
Inefficient Diversification∗

Kostas Bimpikis† Alireza Tahbaz-Salehi‡

This version: April 2014
First version: November 2012

Abstract
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1 Introduction

The proliferation of new complex financial instruments can be considered as one of the most signif-

icant events in finance over the past two decades. According to the conventional wisdom, financial

innovations in the form of credit default swaps and similar products have enabled financial institu-

tions to diversify risk more effectively and as a result, have increased the efficiency of the system as a

whole. In fact, the potential benefits of such instruments served as one of most important rationales

for deregulation in the decade prior to The Financial Crisis of 2007–2009.1 On the other hand, and

more recently, it has also been argued that these instruments may have contributed to the fragility of

the financial system by reducing the diversity among different institutions. For example, as argued

by Andrew Haldane, the Executive Director of Financial Stability in the Bank of England, “diversifica-

tion strategies by individual firms generated a lack of diversity across the system as a whole,” leading

to a financial system that exhibited “both greater complexity and less diversity,” at the detriment of

the system’s stability (Haldane (2009, p. 8)).

In this paper, we argue that the presence of non-convexities in the economy (e.g., due to the pos-

sibility of costly bank runs), creates a wedge between the investment incentives of financial institu-

tions and their depositors’ welfare, thus, implying that risk diversification may indeed be inefficient

from a social welfare point of view.

We study a stylized economy consisting of two competitive banking sectors, owned by risk-

neutral bankers, and a mass of risk-averse consumers, who are subject to idiosyncratic preference

shocks as in the canonical model of Diamond and Dybvig (1983). In order to ensure themselves

against these shocks, the consumers deposit their funds in the banks, who would then invest in

a common pool of assets on their behalf in exchange for standard demand deposit contracts. We

further assume that even though the final returns on the banks’ investments are observable, their

investment decisions are not contractible.

Given that the banks are subject to runs when the returns on their investments are below a cer-

tain level, bankers have an incentive to choose diversified portfolios, as diversification decreases the

probability of a run on each of the banks. Yet, such diversified portfolios may be socially inefficient:

more diversification implies that the returns on the banks’ portfolios would become more corre-

lated, and hence, the probability of simultaneous bank runs would increase. We show that if the

depositors are risk-averse, the welfare loss due to joint failures may outweigh the gains in reducing

the probability of individual bank runs, implying an inefficient equilibrium.

Excessive equilibrium diversification in our model relies on a number of key ingredients. First

and foremost, the possibility of costly bank runs creates non-convexities in the mapping from the

banks’ investment returns to the payments to the depositors upon withdrawal. In the absence of

such non-convexities, the incentives of the banks and their depositors are always fully aligned, and

thus, the equilibrium and efficient levels of diversification would coincide. The second ingredient

is the assumption that the banks invest in a common pool of assets, which implies that they cannot

1See, for example, Greenspan (1997) and Financial Crisis Inquiry Commission (2011).
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construct diversified portfolios without increasing the correlation between their returns. Clearly,

if each bank has access to a different set of assets with independent returns, diversification does

not lead to correlated portfolios. The third ingredient is the risk-aversion of the depositors. If the

depositors are risk-neutral, their incentives (as far as the extent of the diversification is concerned)

would be aligned with those of the bankers. Yet, risk-aversion guarantees that, all else equal, the

depositors would be worse off as the probability of simultaneous runs increases. Finally, the fact

that the banks’ investment decisions are not contractible implies that bankers do not internalize the

adverse effects of their diversification on depositors.

We remark that in our model, there are no externalities among the banks. Rather, it is the negative

externality of the banks’ decisions on the depositors that is the source of inefficiency. In particular,

with diversified portfolios, a negative return on only one of the assets may lead to simultaneous runs

on both banks; an outcome that would have been avoided with no diversification. Thus, effectively,

by choosing more diversified (and hence, more similar) portfolios, the banks reduce the set of con-

tingencies in which the depositors are (at least, partially) paid above the liquidation value.

Our analysis highlights that regulatory mechanisms that focus on each bank’s risk in isolation

may not be sufficient for mitigating risks at a systemic level. Rather, an effective regulatory policy

may need to take the endogenous correlations between different banks’ portfolios into account.2 Our

results also suggest that financial innovations that enable banks to engineer more diversified port-

folios, may indeed lead to lower social welfare, as the probability that several financial institutions

default together during periods of financial distress may increase. This observation thus suggests

that the well-known benefits of financial innovations (such as more efficient levels of risk-sharing)

may be inseparable from a “curse of financial engineering” manifested in the form of higher systemic

risk.

Related Literature Several papers, such as Acharya (2009), Ibragimov, Jaffee, and Walden (2011)

and Wagner (2010, 2011) study the possible adverse effects of diversification on increasing systemic

risk. Like the current paper, this literature emphasizes the fact that joint failures of financial insti-

tutions may create a higher social cost compared to that of individual failures. The key common

assumption in these papers is that a systemic market crash creates direct externalities between dif-

ferent intermediaries, leading to welfare losses. For example, Ibragimov et al. (2011) study a model in

which the rationale for diversification is weakened in the presence of heavy-tailed risks and high cor-

relations between risks within an asset class. The key assumption in their model is that joint failures

of intermediaries would lead to slower recovery of the financial system, hence creating larger social

costs. In contrast to this literature, no such inter-bank externalities exist in our model. Rather, the

welfare loss is due to the fact that the banks do not internalize the impact of their joint investment

decisions on the depositors.

Recently, Wagner (2010) shows that diversification may not be desirable if liquidation is more

2We emphasize that similar observations have been made by others. See, for example, Acharya, Pedersen, Philippon,
and Richardson (2010), Adrian and Brunnermeier (2011) and Brunnermeier, Gorton, and Krishnamurthy (2011).
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costly in a systemic crisis in which multiple banks have to liquidate assets at the same time. In partic-

ular, he shows that if the banks’ liquidation costs depend on the extent of liquidation by other banks

— for example, due to pecuniary externalities — then the negative externality that banks impose on

one another guarantees that banks’ portfolio choices would be inefficient. In a related paper, Wag-

ner (2011) explores the diversification-diversity tradeoff in the presence of pecuniary externalities,

and shows that the risk of joint liquidation creates an incentive for investors to forgo the benefits of

diversification and hence, optimally choose heterogenous, not fully diversified portfolios. In con-

trast to these works, our model exhibits no such pecuniary externalities as liquidation costs do not

depend on other banks’ portfolios, returns, or liquidation decisions. Rather, it is the non-convexity

of the mapping from the assets’ returns to the payments to the depositors that is driving our results.

Furthermore, in contrast to Wagner’s, banks in our model find it optimal to hold fully diversified

portfolios to minimize the probability of a run.

The paper is also related to recent works by Stiglitz (2010a,b), who, by the means of a reduced-

form model, argues that full integration of global financial markets can exacerbate contagion, whereas

capital controls can be welfare enhancing. We build a micro-founded model which properly ac-

counts for the benefits and costs of diversification in a banking context and show that non-convexities

create a wedge in the incentives of banks and depositors. As a result, under fairly general conditions,

the equilibrium level of diversification does not coincide with the efficient level.

Our paper is also related to Acharya and Yorulmazer (2007, 2008), who study a model in which

banks have an ex ante incentive to herd and increase the likelihood of joint failures in order to induce

a bailout by the government. Somewhat relatedly, Farhi and Tirole (2012) argue that untargeted

policy instruments used by a central bank during the times of financial distress, such as lowering the

Fed Funds rate, would incentivize the banks to take on too much correlated risk. A different strand of

literature, such as Kubler and Schmedders (2012) and Simsek (2013), studies the potential negative

implications of financial innovations on portfolio risk and asset price volatility when agents have

heterogenous beliefs. Also relevant is Buffa (2013), who develops a structural model of credit risk in

which asset value dynamics are endogenously determined by optimal portfolio allocation. He shows

that in the presence of systemic externalities, strategic considerations lead financial institutions to

adopt polarized and stochastic risk exposures, but without sacrificing full diversification. Finally, our

paper is related to the broader literature on systemic risk and financial contagion, such as Shaffer

(1994), Allen and Gale (2000), Goldstein and Pauzner (2004), Dasgupta (2004), and more recently,

Acharya et al. (2010) and Allen, Babus, and Carletti (2012), among others.

Outline of the Paper The rest of the paper is organized as follows. We first present a simple reduced-

form variant of the model in order to illustrate the key economic forces at play. Section 3 contains

the full-fledged micro-founded model. Our main results are presented in Section 4. Section 5 con-

cludes. All proofs and some other mathematical details can be found in the Appendices.
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2 Reduced-Form Model

This section contains a simple reduced-form version of the model, which we use to illustrate the

key economic forces at play. The complete micro-founded model is presented and analyzed in the

subsequent sections.

Consider an economy consisting of two risk-neutral financial institutions (henceforth, banks for

short), indexed by a and b, and a risk-averse representative consumer who has deposited a unit of

endowment in each of the banks. Each bank can invest the deposits in a distinct, “non-overlapping”

set of finitely many assets with independent returns. The banks are subject to default (for example,

due to a run) if the returns on their investments are below some exogenously given threshold d, in

which case they make zero profits. On the other hand, if the realized return of the bank’s investment

is larger than d, it obtains a constant payoff of R > 0. Thus, bank i ∈ {a, b} chooses a portfolio that

minimizes its default probability, pi.3

The payoff to the representative depositor also depends on the returns of the banks’ portfolios.

In particular, if the realized returns of a bank is larger than d, the depositor receives a return of c,

whereas she only gets α < c in case of default.4 Thus, the expected utility of the representative

depositor can be written as

Vn = u(2c) + (pa + pb)
[
u(c+ α)− u(2c)

]
+ papb

[
u(2c) + u(2α)− 2u(c+ α)

]
,

which is strictly decreasing in both pa and pb. This immediately implies that when the sets of as-

sets in which the banks invest in do not overlap, the incentives of the banks and the depositor are

fully aligned: all parties prefer investments that reduce the probability of individual defaults. In

particular, if diversified portfolios decrease the probability of an individual failure, diversification is

desirable both from the banks’ and the social welfare points of view.

This picture, however, would be dramatically different if there is some overlap in the sets of assets

that the two banks can invest in. Such overlapping investments imply that the returns on the banks’

investments may no longer be independent. Clearly, the optimal portfolio from the banks’ point of

view remains identical to the non-overlapping assets case, as bank i still prefers investments that

minimize pi. However, the representative depositor’s expected utility would be equal to

Vo = pab · u(2α) + (pa + pb − 2pab)u(c+ α) + (1− pa − pb + pab)u(2c),

where pab is the probability that both banks default simultaneously. The above expression suggests

that the consumer’s utility not only depends on the probability of individual failures, pa and pb, but

also on the probability of a systemic failure in which both banks default simultaneously. Hence,

even if diversification reduces the probability of individual failures (and hence, maximizing each

bank’s profits), the induced correlation in banks’ returns may reduce the depositor’s utility (by in-

creasing pab) and possibly even social welfare. Yet, such an effect is not internalized by the banks, as
3The assumption that each bank can invest in only finitely many assets with independent returns implies that it cannot

completely diversify the risk away.
4In the full-fledged model presented in Section 3 we provide micro-foundations for these assumptions.
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the incentives of the banks and the depositor are no longer fully aligned. This negative externality

implies that, in contrast to the non-overlapping case, in the presence of common assets the welfare

implications of diversification are non-trivial.

We remark that regardless of the extent of the overlap between the two sets of assets, the expected

utility of a risk-neutral depositor is equal to

Vn = Vo = 2c− (pa + pb)(c− α),

which is strictly decreasing in pa and pb. Thus, when the depositor is risk-neutral, her interests are

fully aligned with those of the banks, even if the sets of assets in which banks can invest in are over-

lapping: under risk-neutrality, all parties only care about reducing the probability of individual fail-

ures. This is not surprising in light of the fact that the expected utility of such a depositor no longer

depends on the correlation between the transfers she receives from the two banks.

The above simple example thus points towards a more general observation: the interplay be-

tween (i) the non-convexities in the mapping from the assets’ returns to the agent’s payoff; and (ii)

the agents’ risk-aversion creates a wedge between the incentives of different agents, and may lead

to inefficiently high levels of risk diversification. In the rest of the paper, we develop and analyze a

micro-founded model and show that under fairly general conditions, the intuitions presented in this

section carry through.

3 Micro-Founded Model and Equilibrium

3.1 Depositors

Consider a single-good economy that lasts for three dates t = 0, 1, 2. The economy is populated by

a unit mass of depositors (also referred to as consumers) with 2 units of endowment of the good

at t = 0 and no endowment at other dates. The individuals are ex ante identical, but are subject

to idiosyncratic preference shocks, which affect their demand for the consumption good at future

dates. In particular, the consumers have standard Diamond-Dybvig preferences: a fraction π of them

are impatient (also referred to as short-lived and denoted by s) and value consumption only at t = 1,

whereas the rest are patient (also referred to as long-lived and denoted by `) and value consumption

at both future dates; that is,

U θ(c1, c2) =

{
u(c1) if θ = s
u(c1 + c2) if θ = `,

where u(·) is continuously differentiable, increasing and strictly concave. Each depositor learns her

type at the beginning of date t = 1, which remains a private information of the individual through-

out. Finally, we assume that, except for depositing their endowments in the banks, the depositors

have no means of transferring their wealth from t = 0 to future dates.
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3.2 Banks

In addition to the consumers, there are two competitive banking “sectors” in the economy, indexed

by a and b, whose role is to make investments on behalf of the consumers. Each bank is owned by

a risk-neutral banker who maximizes expected profits. Banks in each sector have k units of endow-

ment which they need to pay as an entry cost. The deposits of the consumers are invested by the

banks in two different assets. Even though the returns on the banks’ investments are observable, we

assume that they are non-contractible.

Given that the type of the consumers and the banks’ portfolio returns are non-contractible, a

demand deposit contract between a bank in sector i ∈ {a, b} and the depositors is a pair ci = (ci1, ci2),

capturing the claim of depositors who withdraw in periods t = 1 and t = 2, respectively. In the event

that a bank cannot fulfill its promise to repay all withdrawing depositors based on the face value of

the demand deposit contracts, the banks’ assets are liquidated and distributed equally among the

withdrawing depositors.

After paying the entry cost k and raising capital from the depositors in exchange for demand

deposit contracts, the banks invest in two distinct illiquid assets, indexed 1 and 2. Asset j ∈ {1, 2}
has a random return of zj at period t = 1 and a fixed return of R after it matures at t = 2. The

returns of the assets at t = 1 are independent and identically distributed with mean µ and a smooth

probability density function f(·) which has full support over [0,∞).

We denote the level of investment of bank i in asset 1 by γi ∈ [0, 1]. Thus, γi captures the extent

of diversification in bank i’s portfolio, with γi = 1/2 corresponding to a fully diversified portfolio. We

assume that banks can liquidate their portfolio at t = 1, but this liquidation is costly: if assets are

liquidated prematurely at t = 1, they would have a fixed return of α < R, which is a small positive

number. For simplicity, throughout the paper, we focus on the limiting case that α → 0, which

implies that in the case of a bank run, the bank needs to liquidate all its holdings of both assets.

3.3 Competitive Equilibrium

The strategy of a bank in sector i consists of a decision to enter, a demand deposit contract ci =

(ci1, ci2) offered to the depositors upon entry, and an investment decision γi(ci), if contract ci is ac-

cepted by the depositors. On the other hand, a depositor chooses which pair of contracts to accept,

how to deposit its endowment in the two banks, and whether to withdraw its deposits at date t = 1

after observing the realization of its type and the short-term returns of the banks’ portfolios.5

Let Πi(ci, γi) denote the expected profits of a bank in sector i per unit of deposit as a function

of the face value of the contract it offers and its investment decision — provided that it is accepted

by the depositors — when the patient depositors withdraw optimally. Thus, the total profits of such

a bank are equal to ωiΠi(ci, γi), where ωi is the total amount of deposits in bank i.6 The optimal

5Given that withdrawing at t = 1 is a strictly dominant action for impatient depositors, only patient depositors may
wait until t = 2 to withdraw their deposits.

6Hence, by assumption, ωa + ωb = 2.
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investment decision of the bank is thus given by

γ∗i (ci) ∈ arg max
γi∈[0,1]

Πi(ci, γi). (1)

We also denote the transfer, per unit of deposit, from bank i to the depositors of type θ ∈ {s, `}
when a contract of face value ci is accepted and the bank chooses γi by T θi (ci, γi).7 Therefore, the

expected utility of the depositors when they accept contracts ca and cb and banks choose γa and γb
is equal to

V̂ (ca, cb, ωa, ωb, γa, γb) = πEu

 ∑
i∈{a,b}

ωiT
s
i (ci, γi)

+ (1− π)Eu

 ∑
i∈{a,b}

ωiT
`
i (ci, γi)

 .

We can thus define the ex ante indirect utility of a depositor who accepts the pair of contracts ca and

cb as

V (ca, cb, ωa, ωb) = V̂ (ca, cb, ωa, ωb, γ
∗
a(ca), γ

∗
b (cb)) .

Note that by (1), the investment decisions of the banks are independent of how the depositors allo-

cate their funds between them. Given the above, we now define the competitive equilibrium of the

economy.

Definition 1. A competitive equilibrium consists of a pair of demand deposit contracts ca, cb ∈ R2
+

offered by the banks, investment decisions γa, γb : R2
+ → [0, 1], contract choice, and deposit and

withdrawal decisions by the depositors such that

(i) For any ĉa, ĉb, γ̂a and γ̂b, the withdrawal decision of each depositor is optimal.

(ii) For any contract ĉi, bank i invests optimally, i.e, γi(ĉi) ∈ arg maxγi Πi(ĉi, γi).

(iii) Banks in sector i offer contracts that maximize their profits.

(iv) Depositors accept the pair of contracts that offers them the highest utility, and deposit their

endowments within the two banks optimally.

A few remarks are in order. First, note that the above notion of equilibrium requires that depos-

itors withdraw their deposits from the banks optimally in all subgames that follow the acceptance

of a contract. Furthermore, the contracts that are offered have to satisfy incentive-compatibility, as

the depositors understand that each bank would choose the portfolio that maximizes its expected

profits. Note that a contract ci is accepted in equilibrium only if it satisfies the Rothschild and Stiglitz

(1976) condition of robustness to the introduction of additional profitable contracts. Finally, we re-

mark that, as in Diamond and Dybvig (1983), the banks in our model are subject to runs that arise

due to self-fulfilling expectations or sunspots. Throughout the rest of the paper, however, we re-

strict our attention to what Allen and Gale (2007) refer to as “essential” banks runs and rule out the

possibility of such coordination failures by assumption.

7Note that the transfer from the banks to the depositors is also a function of the returns of the assets z1 and z2. However,
for notational simplicity we drop this dependence.
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Definition 2. An equilibrium is symmetric if banks in both sectors offer identical demand deposit

contracts and choose an identical level of diversification; i.e., if (ca1, ca2) = (cb1, cb2) and γa = 1− γb.

Note that in any symmetric equilibrium, the depositors find it weakly dominant to allocate their

funds equally between the two banks; that is, ωa = ωb = 1. In particular, if for a given contract,

the banks find it optimal to not fully diversify their portfolio (i.e., γa = 1 − γb 6= 1/2), then a given

depositor has a strict incentive to allocate her funds equally between the two banks, as it would

enable her to diversify risk. On the other hand, if the banks choose γa = γb = 1/2, then no depositor

can increase her expected payoff by depositing her funds unequally between the two banks. Thus,

for the rest of the paper, we can restrict our attention to the case in which ωa = ωb = 1.

4 Diversification and Systemic Risk

In this section, we show that the equilibrium is not necessarily efficient. In particular, we show that

under fairly broad conditions, the banks choose an overly diversified portfolio as far as social welfare

is concerned. Hence, by forcing the banks to hold less diversified portfolios, a regulator can achieve

an outcome that Pareto dominates the equilibrium allocation.

Before presenting our main results, however, it is helpful to compare the micro-founded model

presented in the previous section with the reduced-form model of Section 2. The characterization

provided in Appendix A shows that when the face value of the contracts offered by the banks satisfy

ci1 ≤ ci2 < R/(1− π),

then there is a run on bank i if and only if xi < πci1, where xi = γiz1 + (1 − γi)z2 is the short-term

return of the bank’s portfolio. This is due to the fact that when the short-term return of bank i’s

portfolio is below πci1, the bank needs to liquidate its assets in order to meet its obligations to the

impatient depositors. However, this implies that it would not be able to meet its obligations to the

patient depositors at t = 2, inducing a bank run. Conversely, when xi > πci1, the bank does not need

to liquidate its assets to pay the impatient depositors. Assumption R > (1 − π)ci2 then implies that

the patient depositors have no incentive to withdraw at t = 1, ruling out a bank run.

Thus, the transfer from bank i to the depositors as a function of its short-term returns is given by

T θi (ci, γi) =


xi if xi < πci1
ci1 if xi > πci1, θ = s
ci2 if xi > πci1, θ = `.

Furthermore, the expected profit of the bank is equal to

Πi(ci, γi) = E
[(
R+ xi − πci1 − (1− π)ci2

)
1{xi>πci1}

]
.

Figures 1(a) and 1(b) below depict the transfers to the depositors and bank i’s profits in terms of i’s

short-term returns, respectively.
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Figure 1. (a) Transfers to the patient (red) and impatient (blue) depositors; (b) bank’s profits.

Figure 1 illustrates the similarities and distinctions between our micro-founded model and the

reduced-form model of Section 2. First, note that as in the reduced-form model, there exists some

threshold — equal to πci1 — at which the payoffs to the depositors and the banks exhibit discon-

tinuities. As already mentioned, such discontinuities are consequences of the fact that when the

short-term returns on a bank’s investment are small, withdrawal by the impatient depositors forces

the bank to liquidate its assets prematurely. Anticipating this, the patient depositors would also

decide to withdraw early, leading to a bank run. Hence, there exists a threshold under which the

payoff to the bank and all depositors would be equal to zero and xi, respectively. However, unlike

the reduced-form model, the run threshold and the payoff levels are endogenously determined in

equilibrium, as they depend on the face value of the contract offered by the bank. Finally, note that

the payoffs to the depositors and banks are not necessarily constant on both sides of the threshold;

rather, T θi and Πi are linearly increasing in xi below and above the threshold, respectively. This im-

plies that unlike the reduced-form model, banks’ profits are not necessarily decreasing in the default

probabilities.

4.1 Diversification in Equilibrium

Our first result provides sufficient conditions under which the banks choose a fully diversified port-

folio in equilibrium.

Theorem 1. Suppose that there exists a constant z̄ > 0 such that f(·) is non-decreasing over [0, z̄].

Then, there exist a constant R and functions κ(·) and κ(·) such that for all R > R and all κ(R) < k <

κ(R) banks choose a fully diversified portfolio.

Thus, for high values ofR and k (in addition to some mild technical conditions), the banks would

invest equally in both assets, as a fully diversified portfolio maximizes their profits. The intuition

behind the above result can be understood by drawing parallels with the reduced-form model of
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Section 2: a high enough rate of returnRmeans that the banks find runs very costly, and hence, have

an incentive to invest in such a way that the likelihood of a bank run is minimized. A high entry cost

k, on the other hand, guarantees that the face value of the equilibrium contract and hence, the run

threshold are small enough so that the banks can reduce the probability of a run via diversification.8

In view of the banks’ desire for diversification, financial innovations that enable them to engineer

more diversified portfolios have a direct positive effect on the depositors’ welfare. In particular,

competition guarantees that banks make zero profits in equilibrium and all the surplus generated

by such innovations are fully transferred to the depositors via contracts with better terms.9 Thus,

in line with the conventional wisdom, this result illustrates how financial instruments that enable

inter-bank risk-sharing would positively affect the social welfare.

Finally, we remark that Theorem 1 merely provides a set of sufficient (but not necessary) condi-

tions for full diversification in equilibrium. As we show in Subsection 4.4, banks may choose a fully

diversified portfolio even if the conditions of the theorem are not satisfied.

4.2 Diversification Externality

Theorem 1 establishes conditions under which banks invest equally in both assets in equilibrium.

Our next theorem, which is the main result of the paper, shows that such an equilibrium is necessar-

ily inefficient.

Theorem 2. Under the assumptions of Theorem 1, the equilibrium is inefficient.

Thus, even though banks choose to hold fully diversified portfolios, this outcome is not optimal

from the social welfare point of view. Perfect correlation between the banks’ short-term returns,

which is a side effect of full diversification, increases systemic risk to the extent that it outweighs the

benefits of diversification. The intuition behind this result is straightforward: with fully diversified

portfolios, a negative return on only one of the assets may lead to a systemic crisis with simulta-

neous runs on both banks, whereas such an outcome would have been avoided with less diversi-

fication. Thus, effectively, by choosing more diversified (and hence, more similar) portfolios, the

banks reduce the set of contingencies in which the depositors are (at least, partially) paid above the

liquidation value.

In addition to the possibility of costly premature liquidations of the assets, the inefficiency es-

tablished in Theorem 2 relies on three key ingredients. First and foremost, the result is driven by the

8If k is too small, the face value of the demand deposit contracts and hence, the threshold below which a run would
occur would be large. In that case, banks may find it optimal to take excessive risk and hold a non-diversified portfolio.
On the other hand, assumption k < κ(R) = R + µ guarantees that the banks find it optimal to enter. See Appendix A for
the detailed characterization of the equilibrium.

9If a bank in sector i can make positive profits by offering a contract ci = (ci1, ci2), another bank in the same sector
can “undercut” it by offering a contract with slightly better terms, say c̃i = (ci1, ci2 + δ) for some arbitrary small δ > 0,
and attract all the depositors. Note that the contract offered under this deviation remains incentive-compatible as the
banks have a dominant action in all the subgames that follow the acceptance of the contract; they would choose a fully
diversified portfolio regardless. However, such an incentive-compatible undercutting may not be possible if the banks do
not have a dominant action in the investment subgames. If so, banks may make strictly positive profits in equilibrium,
despite competition. For more on this, see, for example, Bennardo and Chiappori (2003).
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presence of an overlap between the sets of assets the banks can invest in. Clearly, it is the presence

of such overlaps which creates the “side effect” of correlated returns when banks decide to diversify:

they cannot construct diversified portfolios without becoming more similar to one another. In the

next subsection, we show that in the absence of such overlaps, in contrast to Theorem 2, diversifica-

tion is always socially optimal.

The second key ingredient is the risk-aversion of the depositors. Had the depositors been risk-

neutral, their expected utility function, V̂ , would have been separable in transfers T θa and T θb from

the banks, and hence, ceteris paribus, a change in the likelihood of simultaneous runs would have

had no effect on social welfare. On the other hand, as the proof of the theorem shows, the more risk-

averse the depositors are, the higher the social welfare gains of moving away from full diversification

would be.

The inefficiency of equilibrium established in Theorem 2 also relies on the assumption that the

investment decisions of the banks, i.e., γa and γb, are not contractible. This assumption implies that,

once the contracts offered by the banks are accepted by the depositors, the banks do not internalize

the adverse affect of diversification on the depositors when they choose their portfolios. This ex-

ternality thus leads to an inefficient equilibrium. If the banks had the power to commit to specific

investment decisions, then the equilibrium and efficient levels of diversification would have coin-

cided.10 Finally, we remark that the above result holds despite the fact that there are no inter-bank

externalities.

Theorem 2 has a number of implications. First, it suggests that a regulator can strictly increase

the social welfare by restricting the set of portfolios the banks can choose from. Given that there is

excessive diversification in equilibrium, forcing the banks to hold less diversified portfolios would be

socially beneficial. Furthermore, our result suggests that the introduction of financial instruments

that facilitate more diversification and inter-bank risk-sharing has non-trivial welfare implications.

In particular, it points towards the possible existence of a “curse of financial engineering”: as banks

use financial instruments to increase their profits and reduce their default probabilities, they may

also, at the same time, increase the likelihood of a systemic crisis in which several financial institu-

tions default simultaneously, with potentially severe social costs.

We remark that, even though Theorem 2 provides conditions under which there is too much di-

versification in equilibrium, the misalignment between the profit incentives of the banks and the

depositors’ welfare can also manifest itself through the existence of equilibria with too little diversi-

fication. In particular, as we show in Appendix A, when the long-term return R and the entry cost

k are such that the contracts offered in equilibrium by the banks satisfy R < (1 − π)ci1, the banks

choose a non-diversified portfolio (as their expected profit functions are convex in the short-term

returns of their portfolios). The fact that ci1 is large, then implies that the run threshold for an indi-

vidual bank is relatively high, and thus depositors’ welfare would increase with more diversification.

10Note that full diversification would have been inefficient even if the banks had the power to commit to specific invest-
ment decision. However, the equilibrium would have no longer entailed full diversification, and the banks would have
chosen the socially efficient level of diversification instead.
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This is due to the fact that more diversification decreases the probability of bank defaults.

4.3 Non-Overlapping Assets

Our next result shows that if the pairs of assets in which the banks can invest in do not overlap, full

diversification would be an efficient equilibrium.

Theorem 3. Suppose that the banks have access to non-overlapping pairs of assets. Then, under the

assumptions of Theorem 1, they choose a fully diversified portfolio. Furthermore, this equilibrium is

efficient.

Given that the banks cannot commit to specific investment decisions, they choose a fully diver-

sified portfolio regardless of the presence (or lack thereof) of any overlap between the sets of assets

available to them. Under either scenario, more diversification implies a lower default probability

and hence, higher profits. Yet, with non-overlapping assets, full diversification no longer leads to

correlated returns and hence, a higher likelihood of systemic crises. Thus, investment decisions that

minimize the probability of individual defaults are also desirable from a social welfare point of view.

This theorem also clarifies that the inefficiency identified in Theorem 2 is a direct consequence of

the presence of overlapping assets and the induced correlation.

4.4 Exponential Returns

So far, our focus was on providing conditions under which the equilibrium portfolios chosen by the

banks are overly diversified, while assuming that the short-term returns of the assets have a gen-

eral distribution f(z). In the remainder of this section, we assume that the short-term returns are

exponentially distributed with mean µ = 1/λ; that is, f(z) = λe−λz. This particular parametric

assumption enables us to determine and compare the equilibrium and efficient levels of diversifica-

tion as a function of the expected returns of the assets. The following proposition summarizes our

results.

Proposition 1. There exist constants λ and λ̄ and functions κ(·) and κ(·) such that,

(a) For all λ < λ and κ(λ) < k < κ(λ), the banks choose a fully diversified portfolio. If the pairs of

assets available to the banks are identical, then this equilibrium is inefficient. On the other hand,

with non-overlapping assets, the equilibrium is efficient.

(b) For all λ > λ̄ and κ(λ) < k < κ(λ), the banks choose a non-diversified portfolio in equilibrium.

Furthermore, the no diversification equilibrium is efficient, regardless of the composition of the

assets.

Part (a) simply states that for small values of λ — which equivalently corresponds to high ex-

pected short-term returns — the banks invest equally in both assets. This is not surprising in view of
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the fact that with high expected short-term returns, a fully diversified portfolio minimizes the proba-

bility of individual bank runs. Furthermore, it states that if both banks have to invest in the same pair

of assets, a fully diversified equilibrium is never socially optimal. In other words, even though full

diversification minimizes the risk of runs on individual banks, it actually increases the probability of

simultaneous runs on both banks, increasing the aggregate risk faced by the depositors. Thus, this

is the counterpart of Theorem 2 for the assets with exponential returns. The last statement of part

(a) establishes that the inefficiency identified is indeed a consequence of the fact that banks invest

in the same set of assets. As in Theorem 3, with non-overlapping sets of assets, the incentives of all

parties would be fully aligned, as more diversification would no longer lead to higher inter-bank cor-

relations. Taken together, part (a) of Proposition 1 also shows that the assumptions in the statement

of Theorem 1 are not necessary for the existence of inefficient equilibria entailing full diversification.

Part (b) of Proposition 1, on the other hand, shows that for large enough values of λ — which

correspond to low expected short-term returns — the banks choose a non-diversified portfolio. This

observation rests on the fact that, unlike part (a), a non-diversified portfolio is what minimizes the

probability of a run on each of the banks. In particular, when expected short-term returns are suf-

ficiently smaller than the run thresholds, the banks’ optimal strategy entails maximum risk-taking.

Finally, the last statement of part (b) states that the no diversification equilibrium is precisely the

socially efficient portfolio choice, even if the banks invest in the same pair of assets.

5 Conclusions

The main insight suggested by this paper is that in the presence of liquidation costs, risk diversifi-

cation by financial institutions may be socially inefficient. The paper presents a stylized model in

which banks have an incentive to hold diversified portfolios, as diversification reduces the probabil-

ity of bank runs. As a side effect, however, diversification also increases the correlation between the

returns on banks’ investments. Such correlations make systemic crises in which multiple banks fail

simultaneously more likely. Our results show that it is indeed possible that the welfare loss due to

joint failures of financial intermediaries outweigh the gains of diversification. In particular, we es-

tablish that in the presence of risk-averse depositors, large enough returns and entry costs guarantee

that full diversification is inefficient.

Unlike the rest of the literature, we show that diversification may increase systemic risk even if

there are no negative inter-bank externalities. Rather, the inefficiency in our model is due to the

fact that banks do not internalize the adverse effects of diversification on the aggregate risk faced

by their depositors: the diversification undertaken by the banks reduces the set of contingencies in

which the depositors are paid above the liquidation value, effectively increasing the likelihood of a

worst-case outcome for the depositors.

Our results have a number of implications. First, the potential externality that the banks’ diversi-

fication decisions impose on the depositors suggests that, under certain conditions, a regulator may

be able to increase social welfare by restricting the extent of diversification undertaken by individual
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financial institutions. This goal can be achieved by either imposing an outright limit on the set of

assets that different financial institutions can invest in or introducing prohibitions against certain

banking activities. Alternatively, a regulator can discourage diversification by, say, increasing the

capital requirements for excessively diversified financial institutions. Such regulations would effec-

tively decrease the correlation between the returns of different intermediaries as one of the main

side effects of diversification, and as a result, reduce the likelihood of a systemic collapse of the fi-

nancial system.

On a broader level, our analysis highlights that regulatory mechanisms that only focus on reduc-

ing each institution’s risk in isolation may be insufficient for mitigating risks at a systemic level. This

is due to the fact that reducing the risk in each institution’s portfolio is not necessarily equivalent

to reducing the risks to the banking system from an aggregate perspective. Therefore, an effective

regulatory policy may need to take the correlations between different banks’ portfolios into account.

Relatedly, our results suggest that the overall welfare implications of new financial instruments

that facilitate risk-sharing and diversification may be non-trivial. In particular, even though the

introduction of complex financial instruments may make individual institutions more stable, the

system as a whole may become more prone to systemic crises. Thus, the well-known benefits of

financial innovations (such as better risk-sharing, reducing transaction costs of investing, etc.), may

be inseparable from the so called “curse of financial engineering.”

We emphasize that even though we focused on an admittedly stylized micro-founded model,

our conclusions do not hinge on its specific details or the simplifying assumptions we made (such

as demand deposit contracts, competitive banking sectors, possibility of banks runs, etc.). Rather,

as in the reduced-form model of Section 2, the key ingredient is the presence of non-convexities

in the payments to the bankers and the depositors. Such non-convexities not only may create a

misalignment of incentives between different parties, but can also lead to a non-smooth allocation

of financial losses.
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Appendix

A Equilibrium Characterization

This appendix characterizes the equilibria of the subgames that follow the investment decisions of

the banks. In particular, it characterizes the set of states in which patient depositors run on the

banks, the transfers to the depositors, and the banks’ expected profits as a function of the face value

of the contracts and the short-term returns of the assets. Throughout, for notational simplicity, we

drop the bank index i and denote the returns of its portfolio by x = γz1 + (1− γ)z2.

We restrict our attention to subgames in which banks offer demand deposit contracts c = (c1, c2)

such that c1 ≤ c2. In light of the fact that offering more to depositors who withdraw at t = 1 is a

strictly dominated strategy, this assumption is without loss of generality. Also note that as in the

standard model of Diamond and Dybvig (1983), there may exist equilibria in which all patient de-

positors withdraw their deposits at t = 1, regardless of the returns of the assets. In this paper, how-

ever, we restrict our attention to “essential” runs and ignore those that arise due to coordination

failures between the depositors. Finally, given the argument at the end of Section 3, we can restrict

our attention to symmetric equilibria in which each consumer deposits her funds equally in the two

banks.

Depending on the face value of the contracts, we consider two different cases. In particular, we

study the equilibrium depending on whether c1 is smaller or larger than R/(1− π).

A.1

First, suppose that the face value of the contract offered by the bank (and accepted by the depositors)

satisfies R < (1− π)c1. We show that, in this case, there is a run on the bank if and only if the short-

term return on its investment is less than c1 −R.

If x > c1 −R, then the bank does not need to liquidate its assets to pay the impatient depositors.

Moreover, the bank would be able pay at least c1 to the depositors who withdraw at t = 2. Therefore,

the patient depositors have no incentive to run on the bank at t = 1. In this case, the impatient and

patient depositors get c1 and min{c2,
R+x−πc1

1−π }, respectively. The payoff to the bank would then be

equal to max{R+ x− πc1 − (1− π)c2, 0}.
On the other hand, if x < πc1, the bank needs to liquidate its assets, as it cannot meet the demand

at t = 1. Furthermore, x < πc1 implies that R + x < c1, and hence, the bank would not be able to

guarantee c1 to depositors who withdraw at t = 2, inducing a run. In this case, all depositors get x

and the bank gets nothing.

Finally, if πc1 < x < c1 − R, even though the bank does not need to liquidate its portfolio to pay

the impatient depositors, there will still be a bank run. This is due to the fact that assuming that no

other patient depositor withdraws at t = 1, an impatient depositor has a strictly dominant strategy

to withdraw at t = 1 and get c1 instead of R+x−πc1
1−π < c1, inducing a run. In this case, the fact that

x < c1 implies that the bank gets nothing, whereas all depositors get x.
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To summarize, the transfer from the bank to the depositors as a function of the face value of the

contract and the realized returns of its portfolio is given by

T θ(c, γ) =


x if x < c1 −R
c1 if x > c1 −R, θ = s

min{c2,
R+x−πc1

1−π } if x > c1 −R, θ = `.

The banks’ expected profits, on the other hand, are

Π(c, γ) = E
[

max
{
R+ x− πc1 − (1− π)c2, 0

}]
.

A straightforward consequence of the above characterization is that in the subgames in which

bank i offers a contract with face value ci1 > R/(1 − π), it chooses a non-diversified portfolio. This

is in light of the fact that the expected profit profit function Πi(ci, γi) is convex in xi, and hence, is

maximized by choosing γi ∈ {0, 1}.

A.2

Now suppose that R > (1 − π)c1. We show that in this case, there is a run on the bank if and only if

the short-term return on the bank’s investments satisfy x < πc1.

If x < πc1, then the bank needs to liquidate its assets, as it is incapable of meeting its commit-

ment to the impatient depositors. Moreover, x < c1 implies that following liquidation, it cannot

meet its commitment to the patient depositors either. This induces a run on the bank, and as a

consequence, the bank gets nothing whereas all depositors get x.

If on the other hand x > πc1, then the bank does not need to liquidate its assets to pay the im-

patient depositors. Moreover, the fact that R + x − πc1 > R > (1 − π)c1 implies that the patient

depositors have no incentive to withdraw at t = 1, ruling out a bank run. Thus, the impatient de-

positors get the face value of their contracts, whereas the patient depositors get min{c2,
R+x−πc1

1−π }. In

this case, the bank gets max{R+ x− πc1 − (1− π)c2, 0}.
To summarize, transfers to the depositors can be expressed as

T θ(c, γ) =


x if x < πc1

c1 if x > πc1, θ = s

min{c2,
R+x−πc1

1−π } if x > πc1, θ = `.

The payoff to the banks, on the other hand, is equal to

Π(c, γ) = E
[

max
{
R+ x− πc1 − (1− π)c2, 0

}
1{x>πc1}

]
, (2)

where 1 denotes the indicator function. Note that unlike the previous case, Πi(ci, γi) is not necessar-

ily convex in xi anymore. Furthermore, if (1− π)ci2 < R, then it exhibits a discontinuity at xi = πci1.
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B Planner’s Problem

This appendix characterizes the problem of a social planner who intends to maximize social wel-

fare by choosing the extent of diversification in banks’ investments (i.e., γa and γb), subject to the

incentive compatibility constraints of the banks who offer contracts that maximize their profits.

The social welfare is the sum of banks’ profits and the expected utility of the depositors; that is,

W (γa, γb) = V̂ (ca, cb, γa, γb) + Πa(ca, γa) + Πb(cb, γb)− 2k, (3)

where ca and cb are the face value of the contracts offered by the banks under competition. We have

the following lemma:

Lemma 1. Given γi, γj and cj , the demand deposit contract ci is offered by bank i only if it solves the

problem

max
ĉi

V̂ (ĉi, cj , γi, γj) (4)

s.t. Πi(ĉi, γi) ≥ k. (5)

Furthermore, the constraint binds at the optimal solution.

Proof: Suppose that ci = (ci1, ci2) is a contract that is offered by a bank in sector i. Clearly, the

bank can always guarantee itself zero profits by deciding not to enter at all. Therefore, ci is offered

in equilibrium only if Πi(ci, γi) ≥ k, implying that the contract must satisfy constraint (5). Now,

suppose that there exists another contract ĉi = (ĉi1, ĉi2) such that V̂ (ĉi, cj , γi, γj) > V̂ (ci, cj , γi, γj)

while satisfying constraint (5). Due to the continuity of V̂ , there exists a small enough δ > 0 such

that the contract c̃i = (ĉi1 − δ, ĉi2) satisfies

V̂ (c̃i, cj , γi, γj) > V̂ (ci, cj , γi, γj)

Πi (c̃i, γi) > Πi (ĉi, γi) ≥ k,

where the second inequality is a consequence of the fact that Πi(ci, γi) is decreasing in ci1 for all

γi. Thus, another bank can make strictly positive profits by offering c̃i. Such a deviation would

undercut the bank that had offered ci and hence, would attract all the depositors. This contradicts

the assumption that ci was offered in equilibrium.

We next show that constraint (5) binds at the optimal solution. Suppose, that it does not bind for

some solution ci; that is, Πi(ci, γi) > k. Then, there exists a small enough δ such that the contract

c̃i = (ci1, ci2 + δ) satisfies

V̂ (c̃i, cj , γi, γj) > V̂ (ci, cj , γi, γj)

Πi (c̃i, γi) > k,

which is a contraction.
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The above lemma shows that once the planner chooses γa and γb, banks in sector i offer a con-

tract ci in order to maximize the expected utility of the depositors, subject to making zero profits.

Thus, the planner’s problem reduces to choosing γa and γb in order to maximize V̂ (ca, cb, γa, γb) sub-

ject to the constraint that ci solves problem (4).

C Proofs

C.1 Proof of Theorem 1

We first state and prove a simple lemma.

Lemma 2. Πi(ci, γ
∗
i (ci)) is continuous and strictly decreasing in ci1 and ci2.

Proof: The equilibrium characterization provided in Appendix A shows that Πi(ci, γi) is continuous

in ci2 and γi. This is a consequence of the assumption that the distribution function of the returns

has a well-defined density with full support over positive reals. Furthermore, it is easy to verify that

the expected profit function is continuous in ci1 in both cases A.1 and A.2. Therefore, to establish

continuity in ci1, it is sufficient to show that Πi(ci, γi) is continuous at ci1 = R/(1− π). At this point,

we have πci1 + (1− π)ci2 −R ≥ πci1, which implies

E
[

max
{
R+ xi − πci1 − (1− π)ci2, 0

}]
= E

[
max

{
R+ xi − πci1 − (1− π)ci2, 0

}
1{xi>πci1}

]
.

Thus, Πi(ci, γi) is continuous in all arguments. Berge’s Maximum Theorem then guarantees that

Πi(ci, γ
∗
i (ci)) is continuous in ci.

In order to prove monotonicity, note that, keeping γi fixed, the profits of bank i are strictly de-

creasing in ci1. Therefore, if c̃i = (ci1 − δ, ci2) for some δ > 0, then

Πi(c̃i, γ
∗
i (c̃i)) ≥ Πi(c̃i, γ

∗
i (ci)) > Πi(ci, γ

∗
i (ci)),

where the first inequality is a consequence of the fact that, by definition, γ∗i (c̃i) maximizes the prof-

its of bank i if it offers contract c̃i to the depositors. A similar argument implies that Πi(ci, γ
∗
i (ci)) is

strictly decreasing in ci2.

Proof of Theorem 1: Given the symmetry between the two assets, we restrict our attention to the

case that γi ∈ [0, 1/2] and show that bank i’s profit is maximized at γi = 1/2 which corresponds to a

fully diversified portfolio.

Fix a constant 0 < c̄ < z̄/(2π) and suppose that κ(R) < k < κ(R), where

κ(R) = R+ µ

κ(R) = R+ µ− (1− π)c̄.

Assumption k < R+µ ensures that the entry cost is not too high for the banks to enter in equilibrium.

Otherwise, bank i would make negative expected profits even if it offers ci = (0, 0) to the depositors.
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On the other hand, assumption k > κ(R) ensures that as long as R > (1 − π)c̄, bank i would never

offer a contract in which ci2 > c̄. Note that given the characterization in Appendix A, if the bank

offers ci = (0, c̄), its expected payoffs following entry would satisfy

Πi(ci, γi) = R+ µ− (1− π)c̄,

which is strictly smaller than the entry cost k. Thus, given the monotonicity of Πi(ci, γ
∗
i (ci)) in ci1

and ci2 established in Lemma 2, the bank would only offer contracts in which ci1 ≤ ci2 < c̄.

Next, note that as long as R > (1− π)c̄, bank i’s expected profit as a function of the face value of

the contract ci and its investment decision γi is given by (2). Hence, the bank chooses γi in order to

maximize

Πi(ci, γi) =

∫
γiz1+(1−γi)z2≥πci1

[
R− πci1 − (1− π)ci2 + γiz1 + (1− γi)z2

]
f(z1)f(z2)dz1dz2.

The derivative of the above expression with respect to γi is equal to

∂Πi

∂γi
= −

∫ πci1
γi

0

∫ πci1−γiz1
1−γi

0
(z1−z2)f(z1)f(z2)dz2dz1 +

R− (1− π)ci2
(1− γi)2

∫ πci1/γi

0
(z−πci1)f(z)f

(
πci1 − γiz

1− γi

)
dz.

It is easy to verify that the first term on the right-hand side is non-positive over [0, 1/2], whereas the

second term is equal to zero at γ = 1/2. Furthermore, the integral in the second term is strictly

positive over [0, 1/2). This can be verified by considering the derivative

∂

∂γi

∫ πci1
γi

0
(z − πci1)f(z)f

(
πci1 − γiz

1− γi

)
dz = −π

2c2
i1

γ3
i

f(0)f

(
πci1
γi

)
(6)

−
∫ πci1

γi

0

(z − πci1)2

(1− γi)2
f(z)f ′

(
πci1 − γiz

1− γi

)
dz,

which is negative given the assumption that f ′(·) is positive over [0, z̄]. Thus, hi(γi) ≥ hi(1/2) = 0,

where

hi(γi) =

∫ πci1
γi

0
(z − πci1)f(z)f

(
πci1 − γiz

1− γi

)
. (7)

Therefore, as long as

R > R̂ = max
γi∈[0,1/2)
ci1,ci2<c̄

(1− γi)2

hi(γi)

∫
xi<πci1

(z1 − z2)f(z1)f(z2)dz2dz1 + (1− π)ci2, (8)

then ∂Πi/∂γi is non-negative for all γi ∈ [0, 1/2), implying that the bank’s profits are maximized by

choosing a fully diversified portfolio. Hence, for R > R = max{R̂, (1 − π)c̄} and κ(R) < k < R + µ,

the equilibrium entails full diversification.

The proof is complete once we verify that R̂ is finite. In particular, it is sufficient to show that the

ratio in (8) is finite as γi → 1/2, as the numerator and the denominator are, respectively, finite and

non-zero for all other values of γi ∈ [0, 1/2). To this end, we apply L’Hopital’s rule. The expression in

(6) immediately implies that the derivative of hi(γi) in the denominator with respect to γi evaluated

at 1/2 is non-zero. Hence, R̂ is finite, completing the proof.
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C.2 Proof of Theorem 2

In order to establish the inefficiency of equilibrium, it is sufficient to show that the social planner

can increase welfare by forcing the banks to hold less diversified portfolios than what they choose in

equilibrium. To this end, we show that ∂W/∂γa is strictly negative at γa = γb = 1/2, where W (γa, γb)

is the social welfare function defined in (3).

By Lemma 1, the expected profit of each bank after entry is exactly equal to the entry cost k,

regardless of the values of γa and γb. Hence, it is sufficient to study the change in the depositors’

expected utility,
∂W

∂γa
=
∂V̂

∂γa
+
∑

i∈{a,b}

(
∂V̂

∂ci1

∂ci1
∂γa

+
∂V̂

∂ci2

∂ci2
∂γa

)
.

Furthermore, Lemma 1 also shows that ci solves problem (4). Thus, the first-order conditions imply

for i ∈ {a, b}

∂V̂

∂ci1
+ ζi

(
∂Πi

∂ci1

)
= 0

∂V̂

∂ci2
+ ζi

(
∂Πi

∂ci2

)
= 0.

where ζi is a Lagrange multiplier. Therefore,

∂W

∂γa
=
∂V̂

∂γa
−
∑

i∈{a,b}

ζi

(
∂Πi

∂ci1

∂ci1
∂γa

+
∂Πi

∂ci2

∂ci2
∂γa

)
. (9)

On the other hand, the fact that Πi(ci, γi) = k for all γi implies

∂Πa

∂ca1

(
∂ca1

∂γa

)
+
∂Πa

∂ca2

(
∂ca2

∂γa

)
= −∂Πa/∂γa

∂Πb

∂cb1

(
∂cb1
∂γa

)
+
∂Πb

∂cb2

(
∂cb2
∂γa

)
= 0.

Replacing the above equalities in (9) leads to

∂W

∂γa
=
∂V̂

∂γa
+ ζa

(
∂Πa

∂γa

)
. (10)

Since Πa(ca, γa) is a symmetric and differentiable function of γa around 1/2, its derivative at that

point has to be equal to zero. Hence, the proof is complete once we show that limγa→ 1
2
∂V̂ /∂γa is

strictly negative. In light of the fact that in a symmetric equilibrium banks offer identical contracts,

without loss of generality, we can restrict our attention to the case that ca = cb = (c1, c2). Further-

more, we assume that γa ≤ 1/2 ≤ γb.
Recall that under the assumptions of Theorem 1, the face value of the contracts offered in equi-

librium satisfy ci1, ci2 ≤ R/(1 − π). Therefore, by the characterization provided in Appendix A, the
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expected utility of the impatient depositors when both banks offer contract c = (c1, c2) and choose

diversification levels γa and γb is equal to

V̂ s(c, c, γa, γb) = u(2c1)P(xa, xb > πc1) + E[u(xa + xb)1{xa,xb<πc1}]

+ E[u(c1 + xb)1{xa>πc1>xb}] + E[u(xa + c1)1{xb>πc1>xa}],

where V̂ s(c, c, γa, γb) = Eu (T sa (c, γa) + T sb (c, γb)) is the expected utility of the impatient depositors.

Expanding the terms, we obtain

V̂ s(c, c, γa, γb) = u(2c1) +

∫ πc1

0

∫ πc1−(1−γb)z2
γb

z2

[
u
(
(γa + γb)(z1 − z2) + 2z2

)
− u(2c1)

]
f(z1)f(z2)dz1dz2

+

∫ πc1

0

∫ πc1−γaz1
1−γa

z1

[
u
(
(γa + γb)(z1 − z2) + 2z2

)
− u(2c1)

]
f(z1)f(z2)dz2dz1

+

∫ πc1

0

∫ πc1−(1−γa)z2
γa

πc1−(1−γb)z2
γb

[
u
(
c1 + γaz1 + (1− γa)z2

)
− u(2c1)

]
f(z1)f(z2)dz1dz2

+

∫ πc1

0

∫ πc1−γbz1
1−γb

πc1−γaz1
1−γa

[
u
(
c1 + γbz1 + (1− γb)z2

)
− u(2c1)

]
f(z1)f(z2)dz2dz1.

Differentiating the above with respect to γa implies

lim
γa,γb→ 1

2

∂V̂ s

∂γa
=

∫
z1+z2<2πc1

u′(z1 + z2)(z1 − z2)f(z1)f(z2)dz1dz2

+ 4

∫ πc1

0
(πc1 − z)

[
u(2c1) + u(2πc1)− 2u(c1 + πc1)

]
f(z)f(2πc1 − z)dz.

Due to symmetry, the first term on the right-hand side is equal to zero. The second term, on the other

hand, is strictly negative as long as u(·) is strictly concave. Thus, by forcing bank a away from full

diversification, the social planner can strictly increase the expected utility of the impatient deposi-

tors. A similar argument implies limγa,γb→ 1
2

∂V̂ `

∂γa
< 0, where V̂ `(c, c, γa, γb) = Eu

(
T `a(c, γa) + T `b (c, γb)

)
is the expected utility of the patient depositors. Thus, the social planner can increase the expected

welfare of the depositors by forcing banks away from full diversification, establishing that the full

diversification equilibrium is inefficient.

C.3 Proof of Theorem 3

Once the contracts are accepted by the depositors, the optimal level of diversification for each bank

is independent of the overlap between the sets of assets available to each one of them. Therefore,

by Theorem 1, the banks would choose a fully diversified portfolio. In the rest of the proof, we show

that full diversification is indeed efficient.

In order to prove the efficiency of equilibrium in the presence of non-overlapping assets, it is suf-

ficient to show that ∂Wn/∂γa is non-negative for γa ∈ (0, 1/2), where Wn(γa, γb) is the social welfare
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function when the assets are non-overlapping and is equal to the sum of the banks’ profits and the

expected utility of the depositors.11 In particular,

Wn(γa, γb) = V̂n(ca, cb, γa, γb) + Πa(ca, γa) + Πb(cb, γb)− 2k,

in which V̂n(ca, cb, γa, γb) is the ex ante expected utility of the depositors when the banks offer con-

tracts with face values ca and cb and choose diversification levels γa and γb. As in the proof of Theo-

rem 2, we have
∂Wn

∂γa
=
∂V̂n
∂γa

+ ζa

(
∂Πa

∂γa

)
.

By Theorem 1, we know that ∂Πa/∂γa is non-negative for γa ∈ (0, 1/2). Given that the Lagrange

multiplier ζa is also non-negative, it is sufficient to show that V̂n is non-decreasing in γa over (0, 1/2).

By the characterization in Appendix A,

V̂n(ca, cb, γa, γb) =
[
πu(ca1 + cb1) + (1− π)u(ca2 + cb2)

]
· P(xa > πca1) · P(xb > πcb1)

+ E
[(
πu(ca1 + xb) + (1− π)u(ca2 + xb)

)
1{xb<πcb1}

]
· P(xa > πca1)

+ E
[(
πu(xa + cb1) + (1− π)u(xa + cb2)

)
1{xa<πca1}

]
· P(xb > πcb1)

+ E
[
u(xa + xb)1{xa<πca1}1{xb<πcb1}

]
, (11)

where xi = γiz
i
1 + (1 − γi)zi2 denotes the short-term return of bank i’s portfolio and (zi1, z

i
2) are the

short-term returns on the assets available to i. Note that,

∂

∂γa
P(xa > πca1) =

ha(γa)

(1− γa)2
, (12)

where ha(·) is defined in (7). Furthermore,

∂

∂γa
E
[
u(xa + xb)1{xa<πca1}1{xb<πcb1}

]
= E

[
u′(xa + xb)(z

a
1 − za2)1{xa<πca1}1{xb<πcb1}

]
− ha(γa)

(1− γa)2
E
[
u(πca1 + xb)1{xb<πcb1}

]
. (13)

Given that the first term on the right-hand side of the above equality is non-negative for γa ∈ (0, 1/2),

we obtain

∂

∂γa
E
[
u(xa + xb)1{xa<πca1}1{xb<πcb1}

]
≥ −ha(γa)

(1− γa)2
E
[
u(πca1 + xb)1{xb<πcb1}

]
. (14)

Similarly,

∂

∂γa
E
[(
πu(xa + cb1) + (1− π)u(xa + cb2)

)
1{xa<πca1}

]
≥ −ha(γa)

(1− γa)2

[
πu(πca1 + cb1) + (1− π)u(πca1 + cb2)

]
.

(15)

11The subscript inWn and V̂n reflects the assumption that, as opposed to the previous results, banks have access to two
distinct pairs of non-overlapping assets.
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Differentiating (11) with respect to γa and using (12)–(15) lead to

∂V̂n
∂γa

≥ ha(γa)

(1− γa)2

[
πu(ca1 + cb1) + (1− π)u(ca2 + cb2)

]
· P(xb > πcb1)

+
ha(γa)

(1− γa)2
E
[(
πu(ca1 + xb) + (1− π)u(ca2 + xb)

)
1{xb<πcb1}

]
− ha(γa)

(1− γa)2

[
πu(πca1 + cb1) + (1− π)u(πca1 + cb2)

]
· P(xb > πcb1)

− ha(γa)

(1− γa)2
E
[
u(πca1 + xb)1{xb<πcb1}

]
.

Given the fact that ca2 ≥ ca1, we obtain

∂V̂n
∂γa

≥ A · ha(γa) (16)

for some positive constant A. Finally, as established in the proof of Theorem 1, ha(γa) ≥ 0 for all

γa ∈ (0, 1/2), hence, implying that V̂n is maximized at γa = 1/2. This completes the proof.

C.4 Proof of Proposition 1

We first state two simple lemmas, which we will later use in the proof of part (b).

Lemma 3. Suppose that g : [0, a]→ R is differentiable, where a is a positive constant. Then,

lim
λ→∞

∫ a

0
g(z)λe−λzdz = g(0).

Lemma 4. For any continuous function g(z1, z2),

lim
λ→∞

λe
λπc1
1−γ

∫ πc1
γ

0

∫ πc1−γz1
1−γ

0
g(z1, z2)e−λ(z1+z2)dz2dz1 = 0.

Proof of Proposition 1: To prove part (a), consider a sequence of economies characterized by {λr, kr}r∈N
such that

lim
r→∞

λr = 0

κ(λr) < kr < κ(λr), (17)

where κ(λ) = R + λ−1 and κ(λ) = κ(λ) − (1−π)R
1−2π/3 . As in the proof of Theorem 1, condition (17)

guarantees that banks enter in equilibrium and that they never offer a contract in which ci2 > R
1−2π/3 .

Therefore, bank i’s expected profit as a function of the face value of the contract ci and its investment

decision γi is given by (2).

The derivative of bank i’s objective function in a subgame in which it offers contract ci = (ci1, ci2)

to depositors satisfies(
1

λ2
r

)
∂Πi

∂γi
=

∫ πci1
γi

0

∫ πci1−γiz1
1−γi

0
(z2−z1)e−λr(z1+z2)dz1dz2+

[R− (1− π)ci2]e
−λrπci1

1−γi

(1− γi)2

∫ πci1
γi

0
(z−πci1)e

λrz(2γi−1)

1−γi dz.
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Straightforward algebraic manipulations imply

lim
r→∞

(
1

λ2
r

)
∂Πi

∂γi
=

(πci1)2(1− 2γi)

2γ2
i (1− γi)2

(
R− (1− π)ci2 −

πci1
3

)
,

which is positive for γi ∈ (0, 1/2) and negative for γi ∈ (1/2, 1). Therefore, for large enough values of

r, and hence, small enough values of λ, the expected profit of the bank is maximized at γ∗i (ci) = 1/2

in all subgames. Thus, under the conditions of part (a), banks invest equally in both assets.

The proof of the second statement of part (a) is parallel to the proof of Theorem 2, which shows

that the social planner never chooses a fully diversified portfolio. Thus, under the conditions of the

proposition, a regulator can improve the welfare of the depositors by forcing banks to choose a less

diversified portfolio.

Finally, proving that full diversification is efficient with non-overlapping pairs of assets follows a

logic parallel to that of the proof of Theorem 3. In particular, recall that as established in the proof

of Theorem 3, the full diversification equilibrium is efficient if ∂V̂ /∂γa is positive for all γa ∈ (0, 1/2).

Furthermore, by (16), it is sufficient to show that

ha(γa) =

∫ πca1
γa

0
(z − πca1)f(z)f

(
πca1 − γaz

1− γa

)
dz > 0.

Given that the returns are exponentially distributed, we have

lim
r→∞

(
1

λ2
r

)
ha(γa) =

(πca1)2(1− 2γa)

2γ2
a(1− γa)2

,

which is positive for γa < 1/2. Therefore, for large enough values of r, i.e., small enough λ, the social

welfare is maximized with fully diversified portfolios, completing the proof.

To prove part (b), consider a sequence of economies characterized by {λr, kr}n∈N such that

lim
r→∞

λr =∞

κ(λr) < kr < κ(λr),

where κ(λ) and κ(λ) are defined as before. Once again, the banks enter in equilibrium and their

profit functions are given by (2). Thus, as above, the derivative of bank i’s objective function satisfies

(
1

λ2
r

)
∂Πi

∂γi
=

∫ πci1
γi

0

∫ πci1−γiz1
1−γi

0
(z2−z1)e−λr(z1+z2)dz1dz2+

[R− (1− π)ci2]e
−λrπci1

1−γi

(1− γi)2

∫ πci1
γi

0
(z−πci1)e

λrz(2γi−1)

1−γi dz.

Furthermore,

lim
r→∞

(
1

λr
e
λπci1
1−γi

)
∂Πi

∂γi
=
πci1 (R− (1− π)ci2)

(1− γi)(2γi − 1)
,

which is negative for γi ∈ (0, 1/2) and positive for γi ∈ (0, 1/2). Therefore, for large enough values

of r, and hence, large enough values of λ, the expected profit of the bank is maximized at γ∗i (ci) = 0
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in all subgames — corresponding to a non-diversified portfolio. Thus, in equilibrium, banks do not

diversify at all.

In order to prove that the no diversification equilibrium is indeed efficient, note that in view of

(10) and the fact that ∂Πa
∂γa

< 0 for large enough values of λ and γa ∈ (0, 1/2), it is sufficient to show

that limr→∞
∂V̂
∂γa

< 0. Considering the impatient depositors first, we have,

∂V̂ s

∂γa
=

∫
γaz1+(1−γa)z2<πc1
γbz1+(1−γb)z2<πc1

u′((γa + γb)(z1 − z2) + 2z2)(z1 − z2)f(z1)f(z2)dz1dz2

+

∫
γaz1+(1−γa)z2<πc1
γbz1+(1−γb)z2>πc1

u′(c1 + γaz1 + (1− γa)z2))f(z1)f(z2)dz1dz2

+
1

γ2
a

∫ πc1

0
(z − πc1) [u(c1 + πc1)− u(2c1)] f(z)f

(
πc1 − (1− γa)z

γa

)
dz (18)

+
1

(1− γa)2

∫ πc1

0
(πc1 − z) · u

(
πc1 +

1− γb
1− γa

πc1 +
γb − γa
1− γa

z

)
f(z)f

(
πc1 − γaz

1− γa

)
dz

+
1

(1− γa)2

∫ πc1

0
(z − πc1) · u

(
c1 + γbz +

1− γb
1− γa

(πc1 − γaz)
)
f(z)f

(
πc1 − γaz

1− γa

)
dz.

Simple applications of Lemmas 3 and 4 imply

lim
r→∞

(
1

λr
e
λrπc1
1−γa

)
∂V̂ s

∂γa
=
πc1(1− 2γa)

1− γa

[
u

(
πc1 +

1− γb
1− γa

πc1

)
− u

(
c1 +

1− γb
1− γa

πc1

)]
. (19)

In particular, after multiplying both sides of (18) by λ−1
r exp

(
λrπc1
1−γa

)
, Lemma 4 implies that the limits

of the first two terms on the right-hand side are equal to zero. On the other hand, Lemma 3 implies

that the limit of the third term is equal to zero, whereas the last two terms have finite limits. Now, it is

easy to verify that the right-hand side of (19) is negative for γa ∈ (0, 1/2). Similarly, we can show that

limr→∞
∂V̂ `

∂γa
< 0 for γa ∈ (0, 1/2). Therefore, we conclude that for large values of r, and consequently

large values of λ, a non-diversified portfolio is efficient.

Finally, to complete the proof of part (b), we need to show that for large values ofλ, non-diversified

portfolios maximize social welfare even when banks invest in non-overlapping pairs of assets. Recall

from the proof of Theorem 3 that

∂Wn

∂γa
=
∂V̂n
∂γa

+ ζa

(
∂Πa

∂γa

)
.

Given that ∂Πa/∂γa is negative for large enough values of λ, it is sufficient to show

lim
r→∞

(
1

λr
e
λrπc1
1−γa

)
∂V̂n
∂γa

< 0.
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Differentiating (11) with respect to γa, we obtain

∂V̂n
∂γa

=
[
πu(ca1 + cb1) + (1− π)u(ca2 + cb2)

]
· P(xb > πcb1) · ∂

∂γa
P(xa > πca1)

+ E
[(
πu(ca1 + xb) + (1− π)u(ca2 + xb)

)
1{xb<πcb1}

]
· ∂

∂γa
P(xa > πca1)

+ P(xb > πcb1) · ∂

∂γa
E
[
u(xa + xb)1{xa<πca1}1{xb<πcb1}

]
+

∂

∂γa
E
[
u(xa + xb)1{xa<πca1}1{xb<πcb1}

]
. (20)

Recall from (12) that
∂

∂γa
P(xa > πca1) =

ha(γa)

(1− γa)2
,

and from (13) that

∂

∂γa
E
[
u(xa + xb)1{xa<πca1}1{xb<πcb1}

]
= E

[
u′(xa + xb)(z

a
1 − za2)1{xa<πca1}1{xb<πcb1}

]
− ha(γa)

(1− γa)2
E
[
u(πca1 + xb)1{xb<πcb1}

]
.

Replacing the above expressions in (20), multiplying both sides by λ−1
r exp

(
λrπc1
1−γa

)
, and noticing that

by Lemma 3 the limit

lim
r→∞

1

λr
ha(γa) exp

(
λrπc1

1− γa

)
= −πca1(1− γa)

1− 2γa

is finite, imply

lim
r→∞

(
1

λr
e
λrπc1
1−γa

)
∂V̂n
∂γa

= − πca1

(1− 2γa)(1− γa)

[
πu(ca1) + (1− π)u(ca2)− u(πca1)

]
. (21)

The right-hand side of the above expression is negative for γa ∈ (0, 1/2). Hence, for large enough val-

ues of λ, the welfare is maximized if the banks’ portfolios are not diversified, completing the proof.
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