assumption that the input-output matrix A is symmetric and circulant guarantees
that all row and column sums of L are equal to 1/«. Therefore,

n
Z cov(log g;,log y;) = 1'LL1 = njo’.
ij=1

Furthermore, the assumption that the economy’s input-output matrix is circulant implies that all
industries are equally volatile, that is, var(log 7;) = var(log 7 ) for all i. Hence,

Z cov(log §i;, log §;) = n(1/a* — var(log 1))
i#]
Hence, the average pairwise correlation between sectoral log outputs is given by

1
n — 1) var(log 91 )

1 ) Zcorr(loggji,logﬂj) = ( (1/a® — var(log §i1)).
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Identical derivations for the less interconnected economy with input-output matrix A imply that

1
(n — 1) var(logy;)

p= (1/a® — var(log y1)).

Comparing the right-hand sides of the above two equations completes the proof: by statement (b) of
the theorem, var(logy1) > var(log 1), which in turn implies that p < p. O



	CES Production Technologies
	Proof of Theorem 4

