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THIS SUPPLEMENT contains two parts. Appendix B presents the proofs and derivations
omitted from the main body of the paper. Appendix C contains robustness checks for the
quantitative analysis in Section 5 of the paper.

APPENDIX B: PROOFS AND DERIVATIONS

This Appendix contains the proofs and derivations omitted from the main body of the
paper. Throughout, with some abuse of notation, we write diag(x) to denote a diagonal
matrix whose entries are equal to vector x, while we use diag(X) to denote a (column)
vector whose elements are equal to the diagonal elements of matrix X.

Proof of Proposition 2

We start by establishing equation (16). As a first observation, note that the optimality
conditions of the representative household’s problem are given by

V ′(L(s)
) = μ(s)w(s)� (B.1)

U ′(C(s)
) ∂C
∂ci

(s) = μ(s)pi(ωi) for all i� (B.2)

where μ(s) is the Lagrange multiplier corresponding to the household’s budget con-
straint. As a result,

V ′(L(s)
) = w(s)

pi(ωi)
U ′(C(s)

) ∂C
∂ci

(s)� (B.3)

Multiplying both sides of the above equation by pi(ωi)ci(s) and summing over all i, we
obtain

w(s) =m(s)
V ′(L(s)

)
C(s)U ′(C(s)

) � (B.4)

where we are using the assumption that the consumption aggregator C(·) is a homoge-
nous function of degree 1 and the fact that

∑n

i=1pi(ωi)ci(s) =m(s). Next, note that cost
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minimization by firms in industry i implies that1

mci(s) =w(s)
(
zi · ∂Fi/∂li(s)

)−1
� (B.5)

Replacing w(s) from (B.4) into the above equation establishes (16).
We next show that if a feasible allocation is implementable as a sticky-price equilibrium,

it must satisfy (13). Consider the price-setting problem of firm k in industry i, which sets
its nominal price to maximize the expected value of its real profits:

max
pik(ωik)

Eik

[
U ′(C(s)

)
P(s)

(
(1 − τi)pik(ωik)yik(s) − mci(s)yik(s)

)]
� (B.6)

s�t� yik(s) = (
pik(ωik)/pi(ωi)

)−θiyi(s)� (B.7)

In the above problem, U ′(C(s)) is the representative household’s marginal utility of con-
sumption and P(s) is the nominal price of the consumption good bundle. Consequently,
the nominal price set by the firm satisfies the following first-order condition:

Eik

[
U ′(C(s)

)∂C
∂ci

(s)yi(s)
(
pik(ωik)
pi(ωi)

)1−θi(
(1 − τi)

(
θi − 1
θi

)
− mci(s)
pik(ωik)

)]
= 0�

where we are using the fact that ∂C/∂ci(s) = pi(ωi)/P(s).2 Using equation (B.7) to ex-
press pik(ωik)/pi(ωi) in terms of quantities then implies that

pik(ωik) =
[

(1 − τi)
(
θi − 1
θi

)]−1
Eik

[
vik(s) mci(s)

]
Eik

[
vik(s)

] � (B.8)

where vik(s) is given by (17). Consequently, the nominal price set by the firm satisfies

pik(ωik) = 1
χsiεik(s)

mci(s)� (B.9)

where χsi = (1 − τi)(θi − 1)/θi is a wedge that arises due to government taxes/subsidies
and monopolistic markups, whereas εik(s) is given by (15) and represents a wedge that
arises due to the presence of nominal rigidities. Combining (B.9) with (B.3) and (B.7), we
obtain

V ′(L(s)
) = χsiεik(s)U ′(C(s)

) ∂C
∂ci

(s)
w(s)

mci(s)

(
yik(s)
yi(s)

)−1/θi

�

Replacing for mci(s) from (B.5) into the above equation then establishes (13).

1The assumption that labor is an essential input in the production technology of all goods guarantees that
∂Fi/∂li(s) > 0 for all i. Furthermore, note that the realized marginal cost of all firms in the same industry are
identical, that is, mcik(s) = mci(s) for all s ∈ S and all firms k in industry i. As a result, ∂Fi/∂lik(s) is the same
for all firms k in industry i. We therefore drop the firm index k in (B.5).

2This is a consequence of the household’s optimization problem. Specifically, multiplying both sides of (B.2)
by ci(s) and summing over all i implies that μ(s) =U ′(C(s))/P(s), where we are using the assumption that C(·)
is a homogenous function of degree 1. Plugging this back into (B.2) then implies that ∂C/∂ci(s) = pi(ωi)/P(s).
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Finally, to establish (14), recall that the representative household’s first-order optimal-
ity condition requires that (B.2) is satisfied for all i. As a result,

∂C
∂cj

(s) = pj(ωj)
pi(ωi)

∂C
∂ci

(s) = χsiεik(s)
∂C
∂ci

(s)
pj(ωj)
mci(s)

(
yik(s)
yi(s)

)−1/θi

�

for all pairs of industries i and j, where once again we are using (B.7) and (B.9). Further-
more, whenever industry j is an input supplier of industry i, cost minimization by firm k
in industry i implies that

mci(s) = pj(ωj)
(
zi · ∂Fi/∂xij�k(s)

)−1
�

The juxtaposition of the last two equations establishes (14).

Proof of Proposition 1

We establish this result as a special case of Proposition 2. Recall from Definitions 1
and 2 that a flexible-price equilibrium can be cast as a sticky-price equilibrium with an
information structure under which the state s = (z�ω) is measurable with respect to the
information set of all firms. As a result, in any flexible-price equilibrium, the right-hand
side of (16) is measurable with respect to the information set of firm k in industry i, which
in turn implies that Eik[mci(s)] = mci(s). Consequently, (15) implies that εik(s) = 1 for all
k ∈ [0�1], all i ∈ I, and all s ∈ S. Plugging this into (13) and (14) and using the fact that all
firms in the same industry set identical prices—and hence have identical outputs—then
establishes (10) and (11).

Proof of Theorem 1

We prove the necessity claim as the converse claim is straightforward. Suppose there
exists a flexible-price allocation indexed by (χf1� � � � �χ

f
n) that is also implementable as

a sticky-price equilibrium. By Propositions 1 and 2, such an allocation simultaneously
satisfies equations (10)–(11) and (13)–(14). As a result,

χ
f
i = χsiεik(s)

(
yik(s)
yi(s)

)−1/θi

for all states s ∈ S and all firms k ∈ [0�1] in all industries i, where the wedge εik(s) is given
by (15). In any flexible-price allocation, the outputs of all firms in the same industry are
identical, i.e., yik(s) = yi(s) for all k ∈ [0�1]. Therefore,

χ
f
i = χsiεik(s)

for all s ∈ S and all firms k in all industries i. Note that, by assumption, scalars χfi and χsi ,
which are determined by fiscal policy, are invariant to the state s and do not depend on
the firm index k. Therefore, the above equation holds only if εik(s) is also independent of
s and k, that is, εik(s) = εi for all i.

Next, note that (15) guarantees that Eik[vik(s)(εik(s) − 1)] = 0, where vik(s) is given by
(17). Consequently,

(εi − 1)Eik
[
vik(s)

] = 0
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for all i. But since vik(s) > 0 for all s ∈ S in any feasible allocation, it must be the case
that εi = 1 for all i. As a result, χsi = χ

f
i for all i. Furthermore, recall from the proof of

Proposition 2 that, in any sticky-price equilibrium, each firm’s price and marginal cost are
related to one another via (B.9). Therefore,

pik(ωik) = 1

χ
f
i

mci(s)� (B.10)

Equation (B.10) has three implications. First, given that its right-hand side is independent
of k, it implies that all firms within the same industry set the same nominal price. Thus,
we can write pik(ωik) = pi(ωi), with the understanding that pi(ωi) is measurable with
respect to the information set of all firms k in industry i. Second, (B.10) also implies that
the marginal cost of industry i is measurable with respect to the information set of all firms
in that industry. Finally, it establishes that, whenever an allocation can be implemented
as both a sticky- and a flexible-price equilibrium, all firms employ constant markups to
set their nominal prices. Consequently, we can write i’s nominal price as a function of
industry i’s nominal input prices as

pi(ωi) = 1

χ
f
i zi
Ki

(
w(s)�p1(ω1)� � � � �pn(ωn)

)
� (B.11)

where Ki(·) is a homogenous function of degree 1 and represents the cost function of
firms in industry i. Dividing both sides of the above equation by the nominal wage leads
to

pi(ωi)/w(s) = 1

χ
f
i zi
Ki

(
1�p1(ω1)/w(s)� � � � �pn(ωn)/w(s)

)
� (B.12)

We thus obtain a system of n equations and n unknowns that relates all industries’ nominal
prices relative to the nominal wage to productivity shocks (z1� � � � � zn) and fiscal policy
wedges (χf1� � � � �χ

f
n). Since, by assumption, labor is an essential input for the production

technology of all industries, Theorem 1 of Stiglitz (1970) guarantees that there is at most
one collection of relative prices that solves the system of equations in (B.12). In particular,
for any industry i, there exists a unique function hi :Rn

+ → R+ such that

pi(ωi) =w(s)hi
(
χ
f
1z1� � � � �χ

f
nzn

)
� (B.13)

where (h1� � � � �hn) solves the following system of equations:

hi(z) = 1
zi
Ki

(
1�h1(z)� � � � �hn(z)

)
for all i. (B.14)

As we already established, the left-hand side of the (B.13) is measurable with respect
to the information set of all firms in industry i. Therefore, a feasible allocation is im-
plementable as an equilibrium under both flexible and sticky prices only if there exists a
nominal function w(s) such that

w(s)hi
(
χ
f
1z1� � � � �χ

f
nzn

) ∈ σ (ωik)

simultaneously for all firms k in all industries i.
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The proof is therefore complete once we show that hi(z) = 1/gi(z), where gi(z) is the
marginal product of labor in the production of good i (as a function of realized produc-
tivity shocks) under the first-best allocation. To establish this, we make two observations.
First, note that the system of equations in (B.14) is identical to marginal-cost pricing
conditions in the economy’s competitive equilibrium. Since, as we already discussed, this
system of equations has at most one nonzero solution, hi has to be equal to the marginal
cost of good i relative to the wage in the economy’s competitive equilibrium. Second, cost
minimization implies that i’s marginal product of labor is equal to the wage divided by
the marginal cost of i. Putting these two observations together implies that hi is equal to
the reciprocal of i’s marginal product of labor in the economy’s competitive equilibrium.
Finally, the fact that the economy’s competitive equilibrium coincides with the first-best
allocation (by the first welfare theorem) guarantees that hi(z) = 1/gi(z), where gi(z) is
the marginal product of labor as a function of productivity shocks in the first-best alloca-
tion.

Proof of Corollary 3

Suppose all firms in all industries j �= i set their prices under complete information
about the state, s. As a result, Ejk[vjk(s)] = vjk(s) and Ejk[vjk(s)mcj(s)] = vjk(s)mcj(s)
for all k ∈ [0�1] and all j �= i. Therefore, (15) implies that

εjk(s) = 1 for all j �= i� (B.15)

Let the monetary policy function m(s) be given by

m(s) =MziU
′(C(s)

)
C

(
(s)

)
V ′(L(s)

) ∂Fi

∂li
(s)� (B.16)

for some constant M > 0 that does not depend on the state, s. By (16), such a policy
induces mci(s) =M for all s. Thus, (15) guarantees that εik(s) = 1 for all firms k ∈ [0�1].
This, together with (B.15), implies that the policy in (B.16) eliminates all wedges that are
due to nominal rigidities, thus reducing equations (13)–(14) to (10)–(11). In other words,
any flexible-price-implementable allocation can be implemented as part of a sticky-price
equilibrium.

The proof is therefore complete once we show that the policy in (B.16) stabilizes the
price of industry i. As we already established, such a policy induces mci(s) =M for all
s. Thus, by equation (B.9), pik(ωik) =M/χsi , which means that the nominal price set by
firms in industry i is invariant to the economy’s aggregate state.

Proof of Corollary 4

First, note that an aggregate labor-augmenting shock can be incorporated to our model
in Section 2 by introducing an extra industry, labeled industry 0, that transforms house-
hold’s labor supply into labor services sold to other industries. A TFP shock to this indus-
try is identical to an aggregate labor-augmenting shock.

Next, recall from the proof of Theorem 1 that the marginal product of labor of industry
i as a function of productivity shocks (z0� z1� � � � � zn) in the first-best allocation is given by
gi(z) = 1/hi(z), where (h0�h1� � � � �hn) satisfies (B.14) for all i ∈{0�1� � � � � n}. As a result,

hi(z) = 1
zi
Ki

(
1/z0�h1(z)� � � � �hn(z)

)
for all i ∈{1� � � � � n}.
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Since the marginal cost function Ki(·) is homogenous of degree 1 for all i, it is im-
mediate that the unique solution to the above system of equations is given by hi(z) =
1
z0
ĥi(z1� � � � � zn), where ĥi(·) does not depend on z0. Consequently, the marginal product

of labor of industry i in the first-best allocation is equal to gi(z) = z0/ĥi(z1� � � � � zn). Set-
ting the nominal wage function w(s) = z0ŵ(z1� � � � � zn) for a function ŵ(z1� � � � � zn) that
does not depend on z0 then implies that the left-hand side of (18) is

w(s)/gi
(
χ
f
1z1� � � � �χ

f
nzn

) = ŵ(z1� � � � � zn)ĥi
(
χ
f
1z1� � � � �χ

f
nzn

)
�

which is, by assumption, measurable with respect to the information sets of all firms in
industry i. Thus, by Theorem 1, any flexible-price allocation is implementable as a sticky-
price equilibrium.

Proof of Proposition 3

Suppose the flexible-price allocation indexed by (χf1� � � � �χ
f
n) is implementable as a

sticky-price equilibrium using a price-stabilization policy that assigns weight ψi to the
price of industry i, that is,

n∑
i=1

ψi logpi(ωi) +
(

1 −
n∑
i=1

ψi

)
logw(s) = 0� (B.17)

In the proof of Theorem 1, we established that a flexible-price allocation is implementable
as a sticky-price equilibrium only if condition (B.11) is satisfied for all industries i. Under
the assumption that the production technology of firms in industry i is given by (19), this
condition is equivalent to logpi(ωi) = − logχfi − logzi +αi logw(s) +∑n

j=1 aij logpj(ωj).
Solving for log nominal prices, we obtain

logpi(ωi) = logw(s) −
n∑
j=1


ij
(
logzj + logχfj

)
� (B.18)

where 
ij denotes the (i� j) element of the Leontief inverse, L = (I − A)−1. Multiplying
both sides of the above equation by ψi, summing over all i, and using (B.17), we obtain

logw(s) =
n∑
i=1

n∑
j=1

ψi
ij
(
logzj + logχfj

)
�

Replacing the above into (B.18) implies that

logpik(ωik) =
n∑
r=1

n∑
j=1

ψr
rj
(
logzj + logχfj

) −
n∑
j=1


ij
(
logzj + logχfj

)
(B.19)

for all firms k ∈ [0�1] in industry i, where we are also using the fact that since the alloca-
tion is both flexible- and sticky-price implementable, all firms within the same industry set
the same nominal price, that is, pik(ωik) = pi(ωi). Since logpik(ωik) is measurable with
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respect to the information set of firm k in industry i, taking conditional expectations from
both sides of (B.19) and subtracting the resulting equation from (B.19) implies that

n∑
r=1

n∑
j=1

ψr
rj
(
Eik[logzj] − logzj

) −
n∑
j=1


ij
(
Eik[logzj] − logzj

) = 0�

Rewrite the above equation as (ψ′ −u′
i)L(Eik[logz] − logz) = 0, where ψ= (ψ1� � � � �ψn)′

and ui denotes the ith unit vector. Multiplying both sides of this equation by logz′ from
the right and taking expectations with respect to the information set of firm k in industry
i establishes (21).

Proof of Lemma 2

By (B.8), firm k in industry i sets a nominal price equal to pik = Eik[mci vik]/Eik[vik],
where vik is given by (17) and we are using the assumption that τi = 1/(1 − θi). Conse-
quently,

logpik −Eik[log mci] = logEik
[
elogvik−Eik[logvik]+log mci−Eik[log mci]

] − logEik
[
elogvik−Eik[logvik]

]
= 1

2
varik(log mci) + covik(log mci� logvik) + o(δ2)

as δ→ 0. Since the standard deviations of log productivity shocks in (22) and noise shocks
in (23) scale linearly in δ, it follows that varik(log mci) = o(δ) and covik(log mci� logvik) =
o(δ), thus establishing (26).

To establish (27), recall that the production function of firms in industry i is given by
(19), which implies that log mci = αi logw − logzi + ∑n

j=1 aij logpj . This, together with
(26), establishes (27).

Proof of Proposition 4

Since noise shocks εij�k in firms’ private signals in (23) are idiosyncratic and of order δ,
the log-linearization (as δ→ 0) of any industry-level or aggregate variable only depends
on the productivity shocks. We thus let

logw=
n∑
j=1

κj logzj + o(δ)� (B.20)

logpi =
n∑
j=1

bij logzj + o(δ) (B.21)

denote, respectively, the log-linearization of the nominal wage and the nominal price of
sectoral good i as δ→ 0, where vector κ = (κ1� � � � � κn)′ and matrix B = [bij] are to be
determined. Furthermore, recall from Lemma 2 that, to a first-order approximation as
δ→ 0, the nominal price set by firm k in industry i is given by (27). Therefore,

logpik = αi
n∑
j=1

κjEik[logzj] −Eik[logzi] +
n∑
j=1

n∑
r=1

aijbjrEik[logzr] + o(δ)
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= αi
n∑
j=1

κjφikωij�k −φikωii�k +
n∑
j=1

n∑
r=1

aijbjrφikωir�k + o(δ)� (B.22)

where φik is the degree of price flexibility of firm k in industry i given by (25). Integrating
both sides of the above equation over all firms k in industry i implies that

logpi =φiαi
n∑
j=1

κj logzj −φi logzi +φi
n∑
j=1

n∑
r=1

aijbjr logzr + o(δ)�

whereφi =
∫ 1

0 φik dk is the degree of price flexibility of industry i and we are using the fact
that logpi =

∫ 1
0 logpik dk+ o(δ). The juxtaposition of the above equation with equation

(B.21) therefore implies that B =�ακ′ −�+�AB, where �= diag(φ). As a result,

B = (I −�A)−1�
(
ακ′ − I

) =�(I − A�)−1
(
ακ′ − I

)
� (B.23)

Multiplying both sides by logz and using equations (B.20) and (B.21) then establishes that
industry-level prices satisfy (30). To establish (29), note that the vector of (log) nominal
marginal costs is equal to log mc = α logw− logz+ A logp. Therefore, by (30), log mc =
(I + A�(I − A�)−1)(α logw− logz), which reduces to (29).

Proof of Proposition 6

We prove this result in three steps. First, we solve for household welfare in terms of
nominal prices and the nominal wage. We then compare the result to welfare under
the first-best allocation to obtain an expression for welfare loss, taking nominal prices
as given. Finally, we provide a quadratic log-approximation to the welfare loss in terms of
the cross-sectional mean and variance of firm-level pricing errors in (34) and (35). Given
the indeterminacy of prices in the flexible-price equilibrium, we express the pricing errors
under the normalization that the nominal wage is the same in the sticky- and flexible-price
equilibria.

Expressing Welfare in Terms of Nominal Prices. As our first step, we obtain an expres-
sion for welfare as a function of all nominal prices and the nominal wage.

Recall from equation (B.7) that the output of firm k in industry i is given by yik =
yi(pik/pi)−θi , whereas cost minimization implies that the firm’s demand for the good pro-
duced by industry j is equal to xij�k = aijyik mci /pj . Therefore, total demand for the good
produced by industry j by firms in industry i is

∫ 1
0 xij�k dk = aijpiyiεi/pj , where εi is a

sectoral wedge and is given by 3

εi = mci
pi

∫ 1

0
(pik/pi)−θi dk� (B.24)

3This sectoral wedge is closely related to firm-level wedges εik in Proposition 2. Specifically, under our as-
sumption that taxes eliminate all steady-state distortions due to monopolistic markups, equation (B.9) implies
that εik = mci /pik. Thus,

logεi = log
∫ 1

0
ε
θi
ik dk− log

∫ 1

0
ε
θi−1
ik dk�

As a result, logεi is equal to the cross-sectional average of logεik to a first-order approximation.
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Hence, market clearing for sectoral good i implies that piyi = pici + ∑n

j=1 ajipjyjεj . Di-
viding both sides by nominal aggregate demand, PC , and using the fact that pici = βiPC ,
we obtain

λi = βi +
n∑
j=1

ajiεjλj� (B.25)

where λi = piyi/PC is the Domar weight of industry i.
Next, note that the representative household’s budget constraint is given by

PC =wL+
n∑
i=1

(
piyi − mci

∫ 1

0
yik dk

)
=wL+

n∑
i=1

(1 − εi)piyi�

which implies that PC = wL/(1 − ∑n

i=1 λi(1 − εi)). Furthermore, the household’s opti-
mal labor supply requires that L1/η = C−γw/P . Therefore, solving for household’s aggre-
gate consumption and aggregate labor supply from the last two equations, we obtain

C = (w/P)
1+1/η
γ+1/η

(
1 −

n∑
i=1

λi(1 − εi)
)− 1/η

γ+1/η

�

L= (w/P)
1−γ
γ+1/η

(
1 −

n∑
i=1

λi(1 − εi)
) γ

γ+1/η

�

(B.26)

Plugging the above into (2), we can express the representative household’s welfare as a
function of nominal prices and the nominal wage as

W = 1
1 − γ (w/P)

(1−γ)(1+1/η)
γ+1/η

(
1 −

n∑
i=1

λi(1 − εi)
)− (1−γ)/η

γ+1/η

×
(

1 − 1 − γ
1 + 1/η

(
1 −

n∑
i=1

λi(1 − εi)
))
� (B.27)

where εi is given by (B.24) and the Domar weights solve the system of equations in (B.25).

Welfare Loss. As our next step, we compare (B.27) to welfare under the first-best allo-
cation to obtain an expression for the welfare loss as a function of nominal prices.

Recall that, in the flexible-price equilibrium, all firms in industry i set identical prices
and charge no markups, that is, mc∗

i = p∗
ik = p∗

i . Therefore, equation (B.24) implies that

ε∗
i = 1 for all i. Plugging this into (B.27) implies that W ∗ = γ+1/η

(1−γ)(1+1/η) (w/P∗)
(1−γ)(1+1/η)

γ+1/η ,
where recall that, by assumption, w=w∗. Hence, we can rewrite (B.27) as

W =W ∗(P/P∗) (γ−1)(1+1/η)
γ+1/η

(
1 −

n∑
i=1

λi(1 − εi)
)− (1−γ)/η

γ+1/η
(

1 + 1 − γ
γ+ 1/η

n∑
i=1

λi(1 − εi)
)
�
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Similarly, we can use (B.26) to relate aggregate output in the sticky-price equilibrium to
that in the flexible-price equilibrium:

C = C∗(P/P∗)− 1+1/η
γ+1/η

(
1 −

n∑
i=1

λi(1 − εi)
)− 1/η

γ+1/η

� (B.28)

The juxtaposition of the last two equations then implies that welfare in the sticky- and
flexible-price equilibria are related to one another as follows:

W =W ∗(C/C∗)1−γ
(

1 + 1 − γ
γ+ 1/η

(
1 − (

C/C∗)−(1+ηγ)(
P/P∗)−(1+η)))

� (B.29)

Second-Order Approximations. We next derive log-quadratic approximations to equa-
tions (B.24), (B.28), and (B.29) around the economy’s steady-state as δ→ 0.

First, consider equation (B.24). Taking logarithms from both sides and using the fact
that log mci = α logw− logzi + ∑n

j=1 aij logpj implies that

logεi =
n∑
j=1

aij
(
logpj − logp∗

j

) + (θi − 1)
(
logpi − logp∗

i

) + log
∫ 1

0

(
pik/p

∗
i

)−θi dk�

Consequently, to a second-order approximation,

logεi =
n∑
j=1

aijēj − ēi + 1
2

n∑
j=1

aij(1 − θj)ϑj + 1
2

(2θi − 1)ϑi + o
(
δ2

)
� (B.30)

where ēi andϑi are the cross-sectional average and dispersion of pricing errors in industry
i defined in (34) and (35), respectively, and we are using the fact that logpj − logp∗

j =
ēj + 1

2 (1 − θj)ϑj + o(δ2).
We next derive a log-quadratic approximation to (B.28). Start with the observation that

log

(
1 −

n∑
i=1

λi(1 − εi)
)

=
n∑
i=1

λi logεi + 1
2

n∑
i=1

λi log2 εi − 1
2

(
n∑
i=1

λi logεi

)2

+ o(δ2
)
� (B.31)

By (B.25), the vector of industry Domar weights is given by λ= (I − A′ diag(ε))−1β. As a
result,

λ− λ∗ = (
I − A′ diag(ε)

)−1
β− (

I − A′)−1
β

= (
I − A′ diag(ε)

)−1
A′(diag(ε) − I

)(
I − A′)−1

β

= L′A′ diag(logε)λ∗ + o(δ) = (
L′ − I

)
diag(logε)λ∗ + o(δ)�

where L = (I − A)−1 is the economy’s Leontief inverse and we are using the fact that the
vector of Domar weights under flexible prices is given by λ∗ = L′β. The above equation
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implies that, to a first-order approximation, the Domar weight of industry i in the sticky-
price equilibrium is given by

λi = (1 − logεi)λ∗
i +

n∑
j=1


jiλ
∗
j logεj + o(δ)� (B.32)

Putting the above equation together with (B.31) leads to

log

(
1 −

n∑
i=1

λi(1 − εi)
)

=
n∑
i=1

λ∗
i logεi +

n∑
i=1

n∑
j=1

λ∗
j 
ji logεj logεi

− 1
2

n∑
i=1

λ∗
i log2 εi − 1

2

(
n∑
i=1

λ∗
i logεi

)2

+ o(δ2
)
�

Replacing logεi by its second-order approximation in (B.30), we obtain

log

(
1 −

n∑
i=1

λi(1 − εi)
)

= −(
logP − logP∗) + 1

2

n∑
i=1

λ∗
i θiϑi + 1

2

n∑
i=1

λ∗
i ē

2
i

− 1
2

n∑
i=1

λ∗
i

(
n∑
j=1

aijēj

)2

− 1
2

(
n∑
i=1

βiēi

)2

+ o(δ2
)
�

where we are using the fact that logP − logP∗ = ∑n

i=1βiēi + 1
2

∑n

i=1βi(1 − θi)ϑi + o(δ2).
Consequently, we obtain the following second-order approximation to (B.28):

logC − logC∗ = − 1/η
2(γ+ 1/η)

[
n∑
i=1

λ∗
i θiϑi +

n∑
i=1

λ∗
i

(
ē2
i −

(
n∑
j=1

aijēj

)2)
−

(
n∑
i=1

βiēi

)2]

− 1
γ+ 1/η

(
logP − logP∗) + o(δ2

)
� (B.33)

The above expression implies that, to a first-order approximation, the output gap is

logC − logC∗ = − 1
γ+ 1/η

(
logP − logP∗) + o(δ)� (B.34)

Finally, we derive a log-quadratic approximation to equation (B.29) as δ→ 0. We have

log
(
W/W ∗)

= (1 − γ)(1 +η)

×
[(

logC − logC∗) + 1
γ+ 1/η

(
logP − logP∗) − 1

2
η

(
logC − logC∗)2

− 1
2
η

(1 +η)2

(1 +ηγ)2

(
logP − logP∗)2 − 1 +η

γ+ 1/η
(
logC − logC∗)(logP − logP∗)]

+ o(δ2
)
�
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Replace for logP− logP∗ in the last two terms from its first-order approximation in (B.34)
to obtain

log
(
W/W ∗) = (1 − γ)(1 +η)

(
logC − logC∗ + 1

γ+ 1/η
(
logP − logP∗) − 1

2η
�2

)

+ o(δ2
)
�

where �2 = (logC− logC∗)2 is the volatility of output gap. Using (B.33) to replace for the
first term on the right-hand side above and using the fact that λ∗

i = βi+∑n

j=1 λ
∗
j aji implies

that

log
(
W/W ∗) = −1

2
(1 − γ)(1 + 1/η)

(γ+ 1/η)

[
n∑
i=1

λ∗
i θiϑi + (γ+ 1/η)�2

+
n∑
i=1

λ∗
i xvari(ē1� � � � � ēn) + xvar0(ē1� � � � � ēn)

]
+ o(δ2

)
�

where xvari(ē1� � � � � ēn) is the cross-sectional dispersion of pricing errors of inputs from
the point of view of industry i defined in (38). We make two final observations. First,
the fact that λi = λ∗

i + o(1) as δ→ 0 implies that we can replace λ∗
i by λi in the above

equation. Second, note that W −W ∗ = W ∗ log(W/W ∗) + o(δ2) and W ∗ = γ+1/η
(1−γ)(1+1/η) +

O(δ). The juxtaposition of these observations with the above equation then establishes
(36).

Proof of Proposition 5

We start by stating and proving a lemma, which we will also use in the proof of Theo-
rem 2. Statement (a) of the lemma establishes that even though in our model the mon-
etary policy instrument is the nominal aggregate demand m(z), as long as no industry is
perfectly sticky, there is an isomorphism between setting the nominal aggregate demand
and the nominal wage w(z). Statement (b) of the lemma then provides conditions under
which a policy can be implemented as a price-stabilization policy.

LEMMA B.1: Suppose φi > 0 for all i. Then, to a first-order approximation,
(a) an allocation is implementable by setting the nominal demand if and only if it is im-

plementable by setting the nominal wage;
(b) if vector κ satisfies κ′α = 1, then the nominal wage logw(z) = ∑n

i=1 κi logzi can be
implemented by a price-stabilization policy of the form

∑n

i=1ψi logzi = 0 for some
vector ψ= (ψ1� � � � �ψn)′.

Proof of Part (a). It is sufficient to show that, as long as φi > 0 for all industries i, there
is a one-to-one correspondence between the nominal wage w(z) and nominal aggregate
demand m(z) for all realizations of z. Let P∗ and C∗ denote, respectively, the consump-
tion price index and aggregate output in the flexible-price equilibrium. Since m= PC , it
is immediate that

logm=
(

1 − 1
γ+ 1/η

)(
logP − logP∗) + logP∗ + logC∗ + o(δ)�
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where we are using (B.34). Next, recall from Proposition 4 that industry-level nominal
prices satisfy (30). Therefore, the vector of average pricing errors defined in (34) is given
by

ē=�(I − A�)−1(α logw− logz) − (I − A)−1(α logw− logz) + o(δ)�

or equivalently,

ē= Q(L logz− 1 logw) + o(δ)� (B.35)

where Q = (I −�A)−1(I −�). Therefore,

logm=
(

1 − 1
γ+ 1/η

)
β′Q(L logz− 1 logw) + logP∗ + logC∗ + o(δ)�

where we are using the fact that logP − logP∗ = β′ē+o(δ). It is also immediate to verify
that, in the flexible-price equilibrium, the consumption price index and aggregate out-
put are given by logP∗ = logw− β′L logz and logC∗ = 1+1/η

γ+1/ηβ
′L logz, respectively. As a

result, to a first-order approximation, nominal wage and nominal aggregate demand are
related to one another via the following relationship:

logm=
[(

1 − 1
γ+ 1/η

)
β′QL − γ− 1

γ+ 1/η
β′L

]
logz

+
[

1 −
(

1 − 1
γ+ 1/η

)
β′Q1

]
logw+ o(δ)� (B.36)

The above equation establishes a one-to-one correspondence between w(z) and m(z)
as long as (1 − 1

γ+1/η)β′Q1 �= 1. The proof is therefore complete once we show that this
condition is indeed satisfied. To this end, note that it is sufficient to show that 0 ≤ β′Q1<
1. The fact that β′Q1 ≥ 0 is a straightforward implication of the fact that (I − �A)−1 is
an inverse M-matrix, and hence is elementwise nonnegative. To show that β′Q1< 1, note
that

1 −β′Q1 = β′�(I − A�)−1(I − A)1 =
n∑
i=1

n∑
j=1

βiφihijαj�

where H = (I − A�)−1. The fact that H is an inverse M-matrix guarantees that the right-
hand side of the above equation is nonnegative. To show that it is in fact strictly positive,
suppose to the contrary that it is equal to zero. This means that

βiφihijαj = 0

for all pairs of industries i and j. But for any industry i, there exists at least one industry j
(which may coincide with i) such that αj > 0 and hij > 0. This, coupled with the fact that∑n

i=1βi = 1 and the assumption that φi > 0 for all i, leads to a contradiction. Therefore,
it must be the case that β′Q1< 1, which completes the proof.
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Proof of Part (b). Let vector κ= (κ1� � � � �κn)′ satisfy κ′α= 1. We show that stabilizing
the price index

∑n

i=1ψi logpi with weights given by

ψ′ = κ′�−1(I −�A) (B.37)

induces a nominal wage given by logw= ∑n

i=1 κi logzi+o(δ). Start by noting that the jux-
taposition of ψ′ logp= 0 and equation (30) implies that ψ′(I −�A)−1�(I − A)(1 logw−
L logz) = o(δ). Consequently,

logw= 1
ψ′(I −�A)−1�(I − A)1

ψ′(I −�A)−1� logz+ o(δ)�

Replacing for ψ from (B.37) into the above implies that logw = 1
κ′ακ

′ logz + o(δ). The
assumption that κ′α= 1 then implies that logw= ∑n

i=1 κi logzi + o(δ).

Proof of Proposition 5. With Lemma B.1 in hand, we are now ready to prove the propo-
sition. First, note that the identity PC =m implies that degree of monetary nonneutrality
satisfies

�= 1 − d logP
d logm

= 1 − d logP
d logw

d logw
d logm

�

Since logP = ∑n

i=1βi logpi, equation (30) implies that d logP/d logw = ∑n

i=1βiφiρi =
ρ0, where the second equality follows from the definition of ρ0 in (32). Thus, using (B.36),
we obtain

�= 1 − ρ0

[
1 −

(
1 − 1

γ+ 1/η

)
β′Q1

]−1

�

where Q = (I−�A)−1(I−�). Finally, noting that β′Q1 = β′(1−�ρ) = 1−ρ0 establishes
(33).

Proof of Theorem 2

As a first observation, we note that the independence assumption imposed on the noise
shocks εij�k implies that aggregate uncertainty in this economy is solely driven by the pro-
ductivity shocks z = (z1� � � � � zn). As a result, without loss of generality, we can restrict
our attention to monetary policies of the form m(z) that only depend on the productivity
shocks, as opposed to the entire state of the economy, s = (z�ω).

By Lemma B.1, as long asφi > 0 for all i, any allocation that is implementable by setting
nominal aggregate demand, m(z), is also implementable by setting the nominal wage,
w(z). Therefore, to determine the optimal policy, we first characterize how the wage
should optimally respond to productivity shocks. Specifically, we characterize the vector
of optimal weights κ= (κ1� � � � �κn)′ in logw= ∑n

j=1 κj logzj that minimizes the expected
welfare loss in (36). We then show that the price-stabilization policy with weights given by
(39) implements such a nominal wage.

To calculate the expected welfare loss in (36), we first determine the cross-sectional
average and dispersion of pricing errors in each industry, defined in equations (34) and
(35), respectively. In the proof of Lemma B.1, we already established that the vector of
average pricing errors is given by (B.35). To determine the within-industry dispersion of
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pricing errors, note that all firm-level nominal prices within the same industry coincide
with one another in the flexible-price equilibrium. Therefore, the dispersion of pricing
errors in industry i satisfies

ϑi =
∫ 1

0
e2
ik dk−

(∫ 1

0
eik dk

)2

=
∫ 1

0
(logpik − logpi)2 dk+ o(δ2)�

Furthermore, recall from the proof of Proposition 4 that the nominal price of firm k in
industry i in the sticky-price equilibrium is given by (B.22), which implies that

logpik = φik

φi

n∑
j=1

bijωij�k + o(δ)�

where matrix B is given by (B.23). Consequently,

logpik − logpi =
(
φik

φi
− 1

) n∑
j=1

bij logzi + φik

φi

n∑
j=1

bijεij�k + o(δ)�

Therefore, the expected cross-sectional dispersion of pricing errors in industry i is given
by

E[ϑi] = δ2

φ2
i

n∑
j=1

b2
ij

(
σ2
z

∫ 1

0
(φik −φi)2 dk+

∫ 1

0
φ2
ikσ

2
ik dk

)
+ o(δ2

)

= σ2
z

δ2

φ2
i

n∑
j=1

b2
ij

(∫ 1

0
(φik −φi)2 dk+

∫ 1

0
φik(1 −φik) dk

)
+ o(δ2

)
�

where the second equality is a simple consequence of the definition of φik in (25). Hence,

E[ϑi] = σ2
z δ

2

(
1 −φi
φi

) n∑
j=1

b2
ij + o

(
δ2

)
�

With the expected cross-sectional average and dispersion of pricing errors in hand, we
now minimize the expected welfare loss by optimizing over the vector κ = (κ1� � � � �κn),
where recall that logw = ∑n

j=1 κj logzj . Taking expectations from both sides of (36), dif-
ferentiating it with respect to κs, and setting it equal to zero, we obtain

σ2
z δ

2
n∑
i=1

λiθi

(
1 −φi
φi

) n∑
j=1

bij
dbij
dκs

+ 1
γ+ 1/η

n∑
i=1

n∑
j=1

βiβjE

[
ēi

dēj
dκs

]

+
n∑
i=0

λi

(
n∑
j=1

aijE

[
ēj

dēj
dκs

]
−

n∑
j=1

n∑
r=1

aijairE

[
ēr

dēj
dκs

])
= 0�

with the convention that λ0 = 1 and a0j = βj for all j. To simplify the above, note
that (B.35) implies that dēj/dκs = − logzs

∑n

r=1 qjr , while equation (B.23) implies that
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dbij/dκs = 0 if j �= s. As a result,

n∑
i=1

λiθi

(
1 −φi
φi

)
dbis
dκs

bis − 1
γ+ 1/η

(
n∑
i=1

n∑
j=1

βiqij(
js − κs)
)(

n∑
i=1

n∑
j=1

βiqij

)

−
n∑
i=0

n∑
j=1

λiaij

(
n∑
r=1

qjr (
rs − κs)
)(

n∑
m=1

qjm

)

+
n∑
i=0

λi

(
n∑
j=1

n∑
r=1

aijqjr

)(
n∑
j=1

n∑
r=1

aijqjr (
rs − κs)
)

= 0�

Since the above first-order condition has to hold for all s, it can be rewritten in matrix
form as[

λ′ diag(θ)(I −�)�−1(I − diag(Q1)
)
(I − Q) + 1

γ+ 1/η
(
β′Q1

)
β′Q

+ (
λ′A +β′)diag(Q1)Q − λ′ diag(AQ1)AQ − (

β′Q1
)
β′Q

](
L − 1κ′) = 0�

where we are using the fact that matrix B defined in (B.23) satisfies B = (I − Q)(1κ′ −
L). Solving for κ then implies that the vector of weights κ in logw = ∑n

i=1 κi logzi that
minimizes the expected welfare loss is given by κ′ = ι′/(ι′α), where

ι′ = λ′ diag(θ)(I −�)�−1(I − diag(Q1)
)
(I − Q)L + 1

γ+ 1/η
(
β′Q1

)
β′QL

+ λ′A diag(Q1)QL − λ′ diag(AQ1)AQL

+β′ diag(Q1)QL − (
β′Q1

)
β′QL� (B.38)

Having determined the nominal wage that minimizes expected welfare loss, we next
determine the price-stabilization policy that implements such a nominal wage. First, note
that since κ′ = ι′/(ι′α), we have κ′α = 1. As a result, we can apply statement (b) of
Lemma B.1, which guarantees that the optimal nominal wage logw = ∑n

i=1 κi logzi can
be implemented by stabilizing the price index

∑n

i=1ψ
∗
i logpi, where the industry weights

are given by (B.37), that is, ψ∗′ = κ′�−1(I −�A). Hence,

ψ∗′ = λ′ diag(θ)
(
I − diag(Q1)

)(
�−1 − I

) + 1
γ+ 1/η

(
β′Q1

)
β′L

(
�−1 − I

)
+ (
λ′A diag(Q1) − λ′ diag(AQ1)A

)
L
(
�−1 − I

)
+ (
β′ diag(Q1) − (

β′Q1
)
β′)L

(
�−1 − I

)
� (B.39)

where we are using matrix identities QL�−1(I −�A) = L(�−1 − I) and (I − Q)L�−1(I −
�A) = I. Next, note that the definition of ρ in (28) implies that Q1 = 1 −�ρ. Therefore,

ψ∗′ = λ′(I −�) diag(θ) diag(ρ) +
(

1 −β′�ρ
γ+ 1/η

)
λ′(�−1 − I

)
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+ λ′(A − A�diag(ρ) − diag(A1 − A�ρ)A
)
L
(
�−1 − I

)
+ ((

β′�ρ
)
β′ −β′�diag(ρ)

)
L
(
�−1 − I

)
�

Since A�ρ = ρ − (I − A)1, we have A − A�diag(ρ) − diag(A1)A + diag(A�ρ)A =
diag(ρ)A − A�diag(ρ). As a result,

ψ∗′ = λ′(I −�) diag(θ) diag(ρ) +
(

1 −β′�ρ
γ+ 1/η

)
λ′(�−1 − I

)
+ λ′(diag(ρ)A − A�diag(ρ)

)
L
(
�−1 − I

) + ((
β′�ρ

)
β′ −β′�diag(ρ)

)
L
(
�−1 − I

)
�

Noting that λ′A = λ′ −β′ and ρ0 = β′�ρ, we can simplify the above equation as

ψ∗′ = λ′(I −�) diag(θ) diag(ρ) +
(

1 − ρ0

γ+ 1/η

)
λ′(�−1 − I

)
+ λ′((I −�) diag(ρ)L + ρ0I − diag(ρ)

)(
�−1 − I

)
�

Consequently, the weight on the price of industry s in the optimal price-stabilization pol-
icy satisfies

ψ∗
s = (1/φs − 1)

[
λsφsθsρs + λs

(
1 − ρ0

γ+ 1/η

)
+

n∑
i=1

(1 −φi)λiρi
is + (ρ0 − ρs)λs
]
�

an expression that coincides with (39).

Proof of Proposition 7

Since i and j are upstream symmetric, it is immediate that ρi = ρj . Furthermore, the
fact that they are downstream symmetric implies that they have identical Domar weights,
that is, λi = λj . As a result, equations (40)–(42) in Theorem 2 imply that if φi < φj , then
ψ

o�g�
i > ψ

o�g�
j , ψacross

i > ψacross
j , and ψwithin

i > ψwithin
j . Putting the three inequalities together

then guarantees that ψ∗
i > ψ

∗
j .

Proof of Proposition 8

Since i and j are downstream symmetric, they have identical Domar weights, that is,
λi = λj = λ. In addition, recall that, by assumption, φi = φj = φ. Therefore, equation
(40) implies that ψo�g�

i =ψo�g�
j . Furthermore, equation (42) implies

ψacross
i −ψacross

j = (1/φ− 1)
n∑
s=1

(1 −φs)λsρs(
si − 
sj) = 0�

where once again we are using the assumptions that i and j are downstream symmetric
and that φi =φj =φ. Finally, equation (41) and the assumption that θi = θj = θ implies

ψwithin
i −ψwithin

j = (1 −φ)λθ(ρi − ρj)�
Thus, if ρi > ρj , then ψwithin

i > ψwithin
j , and hence, ψ∗

i > ψ
∗
j .
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Proof of Proposition 9

By assumption, θi = θj , φi = φj , and λi = λj . Furthermore, the assumption that i and
j are upstream symmetric implies that ρi = ρj . Therefore, equations (40) and (41) in
Theorem 2 imply that ψo�g�

i =ψo�g�
j and ψwithin

i =ψwithin
j . Turning to the dimension of policy

targeting across-industry misallocation, equation (42) implies

ψacross
i −ψacorss

j = (1/φ− 1)
n∑
s=1

(1 −φs)λsρs(
si − 
sj)�

where once again we are using the fact thatφi =φj =φ. It is now immediate thatψ∗
i > ψ

∗
j

if and only if inequality (43) is satisfied.

Proof of Proposition 10

Suppose θi = θj = θ and φi = φj = φ< 1. Also suppose industry j is the sole supplier
of industry i and i is the sole customer of j. This implies that both industries have identical
steady-state Domar weights. Therefore, by (40), ψo�g�

i =ψo�g�
j .

The fact that j is the sole supplier of i also implies that ρi = φjρj < ρj , where we are
using the definition of upstream flexbility in (28). As a result, equation (41) implies that,
in the optimal policy, ψwithin

i < ψwithin
j .

Finally, consider the component of optimal policy corresponding to interindustry mis-
allocation. Since i and j have identical Domar weights, equation (42) implies that

ψacross
i −ψacross

j = (1/φ− 1)

(
(ρj − ρi)λj +

n∑
s=1

(1 −φs)λsρs(
si − 
sj)
)
�

Furthermore, the assumption that j is the sole supplier of i and i is the sole customer of j
implies that 
sj = 
si + I{s=j} for all s. As a result,

ψacross
i −ψacross

j = (1/φ− 1)λj(φjρj − ρi)�
Now the fact that ρi =φjρj guarantees that ψacross

i =ψacross
j .

Proof of Proposition A.1

Recall from the proof of Lemma 2 that the nominal price set by firm k in industry i is
given by logpik = Eik[log mci] + o(δ) as δ→ 0. Therefore, when the production function
of firms in industry i is given by (19),

logpik = αiEik[logw] −Eik[logzi] +
n∑
j=1

aijEik[logpj] + o(δ)�

where pj is the nominal price of the sectoral good produced by industry j. Integrating
both sides of this equation over the set of all firms in industry i implies that

logpi = αi
∫ 1

0
Eik[logw] dk−

∫ 1

0
Eik[logzi] dk+

n∑
j=1

aij

∫ 1

0
Eik[logpj] dk+ o(δ)�
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Since a similar expression has to hold for the nominal price of all industries j, iterating on
the above equation implies that

logpi =
∞∑
r=1

Ē
(r)
i [α logw] −

∞∑
r=1

Ē
(r)
i [logz] + o(δ)� (B.40)

where Ē
(r)
i [·] is defined recursively in (A.1). This, coupled with the fact that PC =m and

logP = ∑n

i=1βi logpi, implies that log aggregate output is given by

logC =
∞∑
r=1

n∑
i=1

βiĒ
(r)
i [logz] +

(
logm−

∞∑
r=1

n∑
i=1

βiĒ
(r)
i [α logw]

)
+ o(δ)�

Noting that m=w when γ = 1 and η→ ∞ then establishes (A.2).

Proof of Proposition A.2

As a first observation, note that the log output of industry i is equal to log yi =
logm− logpi + logλi, where λi is i’s Domar weight. Using (B.32) to obtain a first-order
approximation for logλi leads to

log yi = logm− logpi + logλ∗
i − logεi + 1

λ∗
i

n∑
j=1


jiλ
∗
j logεj + o(δ)�

Rewriting the above in vector form, we get

log y = 1 logw− logp+ logλ∗ − (
I −�∗−1L′�∗) logε+ o(δ)�

where �∗ = diag(λ∗
1� � � � � λ

∗
n) is a diagonal matrix with diagonal elements given by indus-

tries’ flexible-price Domar weights and we are using the fact that m=w when γ = 1 and
η→ ∞. From the above equation, it is immediate that the vector of industry-level log
output under flexible-prices is given by log y∗ = logw1 − logp∗ + logλ∗ + o(δ). Conse-
quently,

log y = log y∗ − (
logp− logp∗) − (

I −�−1L′�
)

logε+ o(δ)�

where we are using the fact that λi = λ∗
i +o(1). Equation (B.30) implies that logε= −(I−

A)(logp− logp∗) + o(δ), or equivalently, logp− logp∗ = −L logε+ o(δ). Therefore,

log y = log y∗ + (
A +�−1L′�(I − A)

)
L logε+ o(δ)� (B.41)

It is therefore sufficient to characterize logε in terms of model primitives. To this end, first
recall that logε = −(I − A)(logp− logp∗) + o(δ). Furthermore, note that log nominal
prices in the sticky and flexible-price equilibria are given by (B.40) and logp∗

i = logm−∑n

j=1 
ij logzj , respectively. Consequently,

logε= (I − A)

( ∞∑
r=1

Ē
(r)[logz] − L logz

)
+ (I − A)

(
1 logm−

∞∑
r=1

Ē
(r)[α logm]

)
+ o(δ)�

where Ē
(r)[t] is a vector whose i-th element is given by Ē

(r)
i [t]. Plugging the above into

(B.41) completes the proof.
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Proof of Proposition A.3

As in the proof of Theorem 2, we first determine the optimal policy by characterizing
how nominal wage should optimally respond to productivity shocks. We then determine
the price-stabilization policy that implements such a nominal wage.

Recall from Proposition 6 that nominal rigidities result in a welfare loss that can be
approximated by (36) to a second-order approximation as δ → 0, where ēi and ϑi are
defined in (34) and (35) and denote the cross-sectional average and cross-sectional dis-
persion of pricing errors in industry i, respectively. Therefore, as a first step, we determine
ēi and ϑi in terms of the realized productivity shocks and the nominal wage. To this end,
as in (B.20) and (B.21), let logw = κ′ logz + o(δ) and logp= B logz + o(δ) denote the
log-linearization of, respectively, the nominal wage and the vector of nominal prices of
sectoral goods as δ→ 0. Furthermore, recall from Lemma 2 that, to a first-order approxi-
mation, the nominal price set by firm k in industry i is given by equation (27). Integrating
both sides of (27) over all firms k in industry i implies that

logpi =φiαi logw−φi logzi +φi
n∑
j=1

aij logpj + o(δ)�

where we are using the assumption that a fraction φi of firms industry i receive perfectly
informative signals about the realization of the shocks, while the remainder 1−φi fraction
receive no information at all. Writing the above equation in matrix form and using (B.20)
and (B.21) leads to B = �(ακ′ − I + AB). Solving for matrix B therefore implies that the
vector of log nominal prices is given by

logp= B logz+ o(δ)� (B.42)

where

B = (I −�A)−1�(I − A)
(
1κ′ − L

)
� (B.43)

Equations (B.42) and (B.43) additionally imply that, in the absence of nominal rigidities,
the vector of log nominal prices is logp∗ = (1κ′ − L) logz + o(δ). Therefore, the vector
of cross-sectional average of pricing errors, defined in (34), is given by

ē= logp− logp∗ = Q
(
L − 1κ′) logz+ o(δ)� (B.44)

where Q = (I −�A)−1(I −�). Next, we obtain the expression for cross-sectional disper-
sion of pricing errors within each industry. Since the marginal cost of firms in industry i is
given by log mci = αi logw− logzi + ∑n

i=1 aij logpj , equation (B.42) implies that

log mc = (
ακ′ − I + AB

)
logz+ o(δ) = �−1 logp+ o(δ)� (B.45)

Furthermore, the assumption that a fraction φi of firms in industry i can set their prices
flexibly implies that the cross-sectional dispersion of pricing errors in industry i is equal
to ϑi =φi(log mci − logpi)2 + (1 −φi)(logpi)2 = (1/φi − 1)(logpi)2 + o(δ2), where the
second equality follows from (B.45). Consequently, using (B.42), we obtain

E[ϑi] = δ2(1/φi − 1)b′
i�bi + o

(
δ2

)
� (B.46)

where b′
i is the ith row of matrix B in (B.42) and � denotes the variance-covariance matrix

of log productivity shocks.
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With the expressions for the cross-sectional average and dispersion of pricing errors in
hand, we next turn to determining the expected welfare loss under an arbitrary policy.
Recall from Proposition 6 that, to a second-order approximation as δ→ 0, welfare loss is
given by (36). Therefore, using (B.46), we can write the expected welfare loss as

E
[
W −W ∗] = −1

2

[
δ2λ′ diag(θ)

(
�−1 − I

)
diag

(
B�B′)

+ 1
γ+ 1/η

β′
E
[
ēē′]β+ (

λ′A +β′)diag
(
E
[
ēē′])

− λ′ diag
(
AE

[
ēē′]A′) −β′

E
[
ēē′]β]

�

Note that equation (B.44) implies that dē/dκs = −Q1 logzs. Therefore, differentiating
the expected welfare loss with respect to vector κ and setting it equal to zero implies that

�B
′(I − diag(Q1)

)(
�−1 − I

)
diag(θ)λ− 1

γ+ 1/η
�

(
L′ − κ1′)Q′ββ′Q1

−�
(
L′ − κ1′)Q′ diag(Q1)

(
A′λ+β) +�

(
L′ − κ1′)Q′A′ diag(AQ1)λ

+�
(
L′ − κ1′)Q′ββ′Q1 = 0�

Multiplying both sides of the above equation by �
−1 from the left and replacing for B′ in

the first term from (B.43) implies that

−(
L′ − κ1′)(I − Q′)(I − diag(Q1)

)(
�−1 − I

)
diag(θ)λ− 1

γ+ 1/η
(
L′ − κ1′)Q′ββ′Q1

− (
L′ − κ1′)Q′ diag(Q1)

(
A′λ+β) + (

L′ − κ1′)Q′A′ diag(AQ1)λ

+ (
L′ − κ1′)Q′ββ′Q1 = 0�

Solving for κ then implies that the vector of weights in the optimal wage-setting policy is
given by κ′ = ι′/(ι′α), where

ι′ = λ′ diag(θ)(I −�)�−1(I − diag(Q1)
)
(I − Q)L + 1

γ+ 1/η
(
β′Q1

)
β′QL

+ λ′A diag(Q1)QL − λ′ diag(AQ1)AQL +β′ diag(Q1)QL − (
β′Q1

)
β′QL�

The above expression is identical to equation (B.38). Therefore, the optimal price-
stabilization policy coincides with the policy in (39).

Proof of Proposition A.4

We prove this result by establishing that the policy that minimizes the welfare loss (36)
(i.e., the optimal policy) coincides with the policy that minimizes the volatility of the target
price index

∑n

i=1ψ
∗
i logpi, with weights given by (39). Note that since γ = 1 and η→ ∞,

the nominal aggregate demand, m, is equal to the nominal wage, w. As a result, without
loss of generality, we can parameterize the set of policies by vector κ = (κ1� � � � �κn)′,
where logw= ∑n

i=1 κiω̂i and ω̂i is monetary authority’s signal given by (A.6).
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Minimizing the Volatility of Target Price Index. We first characterize the policy that min-
imizes the volatility of the target price index

∑n

i=1ψ
∗
i logpi.

By assumption, fraction φi of firms in industry i can set their prices flexibly, while the
remaining 1 −φi fraction are subject to full nominal rigidities. As a result, the log nomi-
nal price of industry i satisfies logpi = φi(αi logw− logzi + ∑n

j=1 aij logpj). Writing this
equation in matrix form and solving for the vector of log nominal prices, we get

logp= (I −�A)−1�(I − A)(1 logw− L logz)� (B.47)

Next, recall that the vector of industry weights ψ∗ satisfies (B.39). As a result,

n∑
i=1

ψ∗
i logpi = v′(1 logw− L logz)�

where

v′ = λ′[diag(θ)
(
I − diag(Q1)

)
(I − A) + diag(Q1) − diag(AQ1)A

]
Q (B.48)

and we are using the following identity: L(I − �)�−1(I − �A)−1�(I − A) = Q. Since
logw= κ′ω̂= κ′(logz+ ε̂), the volatility of the target price index is equal to

var

(
n∑
s=1

ψ∗
s logps

)
= δ2σ2

z

∥∥v′(L − 1κ′)∥∥2

2
+ δ2σ̂2

∥∥v′1κ′∥∥2

2
�

Optimizing the above with respect to κ implies that the policy that minimizes the volatility
of the target price index is given by

κ′ = σ2
z

σ2
z + σ̂2

v′L
v′1
� (B.49)

where v is given by (B.48).

Optimal Policy. We next characterize the optimal policy and show that it coincides with
policy (B.49), which minimizes the volatility of the target price index.

By Proposition 6, welfare loss due to the presence of nominal rigidities is given by (36).
Therefore, when γ = 1 and η→ ∞, the expected welfare loss is equal to

E
[
W −W ∗] = −1

2
λ′(diag(θ)E[ϑ] + diag

(
E
[
ēē′]) − diag

(
AE

[
ēē′]A′)) + o(δ2

)
� (B.50)

where ē and ϑ denote the vectors of cross-sectional mean and dispersion of pricing errors
defined in (34) and (35), respectively.

To determine the right-hand side of (B.50), we make two observations. First, note that
ē = Q(L logz − 1 logw), where Q = (I − �A)−1(I − �). This follows from the fact that
the vectors of log nominal prices in the sticky- and flexible-price equilibria are given by
(B.47) and logp∗ = 1 logw− L logz, respectively. As a result,

E
[
ēē′] = δ2σ2

zQ
(
L − 1κ′)(L′ − κ1′)Q′ + δ2σ̂2Q1κ′κ1′Q′� (B.51)

where we are using the fact that logw= ∑n

i=1 κiω̂i. Second, since a fraction φi of firms in
industry i can set their prices flexibly, while the remaining 1−φi fraction face full nominal
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TABLE C.I

EXPECTED WELFARE LOSS UNDER VARIOUS POLICIES.

(η�γ�φw)
Optimal
Policy

Output-Gap
Stabilization

Consumption
Weighted

Domar
Weighted

Stickiness-Adjusted
CPI

(0�5�0�1�0�25) 0.64 0.65 1.42 1.30 1.26
(0�5�0�1�0�30) 0.64 0.65 1.18 1.09 1.03
(0�5�1�0�25) 0.64 0.64 1.25 1.17 1.13
(0�5�1�0�30) 0.63 0.64 1.08 1.02 0.97
(0�5�2�0�25) 0.63 0.64 1.15 1.10 1.05
(0�5�2�0�30) 0.63 0.64 1.03 0.97 0.93
(1�0�1�0�25) 0.65 0.65 1.79 1.63 1.53
(1�0�1�0�30) 0.64 0.66 1.41 1.27 1.18
(1�1�0�25) 0.64 0.65 1.37 1.27 1.22
(1�1�0�30) 0.64 0.65 1.16 1.07 1.02
(1�2�0�25) 0.63 0.64 1.20 1.14 1.09
(1�2�0�30) 0.63 0.64 1.06 1.00 0.96
(2�0�1�0�25) 0.66 0.67 2.52 2.21 2.03
(2�0�1�0�30) 0.65 0.67 1.85 1.59 1.46
(2�1�0�25) 0.64 0.65 1.49 1.37 1.30
(2�1�0�30) 0.64 0.65 1.23 1.13 1.07
(2�2�0�25) 0.64 0.64 1.24 1.17 1.12
(2�2�0�30) 0.63 0.64 1.08 1.02 0.97

Note: The table reports the expected welfare loss due to the presence of nominal rigidities under various monetary policies as
a percentage of steady-state consumption. The expected welfare loss is calculated by simulating the exact model for 10,000 draws of
the vector of productivity shocks. Parameters η, γ, and φw denote the Frisch elasticity of labor supply, the household’s coefficient of
relative risk aversion, and the degree of wage flexibility, respectively.

rigidities, price dispersion in industry i is equal to ϑi = (1/φi − 1) log2pi, where the log
nominal price of industry i in the sticky-price equilibrium satisfies (B.47). As a result,

E[ϑ] = δ2
(
�−1 − I

)
diag

(
(I − Q)

[
σ2
z

(
L − 1κ′)(L′ − κ1′) + σ̂21κ′κ1′](I − Q′))� (B.52)

With the expressions in (B.51) and (B.52) in hand, we then minimize the expected
welfare loss (B.50) with respect to κ, leading to the corresponding first-order condition:
σ2
z v

′(1κ′ −L) + σ̂2v′1κ′ = 0, where v is defined in (B.48). This, in turn implies that the pol-
icy that minimizes the expected welfare loss is given by κ′ = σ2

z

(σ2
z+σ̂2)v′1v

′L, which coincides
with policy (B.49), which minimizes the volatility of target price index

∑n

i=1ψ
∗
i logpi.

APPENDIX C: ROBUSTNESS CHECKS

This Appendix contains some robustness checks for our quantitative analysis, where we
report the expected welfare loss under the optimal policy and the four alternative policies
considered in Section 5 for different parameter values. We calculate the expected welfare
loss of each of the five policies (relative to the flexible-price equilibrium and measured
as a fraction of steady-state consumption) by simulating the exact model for 10,000 draws
of the vector of productivity shocks. We consider parameter values on a grid with η ∈
{0�5�1�2}, γ ∈ {0�1�1�2}, and φw ∈ {0�25�0�30}, where η, γ, and φw denote the Frisch
elasticity of labor supply, the household’s coefficient of relative risk aversion, and the
degree of wage flexibility, respectively. Aside from the values discussed in the main body
of the paper, we choose the remaining parameter values as follows. We consider η= 0�5
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and γ = 2 as in McKay, Nakamura, and Steinsson (2016) and φw = 0�25 as in Galí (2008).
We also consider the case of η= 1 and γ = 1 as a natural benchmark.

Table C.I reports the results. Three observations are immediate. First, the expected wel-
fare loss under the optimal policy is fairly robust to the choice of parameter values, taking
a value between 0.63% and 0.66% of steady-state consumption. Second, irrespective of
the calibration, the policy that stabilizes the output gap is nearly optimal: among all spec-
ifications, the wedge between the optimal and the output-gap-stabilization policies never
exceeds 0.03 percentage points. Finally, while the expected welfare loss under the policy
that targets the consumer price index is more sensitive to the choice of parameters, this
policy significantly underperforms the optimal policy irrespective of the specification.
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