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This online appendix contains the proofs of Lemmas 1 and A.3 and Propositions 1–3,
A.1, and A.2.

Proof of Lemma 1

Let G1 and G2 denote two efficient production networks. Let G1∪G2 be the production
network that contains all supplier-customer relationships that are present in either G1

or G2. Market clearing of the final good implies that

Y (G1∪G2)−Y (G1)=(A(G1∪G2)−A(G1))L−
∑

ij∈G2\G1

(cij+sij)

≥(A(G2)−A(G1∩G2))L−
∑

ij∈G2\G1

(cij+sij)

=Y (G2)−Y (G1∩G2),

where the inequality is a consequence of Assumption 1(a). Since both G1 and G2 are
efficient, the left-hand side of the above inequality is nonpositive, whereas the right-hand
side is nonnegative. Therefore, both expressions have to be equal to zero, implying that
Y (G1∪G2)=Y (G1)=Y (G2). Thus, G1∪G2 is also efficient. An inductive argument
then implies that the union of all efficient production networks is efficient. �

Proof of Lemma A.3

Proof of part (a). Fix a firm j and let b=(bj ,b−j) and b̂=(b̂j ,b̂−j) denote two strategy

profiles such that b̂j≥bj and b̂−j≥b−j element-wise. Equation (A.28) implies that

φj(b̂)−φj(bj ,b̂−j)−φj(b̂j ,b−j)+φj(b)=πj(G(b̂))−πj(G(bj ,b̂−j))

−πj(G(b̂j ,b−j))+πj(G(b)).
(B.1)
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Furthermore, the expression for firms’ gross profits in (6) implies that

πj(G(b̂))−πj(G(bj ,b̂−j))=θj
∑
T3j

ψj(T \{j})
[
A(G(b̂)|T )−A(G(bj ,b̂−j)|T )

]
L (B.2)

πj(G(b̂j ,b−j))−πj(G(b))=θj
∑
T3j

ψj(T \{j})
[
A(G(b̂j ,b−j)|T )−A(G(b)|T )

]
L, (B.3)

where we are using the fact that A(G(bj ,b−j)|T ) is independent of bj whenever j 6∈T .
Assumption 1(a) together with ψj(T \{j})≥0 guarantees that the right-hand side of
(B.2) is greater than equal to the right-hand right of (B.3). Thus, the right-hand side of
(B.1) is nonnegative, implying that φj(bj ,b−j) has increasing differences in (bj ,b−j). �

Proof of part (b). Let b=(bj ,b−j) and b̂=(b̂j ,b̂−j) be two arbitrary strategy profiles.
By (A.28),

φj(bj∨ b̂j ,b−j)+φj(bj∧ b̂j ,b−j)−φj(b̂j ,b−j)−φj(bj ,b−j)

=πj(G(bj∨ b̂j ,b−j))+πj(G(bj∧ b̂j ,b−j))−πj(G(b̂j ,b−j))−πj(G(bj ,b−j)).
(B.4)

Using the expression for firm j’s gross profit in (6) to replace for the first and last terms
on the right-hand side of (B.4) leads to

πj(G(bj∨ b̂j ,b−j))−πj(G(bj ,b−j))=θj
∑

T⊆N\{j}
ψj(T )

[
A(G(bj∨ b̂j ,b−j)|T∪{j})

−A(G(bj ,b−j)|T∪{j})
]
L,

(B.5)

where we are using the fact that the value of A(G(bj ,b−j)|T ) is independent of bj
whenever j 6∈T . Similarly, writing the second and third terms on the right-hand side
of (B.4) in terms of (6), we obtain

πj(G(b̂j ,b−j))−πj(G(bj∧ b̂j ,b−j))=θj
∑

T⊆N\{j}
ψj(T )

[
A(G(b̂j ,b−j)|T∪{j})

−A(G(bj∧ b̂j ,b−j)|T∪{j})
]
L.

(B.6)

Assumption 1(a) together the fact that ψj(T )≥0 guarantees that the right-hand side
of (B.5) is greater than or equal to that of (B.6). Consequently, the right-hand side of
(B.4) is nonnegative, which means φj(bj ,b−j) is supermodular in bj given an arbitrary
b−j . �

Proof of Proposition 1

Let s∗frg =πj(G∪{ik,kj})−πj(G∪{ik}) be the threshold beyond which firm j drops its

relationship with firm k in the fragmented economy. Aggregate output in the fragmented
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architecture is thus given by

Yfrg =


A(G∪{ik,kj})−s−

∑
rl∈G

srl if s≤s∗frg

A(G)−
∑
rl∈G

srl if s>s∗frg,
(B.7)

where we are using the assumption that A(G∪{ik})=A(G). A similar argument implies
that aggregate output in the integrated architecture is

Yint=


A(G∪{ij})−s−

∑
rl∈G

srl if s≤s∗int

A(G)−
∑
rl∈G

srl if s>s∗int,
(B.8)

where s∗int=πj(G∪{ij})−πj(G) is the threshold beyond which j drops its relationship
with i in the integrated economy. Comparing (B.8) to (B.7), it is immediate that if (13)
is satisfied, and as long s∗frg<s

∗
int, then Yfrg>Yint for s≤s∗frg and Yfrg≤Yint for s>s∗frg.

The proof is therefore complete once we show that s∗frg<s
∗
int.

Recall that s∗frg =πj(G∪{ik,kj})−πj(G∪{ik}) and s∗int=πj(G∪{ij})−πj(G). The

expression for firms’ profits in (6) therefore implies that

s∗frg =θj
∑

T⊆N\{j}
ψj(T ∪{k})

[
A(G∪{ik,kj}|T∪{j,k})−A(G|T∪{j,k})

]
L

s∗int=θj
∑

T⊆N\{j}
ψj(T )

[
A(G∪{ij}|T∪{j})−A(G|T∪{j})

]
L,

where N denotes the set of firms in the integrated architecture and thus excludes firm k.
Note that s∗int does not depend on θk. Therefore, to show that s∗frg<s

∗
int for large enough

values of θk, it is sufficient to show that limθk→∞ψj(T ∪{k})=0 for all T ⊆N \{j}, which
implies that limθk→∞s

∗
frg =0. To this end, recall from the proof of Theorem 1(c) that

the weights ψj satisfy equations (A.20) and (A.21). The recursion in (A.20) and a simple
inductive argument on set T implies that limθk→∞ψj(T ∪{k})=limθk→∞q(T ∪{j,k})=
0 for all T ⊆N \{j}. �

Proof of Proposition 2

Let k∗ denote the depth of the supply chain in the economy’s greatest equilibrium.
Given that each supplier-customer relationship generates a productivity gain of A≥1
but requires a fixed cost of s, equilibrium aggregate output is Y ∗=Ak

∗−1L−(k∗−1)s.
We next derive the expression for k∗.

For any k≤n, let Gk denote the production network of depth k+1, consisting of
firms 0 through k. We make two observations. First,

πk(Gk)≤πi(Gk) for all i≤k. (B.9)
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To see this, note that A(Gk|T∪{i})=A(Gk|T ) unless T ⊇{0,...,i−1}. Therefore, by (6),

πi(Gk)=θi
∑

T⊇{0,...,i−1}
ψi(T )[A(Gk|T∪{i})−A(Gk|T )]L.

Since all summands on the right-hand side of the above equation are nonnegative, it is
immediate that πi(Gk)≥πi+1(Gk), which establishes (B.9).

Second, we note that

πn(Gn)≥πk(Gk) for all k≤n. (B.10)

To show this, note that, according to (6),

πk(Gk)=θk
∑

T⊇{0,...,k−1},T 63k
ψk(T )[A(Gk|T∪{k})−A(Gk|T )]L

=θk

 ∑
T⊇{0,...,k−1},T 63k

ψk(T )

[A(Gk)−A(Gk−1)]L

=θk

 ∑
T⊇{0,...,k−1},T 63k

ψk(T )

Ak−1(A−1)L,

where the first equality is a consequence of the fact that A(Gk|T∪{k})=A(Gk|T ) for

any T 6⊇{0,...,k−1}, the second equality follows from Gk|T∪{k}=Gk and Gk|T =Gk−1
for any set T that contains {0,...,k−1} but not k, and the last equality follows from
A(Gk)=Ak. Since all firms have identical bargaining powers,

θkψk(T )=
|T |!(n−|T |)!

(n+1)!
.

As a result,

πk(Gk)=

n∑
r=k

(
n−k
r−k

)
r!(n−r)!
(n+1)!

Ak−1(A−1)L=
1

k+1
Ak−1(A−1)L.

Therefore, as long as logA>1/2, then πk(Gk) is increasing in k, thus establishing (B.10).
With (B.9) and (B.10) at hand, we now prove the result. Let s∗=πn(Gn). As long as

s≤s∗, inequality (B.9) implies that φi(Gn)=πi(Gn)−s≥0, thus guaranteeing that all
firms make nonnegative profits. This means that, in the economy’s greatest equilibrium,
all firms pay the fixed cost of establishing a relationship with their customer, and hence,
k∗=n+1. If on the other hand, s>s∗, then (B.10) implies that φk(Gk)=πk(Gk)−s<0,
which means no firm k 6=0 is willing to pay the fixed cost s to serve as the most upstream
firm in the supply chain. Thus, it must be the case that the equilibrium supply chain
only consists of firm 0, i.e., k∗=1. �

Proof of Proposition 3

Let G denote a production network that contains customer-supplier relations between
firms i and k and their designated suppliers j=n+i and l=n+k, respectively. According
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to (6), the marginal (gross) benefit to firm i of maintaining a relationship with its supplier
is given by

πi(G)−πi(G\{ij})=θi
∑

T⊆N\{i}
ψi(T )

[
A(G|T∪{i})−A(G\{ij}|T∪{i})

]
L.

Recall from the proof of Theorem 1 that the weights ψi in the above expression satisfy
(A.21). Therefore,

πi(G)−πi(G\{ij})=θi
∑
T⊇{i}

q(T )[A(G|T )−A(G\{ij}|T )]L

=θi
∑
T⊆N

q(T )[A(G|T )−A(G\{ij}|T )]L,

where q(·) satisfies the recursion in (A.20) and the second equality follows from the fact
that A(G|T )=A(G\{ij}|T ) for any set T that does not contain i. The fact that each
firm i in the bottom layer has only a single potential supplier in the top layer, together
with the assumption that the input varieties used by the final good producer have no
productivity advantage over the latter’s in-house production technology, implies that
A(G\{ij}|T )=A(G|T\{i}). As a result,

πi(G)−πi(G\{ij})=θi
∑
T⊆N

q(T )[A(G|T )−A(G|T\{i})]L.

A similar argument implies that

πk(G)−πk(G\{kl})=θk
∑
T⊆N

q(T )[A(G|T )−A(G|T\{k})]L.

Since all firms in the bottom layer have identical bargaining powers, θ, subtracting the
last equation from the previous one leads to

∆ik=θ
∑
T⊆N

q(T )[A(G|T\{k})−A(G|T\{i})]L,

where ∆ik=[πi(G)−πi(G\{ij})]−[πk(G)−πk(G\{kl})]. If set T contains neither i nor
k, then A(G|T\{k})=A(G|T\{i}). As a result,

∆ik=θ
∑
T3i,k

q(T )
[
A(G|T\{k})−A(G|T\{i})

]
L

+θ
∑

T3i,T 63k
q(T )

[
A(G|T )−A(G|T\{i})

]
L

+θ
∑

T 63i,T3k
q(T )

[
A(G|T\{k})−A(G|T )

]
L.

(B.11)
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Applying the change of variable T̃ =T ∪{i}\{k} to the last summation on the right-hand
side of (B.11) leads to

∆ik=θ
∑
T3i,k

q(T )
[
A(G|T\{k})−A(G|T\{i})

]
L+θ

∑
T3i,T 63k

q(T )
[
A(G|T )−A(G|T\{i})

]
L

+θ
∑

T̃3i,T̃ 63k

q(T̃ ∪{k}\{i})
[
A(G|T̃\{i})−A(G|T̃∪{k}\{i})

]
L.

Equation (A.20) and the assumption that all bottom-tier firms have identical bargaining
powers imply that q(T̃ ∪{k}\{i})=q(T̃ ) for any set T̃ such that T̃ 3 i and T̃ 63k. Hence,

∆ik=θ
∑
T3i,k

q(T )
[
A(G|T\{k})−A(G|T\{i})

]
L

+θ
∑
T3i,k

q(T \{k})
[
A(G|T\{k})−A(G|T\{i})

]
L.

When i,k∈T , then A(G|T\{k})>A(G|T\{i}) if and only if Ai>Ak. Therefore, ∆ik>0
whenever Ai>Ak. This means that if Ai>Ak, then for any given level of aggregate TFP,
Ā, the marginal benefit to firm k of keeping its supplier is smaller than that to firm i.
Hence, as Ā declines, firm k drops its supplier before firm i whenever Ai>Ak. �

Proof of Proposition A.1

To establish supermodularity at the extensive margin (Assumption 1(a)) we start by
deriving an expression for A(G) in terms of the production network G. Recall that
A(G) denotes the economy’s aggregate productivity when a social planner chooses firms’
technologies Ii and the corresponding quantities to maximize aggregate output. Theorem
3(a) of Acemoglu and Azar (2020) establishes that to solve for the efficient allocation,
one can simply focus on the competitive equilibrium, in which all firms price at marginal
cost. We thus derive the expression for A(G) by first solving for prices in the competitive
equilibrium of the economy with production network G and then using the fact that
A(G)=w/mc0(G), where mc0(G) is the marginal cost of the final good producer.

Under marginal cost pricing, firm i sets the same price irrespective of the identity of
the customer it is selling to. Let pi denote the price set by firm i. The CES production
function, together with marginal cost pricing, implies that

pi= min
Ii:
ik∈G
k∈Ii


αiw1−σ+

∑
j∈Ii

γij(min{pj/Aij ,w})1−σ+
∑
j 6∈Ii

γijw
1−σ

1/(1−σ)


=

αiw1−σ+
∑

j:ij∈G
γij(min{pj/Aij ,w})1−σ+

∑
j:ij 6∈G

γijw
1−σ

1/(1−σ)

.

Since αi+
∑n
j=1γij=1, we can bound the right-hand side of the above equation from

above by w, thus establishing that pi≤w for all firms i. When paired with the assumption
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that Aij≥1, this implies that

pi=

αiw1−σ+
∑

j:ij∈G
γij(pj/Aij)

1−σ+
∑

j:ij 6∈G
γijw

1−σ

1/(1−σ)

for all i={1,...,n}. When σ 6=1, we can rewrite this system of equations in vector form
as follows:

p◦(1−σ)=αw1−σ+(G◦Γ◦A◦(σ−1))p◦(1−σ)+((11′−G)◦Γ)1w1−σ.

In the above expression, p=(p1,...,pn)′ denotes the vector of input prices, ◦ denotes
the Hadamard (i.e., element-wise) matrix product and matrix power, A=[Aij ]∈Rn×n
is a square matrix of pairwise productivities, Γ=[γij ]∈Rn×n, and with some abuse of
notation, we use G to denote a square binary matrix that captures pairwise supplier-
customer relationships in network G. Solving the above system of equations, we have

p◦(1−σ)=Q(α+((11′−G)◦Γ)1)w1−σ=Q(I−G◦Γ)1w1−σ,

where Q=(I−G◦Γ◦A◦(σ−1))−1 and we are using the fact that α=1−(11′◦Γ)1 to

obtain the second equality. Recall that, by assumption, matrix H=Γ◦A◦(σ−1) has a
subunit spectral radius. Therefore, Q is an inverse M-matrix and hence is element-wise
nonnegative. The marginal cost of firm 0 thus satisfies

mc1−σ0 =γ′0p
◦(1−σ)=γ′0Q(I−G◦Γ)1w1−σ,

where γ0=(γ01,...,γ0n). This, together with A(G)=w/mc0 leads to the following
expression for aggregate productivity:

A(G)=
[
γ′0Q(I−G◦Γ)1

]1/(σ−1)
. (B.12)

With the expression for aggregate productivity at hand, we next show that (B.12) satisfies
the inequality in (9). Note that A(G) is a function defined over the set of binary matrices
G with elements gij ∈{0,1}. We consider the extension of the expression in (B.12), which
we denote by Ā(G), by assuming that gij can take any value in the unit interval [0,1]
and establish that

∂2Ā
∂gij∂gkr

≥0 (B.13)

for all ij 6=kr. If (B.13) is satisfied, then Ā(max{G1,G2})+Ā(min{G1,G2})≥Ā(G1)+
Ā(G2) for any pair of matrices G1 and G2 with elements in the unit interval. The fact
that Ā(G)=A(G) for any binary matrix G then establishes thatA(G) is a supermodular
function of the production network G, thus establishing (9) and Assumption 1(a).

To establish (B.13), observe that

∂Ā
∂gij

=
1

σ−1
γij(γ

′
0Qei)

(
Aσ−1ij (pj/w)1−σ−1

)
Ā2−σ, (B.14)

where ei denotes the i-th unit vector. Since Q is element-wise nonnegative, it is immediate
that γ′0Qei≥0. Furthermore, since Aij≥1 and pj≤w, expression Aσ−1ij (pj/w)1−σ−1
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has the same sign as σ−1. Consequently, ∂Ā/∂gij≥0. Next, observe that differentiating
(B.14) implies that

∂2Ā
∂gij∂gkr

=(2−σ)
1

Ā
∂Ā
∂gij

∂Ā
∂gkr

+γijA
σ−1
ij

∂Ā
∂gkr

γ′0Qei
γ′0Qek

e′jQek+γkrA
σ−1
kr

∂Ā
∂gij

γ′0Qek
γ′0Qei

e′rQei.

As we already established, ∂Ā/∂gij≥0. This, together with the fact that Q is element-
wise nonnegative, guarantees that the second and third terms on the right-hand side of
the above equation are nonnegative. Hence, (B.12) is trivially satisfied for all σ≤2. �

Proof of Proposition A.2

Proof of part (a). By (A.14), equilibrium gross profits satisfy

θs(πk(G)−πk(G\{ks}))=θk(πs(G)−πs(G\{ks})) for all ks∈G. (B.15)

while at the same time (A.15) implies that∑
k∈N

πk(G)=(A(G)−A(∅))L. (B.16)

Next, consider the counterfactual economy in which after adding relationship ij to G the
economy’s aggregate productivity rises from A(G) to A(G∪{ij}) but all disagreement
points remain unchanged. Denoting firm k’s gross profits in this economy by π̄k(G∪{ij}),
the first-order conditions of pairwise bargaining problems imply that

θs(π̄k(G∪{ij})−πk(G\{ks}))=θk(π̄s(G∪{ij})−πs(G\{ks})) for ks∈G (B.17)

θj(π̄i(G∪{ij})−πi(G))=θi(π̄j(G∪{ij})−πj(G)), (B.18)

where note that the disagreement points in (B.17) remain the same as in (B.15). At
the same time, since aggregate productivity increases from A(G) to A(G∪{ij}), an
argument similar to the proof of (A.15) in Lemma A.1 implies that∑

k∈N
π̄k(G∪{ij})=(A(G∪{ij})−A(∅))L. (B.19)

Recall that, by definition, the surplus expansion effect for any given firm k is given by
∆π

exp
k = π̄k(G∪{ij})−πk(G). Therefore, combining (B.17) with (B.15) implies

1

θk
∆π

exp
k =

1

θs
∆πexps for all ks∈G. (B.20)

Furthermore, (B.18) can be rewritten as

1

θi
∆π

exp
i =

1

θj
∆π

exp
j . (B.21)

Subtracting (B.16) from (B.19) leads to∑
k∈N

∆πexpk =(A(G∪{ij})−A(G))L. (B.22)

Since production network G is connected by assumption, the system of equations (B.20)–
(B.22) always has a unique solution, which is given by (A.4). �
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Proof of part (b). Applying equation (A.15) to production networks G and G∪{ij}
implies that firms’ equilibrium profits satisfy∑

k∈N
πk(G∪{ij})−

∑
k∈N

πk(G)=(A(G∪{ij})−A(G))L,

This, together with (B.22) and the fact that ∆πexpk +∆πredk =πk(G∪{ij})−πk(G), then

guarantees that
∑
k∈N∆πredk =0.

We next establish that ∆πredi ≥0. The argument for ∆πredj ≥0 is identical. By (6),
the change in i’s equilibrium profits as a result of adding relationship ij to G is given by

πi(G∪{ij})−πi(G)=θi
∑

T⊆N\{i}
ψi(T )

[
A(G∪{ij}|T∪{i})−A(G|T∪{i})

]
L, (B.23)

where ψi(T ) is given by (7) and we are using the fact that A(G∪{ij}|T )=A(G|T ) for
all T ⊆N \{i}. When T =N \{i}, the summand on the right-hand side of (B.23) reduces
to

θiψi(N \{i})[A(G∪{ij})−A(G)]L=
θi

θ0+···+θn
[A(G∪{ij})−A(G)]L=∆πexpi ,

where the second equality follows from (A.4). Therefore, subtracting both sides of the
above equation from (B.23) and using ∆πredi =πi(G∪{ij})−πi(G)−∆π

exp
i , implies

∆πredi =θi
∑

T(N\{i}
ψi(T )

[
A(G∪{ij}|T∪{i})−A(G|T∪{i})

]
L.

Recall from (7) that ψi(T )≥0 for all T . Furthermore, A(G∪{ij}|T∪{i})≥A(G|T∪{i}).
Thus, the right-hand side of the above equation is nonnegative, implying that ∆πredi ≥0.
�

Proof of part (c). Inequality (A.5) is simply a restatement of Theorem 3. To establish
(A.6), note that equation (A.15) implies that∑

k∈N
(∆πexpk +∆πredk )=(A(G∪{ij})−A(G))L.

This, together with in (A.5), then establishes (A.6). �
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