Discussion of
 "Product Differentiation and Oligopoly: a Network Approach" Bruno Pellegrino (2023)

Alireza Tahbaz-Salehi
Northwestern University

NBER Economic Fluctuations and Growth Program Meeting
Winter 2023

A Network Model of Oligopoly

- Generalized Hedonic-Linear (GHL) Demand: consumers have additively separable preferences over attributes:

$$
u\left(x_{1}, \ldots, x_{m}\right)=\sum_{k=1}^{m}\left(b_{k} x_{k}-\frac{1}{2} x_{k}^{2}\right)-L
$$

- examples: antibodies, organisms, purification, yeast, enzymes, ...

A Network Model of Oligopoly

- Generalized Hedonic-Linear (GHL) Demand: consumers have additively separable preferences over attributes:

$$
u\left(x_{1}, \ldots, x_{m}\right)=\sum_{k=1}^{m}\left(b_{k} x_{k}-\frac{1}{2} x_{k}^{2}\right)-L
$$

- examples: antibodies, organisms, purification, yeast, enzymes, ...
- n firms producing differentiated products, which can be represented on the attribute space:

$$
\text { good } i \text { 's representation: } \quad a_{i}=\left[\begin{array}{llll}
a_{i 1} & a_{i 2} & \ldots & a_{i m}
\end{array}\right]^{\prime}
$$

- representation of the product characteristics space: A

A Network Model of Oligopoly

- Firms compete à la Cournot
- Cosine similarity as a natural measure of how similar two products are

$$
\cos _{i j}=a_{i}^{\prime} a_{j} \in[0,1]
$$

A Network Model of Oligopoly

- Firms compete à la Cournot
- Cosine similarity as a natural measure of how similar two products are

$$
\cos _{i j}=a_{i}^{\prime} a_{j} \in[0,1]
$$

- Main force: firms that produce more similar products compete more intensely
- Implication: firms with high product market centralities...
- set lower markups
- have a smaller (weighted) market share
- Empirical Finding: a significant portion (90\%) of the rise in markups can be attributed to changes in product market centrality.

A Network Model of Oligopoly

- Truly impressive paper
- Lots and lots of generalizations:
- multiproduct firms
- input-output linkages
- competitive fringe of firms
- etc.

A Network Model of Oligopoly

- Truly impressive paper
- Lots and lots of generalizations:
- multiproduct firms
- input-output linkages
- competitive fringe of firms
- etc.
- Empirical implementation using the Hoberg and Phillips product similarity data
- Model maps beautifully to the cosine similarity constructed by HP
- Model is used to think about important counterfactuals:
- welfare costs of oligopoly, implications of collusion, M\&A's

A Network Model of Oligopoly

- Truly impressive paper
- Lots and lots of generalizations:
- multiproduct firms
- input-output linkages
- competitive fringe of firms
- etc.
- Empirical implementation using the Hoberg and Phillips product similarity data
- Model maps beautifully to the cosine similarity constructed by HP
- Model is used to think about important counterfactuals:
- welfare costs of oligopoly, implications of collusion, M\&A's
- This discussion: narrow focus on the theory

Comment 1: What Is χ ?

- Product market centrality of firm i as

$$
\chi_{i}=1-2 \sum_{j=1}^{n}\left(\mathbf{I}+\mathbf{A}^{\prime} \mathbf{A}\right)_{i j}^{-1}\left(\frac{\left(\mathbf{A}^{\prime} b-c\right)_{j}}{\left(\mathbf{A}^{\prime} b-c\right)_{i}}\right)
$$

A measure of how intensely a firm competes with others

- Characterize equilibrium quantities, markups, consumer surplus, profits, market share, etc. in terms of product market centrality

$$
\begin{aligned}
& q=\frac{1}{2} \operatorname{diag}\left(\mathbf{A}^{\prime} b-c\right)(\mathbf{1}-\chi) \\
& \mu=\mathbf{1}+\frac{1}{2} \operatorname{diag}^{-1}(c) \operatorname{diag}\left(\mathbf{A}^{\prime} b-c\right)(\mathbf{1}-\chi) .
\end{aligned}
$$

Comment 1: What Is χ ?

- A solid case that the product market centrality χ_{i} is economically relevant
- markups:

$$
\mu_{i}=\chi_{i}+\left(1-\chi_{i}\right) \bar{\mu}_{i}
$$

- weighted market share:

$$
\mathcal{M}_{i}=\frac{q_{i}}{q_{i}+\sum_{j \neq i} \sigma_{i j} q_{j}}=\frac{1-\chi_{i}}{1+\chi_{i}}
$$

Comment 1: What Is χ ?

- A solid case that the product market centrality χ_{i} is economically relevant
- markups:

$$
\mu_{i}=\chi_{i}+\left(1-\chi_{i}\right) \bar{\mu}_{i}
$$

- weighted market share:

$$
\mathcal{M}_{i}=\frac{q_{i}}{q_{i}+\sum_{j \neq i} \sigma_{i j} q_{j}}=\frac{1-\chi_{i}}{1+\chi_{i}}
$$

- key properties:

$$
\begin{array}{ll}
\text { firm is a monopolist: } & \chi_{i}=0 \\
\text { all products identical: } & \chi_{i}=1-\frac{2}{n+1}
\end{array}
$$

Comment 1: What Is χ ?

- A solid case that the product market centrality χ_{i} is economically relevant
- markups:

$$
\mu_{i}=\chi_{i}+\left(1-\chi_{i}\right) \bar{\mu}_{i}
$$

- weighted market share:

$$
\mathcal{M}_{i}=\frac{q_{i}}{q_{i}+\sum_{j \neq i} \sigma_{i j} q_{j}}=\frac{1-\chi_{i}}{1+\chi_{i}}
$$

- key properties:

$$
\begin{array}{ll}
\text { firm is a monopolist: } & \chi_{i}=0 \\
\text { all products identical: } & \chi_{i}=1-\frac{2}{n+1}
\end{array}
$$

- But beyond these, the paper doesn't explore what χ_{i} is or how it behaves, even though it is the central statistic in the model.

Comment 1: What Is χ ?

- No matter the environment and the market structure, I can always find a χ_{i} as follows and call it "centrality":

$$
\mu_{i}=\chi_{i}+\left(1-\chi_{i}\right) \bar{\mu}_{i}
$$

- But this would only be useful as a measure if one understands how this object depends on product characteristics.

Comment 1: What Is χ ?

- No matter the environment and the market structure, I can always find a χ_{i} as follows and call it "centrality":

$$
\mu_{i}=\chi_{i}+\left(1-\chi_{i}\right) \bar{\mu}_{i}
$$

- But this would only be useful as a measure if one understands how this object depends on product characteristics.
- There is an expression in the paper in terms of model primitives, but understanding what the object really captures requires comparative statics analysis.

$$
\chi=\mathbf{1}-2 \operatorname{diag}^{-1}\left(\mathbf{A}^{\prime} b-c\right)\left(\mathbf{I}+\mathbf{A}^{\prime} \mathbf{A}\right)^{-1}\left(\mathbf{A}^{\prime} b-c\right) .
$$

Comment 1: Comparative Statics

- Consider the following change in the product space.
- Intuitively: goods are more become more similar as γ grows

$$
\mathbf{B} \propto(1-\gamma) \mathbf{A}+\gamma \mathbf{1 1}^{\prime} / \sqrt{n} \quad, \quad \mathbf{A}=\left[\begin{array}{lll}
0.0641 & 0.7271 & 0.2212 \\
0.9365 & 0.3822 & 0.9015 \\
0.3448 & 0.5703 & 0.3719
\end{array}\right]
$$

Comment 1: Comparative Statics

- Consider the following change in the product space.
- Intuitively: goods are more become more similar as γ grows

$$
\mathbf{B} \propto(1-\gamma) \mathbf{A}+\gamma \mathbf{1 1}^{\prime} / \sqrt{n} \quad, \quad \mathbf{A}=\left[\begin{array}{lll}
0.0641 & 0.7271 & 0.2212 \\
0.9365 & 0.3822 & 0.9015 \\
0.3448 & 0.5703 & 0.3719
\end{array}\right]
$$

- For $\gamma=0.1$:

$$
\cos \left(b_{i}, b_{j}\right)>\cos \left(a_{i}, a_{j}\right) \quad \text { for all } i \neq j
$$

Comment 1: Comparative Statics

- Consider the following change in the product space.
- Intuitively: goods are more become more similar as γ grows

$$
\mathbf{B} \propto(1-\gamma) \mathbf{A}+\gamma \mathbf{1 1}^{\prime} / \sqrt{n} \quad, \quad \mathbf{A}=\left[\begin{array}{lll}
0.0641 & 0.7271 & 0.2212 \\
0.9365 & 0.3822 & 0.9015 \\
0.3448 & 0.5703 & 0.3719
\end{array}\right]
$$

- For $\gamma=0.1$:

$$
\cos \left(b_{i}, b_{j}\right)>\cos \left(a_{i}, a_{j}\right) \quad \text { for all } i \neq j
$$

- But centrality of good 3 goes down:

$$
\chi_{3}(\mathbf{B})<\chi_{3}(\mathbf{A})
$$

Comment 1: Comparative Statics

- Consider the following change in the product space.
- Intuitively: goods are more become more similar as γ grows

$$
\mathbf{B} \propto(1-\gamma) \mathbf{A}+\gamma \mathbf{1 1}^{\prime} / \sqrt{n} \quad, \quad \mathbf{A}=\left[\begin{array}{lll}
0.0641 & 0.7271 & 0.2212 \\
0.9365 & 0.3822 & 0.9015 \\
0.3448 & 0.5703 & 0.3719
\end{array}\right]
$$

- For $\gamma=0.1$:

$$
\cos \left(b_{i}, b_{j}\right)>\cos \left(a_{i}, a_{j}\right) \quad \text { for all } i \neq j
$$

- But centrality of good 3 goes down:

$$
\chi_{3}(\mathbf{B})<\chi_{3}(\mathbf{A})
$$

- Product market centrality has the flavor of "how far firm i is from every other rival j in the space of product characteristics," but it's not exactly that.

Comment 1: What Is χ ?

- Clear from the analysis that low centrality firms have higher markups
- But what do we learn about their product characteristics?
- is it really because of they have more differentiated products?
- maybe! maybe not!
- would be great if the paper can pin this down.

Comment 1: What Is χ ?

Comment 2: Markup Growth Decomposition

- Markups in the model can be expressed in terms of product market centrality and hedonic-adjust productivity

$$
\mu_{i}=\chi_{i}+\frac{1}{2}\left(1-\chi_{i}\right)\left(1+\omega_{i}\right)
$$

- Use this result to decompose the rise of markups to either increased productivity or reduction in centrality

Comment 2: Markup Growth Decomposition

- But one cannot move these two objects independently:

$$
\begin{aligned}
& \chi_{i}=1-2 \sum_{j=1}^{n}\left(\mathbf{I}+\mathbf{A}^{\prime} \mathbf{A}\right)_{i j}^{-1}\left(\frac{b_{j}-c_{j}}{b_{i}-c_{i}}\right) \\
& \omega_{i}=b_{i} / c_{i}
\end{aligned}
$$

Comment 2: Markup Growth Decomposition

- But one cannot move these two objects independently:

$$
\begin{aligned}
& \chi_{i}=1-2 \sum_{j=1}^{n}\left(\mathbf{I}+\mathbf{A}^{\prime} \mathbf{A}\right)_{i j}^{-1}\left(\frac{b_{j}-c_{j}}{b_{i}-c_{i}}\right) \\
& \omega_{i}=b_{i} / c_{i}
\end{aligned}
$$

- For example, when all firms have identical marginal costs:

$$
\chi_{i}=1-2 \sum_{j=1}^{n}\left(\mathbf{I}+\mathbf{A}^{\prime} \mathbf{A}\right)_{i j}^{-1}\left(\frac{\omega_{j}-1}{\omega_{i}-1}\right)
$$

- So, an increase in the productivity of firm i also increases its centrality.
- Having a hard time thinking about this decomposition

Minor Comment 3: Complementarities?

- The paper argues that the model can handle goods that are gross complements, even though the utility function is submodular:

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial q_{i} \partial q_{j}} & =-\left(\mathbf{A}^{\prime} \mathbf{A}\right)_{i j} \leq 0 \quad \text { for all } i \neq j \\
\frac{\partial q_{i}}{\partial p_{j}} & =-\left(\mathbf{A}^{\prime} \mathbf{A}\right)_{i j}^{-1} \lessgtr 0
\end{aligned}
$$

- In fact, the paper finds evidence for gross complementarities in the data: "General Motors's output is gross complement vis-a-vis energy and consumer finance companies."

Comment 3: Complementarities?

$$
\mathbf{A}^{\prime} \mathbf{A}=\left[\begin{array}{ccc}
1 & 1 / \sqrt{3} & 0 \\
1 / \sqrt{3} & 1 & 1 / \sqrt{3} \\
0 & 1 / \sqrt{3} & 1
\end{array}\right] \quad, \quad\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1}=\left[\begin{array}{ccc}
2 & -\sqrt{3} & 1 \\
-\sqrt{3} & 3 & -\sqrt{3} \\
1 & -\sqrt{3} & 2
\end{array}\right]
$$

- Goods 1 and 3 are gross complements:

$$
\frac{\partial q_{1}}{\partial p_{3}}=-1
$$

Comment 3: Complementarities?

$$
\mathbf{A}^{\prime} \mathbf{A}=\left[\begin{array}{ccc}
1 & 1 / \sqrt{3} & 0 \\
1 / \sqrt{3} & 1 & 1 / \sqrt{3} \\
0 & 1 / \sqrt{3} & 1
\end{array}\right] \quad, \quad\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1}=\left[\begin{array}{ccc}
2 & -\sqrt{3} & 1 \\
-\sqrt{3} & 3 & -\sqrt{3} \\
1 & -\sqrt{3} & 2
\end{array}\right]
$$

- Goods 1 and 3 are gross complements:

$$
\frac{\partial q_{1}}{\partial p_{3}}=-1
$$

- Useful to understand what happens here
- Suppose p_{3} increases
- direct effect: increases in demand for 2 (because 2 and 3 are substitutes)
- indirect effect: the increase consumption of good 2 reduces demand for 1 (because 1 and 2 are substitutes)
- total effect: 1 and 3 are act as complements.

Comment 3: Complementarities?

- Back to the example:
- Automobile and fuel are complements because I have no use for gas if I don't have a car, independently of the presence of any third good (submodular preferences)
- In the model, automobile and fuel are complements only because when the price of cars go up, I switch to a third good (bicycles?) that is a substitute to both of them.

Summary

- Really impressive and ambitious paper
- It can benefit from exploring in more detail what the objects are really capturing

