Discussion of
 "Welfare Accounting"
 Dávila and Schaab (2023)

Alireza Tahbaz-Salehi
Northwestern University

Cowles Foundation for Research in Economics 2023 Conference on Macroeconomics

Aggregating a Disaggregated Economy

- Part of a coherent research agenda that is focused on building the macroeconomy from the ground up
- Breaking up the representative agent and the representative firm:
- heterogeneity in households
- disaggregated production structure
- frictions/markups/entry-exit at the firm-level
- dispersed information
- ...
and then aggregating the economy up

Aggregating a Disaggregated Economy

- Part of a coherent research agenda that is focused on building the macroeconomy from the ground up
- Breaking up the representative agent and the representative firm:
- heterogeneity in households
- disaggregated production structure
- frictions/markups/entry-exit at the firm-level
- dispersed information
- ...
and then aggregating the economy up
- Increasingly more relevant given increasing scale and scope of disaggregated data.

Aggregating a Disaggregated Economy

- Part of a coherent research agenda that is focused on building the macroeconomy from the ground up
- Breaking up the representative agent and the representative firm:
- heterogeneity in households
- disaggregated production structure
- frictions/markups/entry-exit at the firm-level
- dispersed information
- ...
and then aggregating the economy up
- Increasingly more relevant given increasing scale and scope of disaggregated data.
- This paper: a decomposition of welfare assessments in an economy with heterogeneous individuals and disaggregated production

$$
\mathrm{d} W / \mathrm{d} \theta=f(\text { ind. MRS, agg. MRS, SNV, network-adjusted SNV, ...) }
$$

Two Applications

(1) Efficiency conditions: characterize the set of efficient allocations

$$
\mathrm{d} W / \mathrm{d} \theta=0
$$

Two Applications

(1) Efficiency conditions: characterize the set of efficient allocations

$$
\mathrm{d} W / \mathrm{d} \theta=0
$$

(2) Hulten's theorem for welfare: in an efficient economy, first-order impact of productivity shocks on welfare is proportional to the firm's Domar weight

$$
\frac{\mathrm{d} W}{\mathrm{~d} \log z_{j}} \propto p_{j} y_{j} / \sum_{i=1}^{n} p_{i} c_{i}
$$

Two Applications

(1) Efficiency conditions: characterize the set of efficient allocations

$$
\mathrm{d} W / \mathrm{d} \theta=0
$$

(2) Hulten's theorem for welfare: in an efficient economy, first-order impact of productivity shocks on welfare is proportional to the firm's Domar weight

$$
\frac{\mathrm{d} W}{\mathrm{~d} \log z_{j}} \propto p_{j} y_{j} / \sum_{i=1}^{n} p_{i} c_{i}
$$

differences with the "textbook version" of Hulten's theorem:
(i) applies to welfare as opposed to output
(ii) does not require fully inelastic factor supply

Main Result: Welfare Decomposition

Application $\sharp 1$:

Efficiency Conditions

Efficiency Conditions

(1) cross-sectional consumption efficiency

$$
\mathrm{MU}_{c}^{i j}= \begin{cases}=\overline{\mathrm{MU}}_{c}^{j} & \text { if } c_{i j}>0 \\ <\overline{\mathrm{MU}}_{c}^{j} & \text { if } c_{i j}=0\end{cases}
$$

(2) cross-sectional factor supply efficiency

$$
\operatorname{MRS}_{n}^{i f}= \begin{cases}=\overline{\mathrm{MU}}_{n}^{f} & \text { if } n^{i f}>0 \\ >\overline{\mathrm{MU}}_{n}^{f} & \text { if } n^{i f}=0\end{cases}
$$

(3) cross-sectional intermediate input efficiency
(4) aggregate intermediate input efficiency
(5) cross-sectional factor use efficiency
(6) aggregate factor efficiency

Efficiency Conditions

(1) cross-sectional consumption efficiency

$$
\mathrm{MU}_{c}^{i j}= \begin{cases}=\overline{\mathrm{MU}}_{c}^{j} & \text { if } c_{i j}>0 \\ <\overline{\mathrm{MU}}_{c}^{j} & \text { if } c_{i j}=0\end{cases}
$$

(2) cross-sectional factor supply efficiency

$$
\mathrm{MU}_{n}^{i f}= \begin{cases}=\overline{\mathrm{MU}}_{n}^{f} & \text { if } n^{i f}>0 \\ >\overline{\mathrm{MU}}_{n}^{f} & \text { if } n^{i f}=0\end{cases}
$$

(3) cross-sectional intermediate input efficiency
(4) aggregate intermediate input efficiency
(5) cross-sectional factor use efficiency
(6) aggregate factor efficiency

- Importance of corner or non-interior allocations-when goods and factors are not used in production or when they are only used in the production of a single good.
- Particularly important when production is disaggregated and when individuals are heterogeneous.

Efficiency Conditions

- What would I have done if I hadn't read the paper? written down the planner's problem and derived the optimality condition

Efficiency Conditions

- What would I have done if I hadn't read the paper? written down the planner's problem and derived the optimality condition

$$
\begin{aligned}
\max & \sum_{i=1}^{m} \frac{1}{\lambda_{i}} u_{i}\left(c_{i 1}, \ldots, c_{i n}, l_{i}^{s}\right) \\
\text { subject to } & \sum_{i=1}^{n} c_{i j}+\sum_{k=1}^{m} x_{k j}=f_{j}\left(l_{j}^{d}, x_{j 1}, \ldots, x_{j n}\right), \quad \sum_{i=1}^{n} I_{i}^{s}=\sum_{j=1}^{m} l_{j}^{d} \\
& c_{i j}, x_{k j}, l_{j}^{d}, l_{i}^{s} \geq 0 .
\end{aligned}
$$

Efficiency Condition: Optimality with respect to $c_{i j}$

$$
\begin{aligned}
\max & \sum_{i=1}^{m} \frac{1}{\lambda_{i}} u_{i}\left(c_{i 1}, \ldots, c_{i j}, \ldots, c_{i n}, l_{i}^{s}\right) \\
\text { subject to } & \sum_{i=1}^{n} c_{i j}+\sum_{k=1}^{m} x_{k j}=f_{j}\left(l_{j}^{d}, x_{j 1}, \ldots, x_{j n}\right), \quad \sum_{i=1}^{n} l_{i}^{s}=\sum_{j=1}^{m} l_{j}^{d} \\
& c_{i j}, x_{k j}, l_{j}^{d}, l_{i}^{s} \geq 0 .
\end{aligned}
$$

Efficiency Condition: Optimality with respect to $c_{i j}$

$$
\begin{aligned}
\max & \sum_{i=1}^{m} \frac{1}{\lambda_{i}} u_{i}\left(c_{i 1}, \ldots, c_{i j}, \ldots, c_{i n}, l_{i}^{s}\right) \\
\text { subject to } & \sum_{i=1}^{n} c_{i j}+\sum_{k=1}^{m} x_{k j}=f_{j}\left(l_{j}^{d}, x_{j 1}, \ldots, x_{j n}\right), \quad \sum_{i=1}^{n} l_{i}^{s}=\sum_{j=1}^{m} l_{j}^{d} \\
& c_{i j}, x_{k j}, l_{j}^{d}, l_{i}^{s} \geq 0 .
\end{aligned}
$$

- Kuhn-Tucker conditions:

$$
\frac{1}{\lambda_{i}} \frac{\partial u_{i}}{\partial c_{i j}}=\theta_{j}-\eta_{i j}
$$

or alternatively,

$$
\frac{1}{\lambda_{i}} \frac{\partial u_{i}}{\partial c_{i j}}=\mathrm{MU}_{c}^{i j}= \begin{cases}\overline{\mathrm{MU}}_{c}^{j} & \text { if } c_{i j}>0 \\ <\overline{\mathrm{MU}}_{c}^{j} & \text { if } c_{i j}=0\end{cases}
$$

Efficiency Condition: Optimality with respect to $c_{i j}$

$$
\begin{aligned}
\max & \sum_{i=1}^{m} \frac{1}{\lambda_{i}} u_{i}\left(c_{i 1}, \ldots, c_{i j}, \ldots, c_{i n}, l_{i}^{s}\right) \\
\text { subject to } & \sum_{i=1}^{n} c_{i j}+\sum_{k=1}^{m} x_{k j}=f_{j}\left(l_{j}^{d}, x_{j 1}, \ldots, x_{j n}\right), \quad \sum_{i=1}^{n} l_{i}^{s}=\sum_{j=1}^{m} l_{j}^{d} \\
& c_{i j}, x_{k j}, l_{j}^{d}, l_{i}^{s} \geq 0 .
\end{aligned}
$$

- Kuhn-Tucker conditions:

$$
\frac{1}{\lambda_{i}} \frac{\partial u_{i}}{\partial c_{i j}}=\theta_{j}-\eta_{i j},
$$

or alternatively,

$$
\frac{1}{\lambda_{i}} \frac{\partial u_{i}}{\partial c_{i j}}=\mathrm{MU}_{c}^{i j}= \begin{cases}\overline{\mathrm{MU}}_{c}^{j} & \text { if } c_{i j}>0 \\ <\overline{\mathrm{MU}}_{c}^{j} & \text { if } c_{i j}=0\end{cases}
$$

- same exact expression as in the paper.
- the second requirement is nothing but complementarity slackness under strong duality.

Efficiency Condition: Optimality with respect to $x_{j k}$

$$
\begin{array}{ll}
\max & u\left(c_{1}, \ldots, c_{j}, \ldots, c_{n}, l^{s}\right) \\
\text { ect to } \quad & c_{j}+\sum_{k=1}^{m} x_{k j}=f_{j}\left(l_{j}^{d}, x_{j 1}, \ldots, x_{j k}, \ldots, x_{j n}\right), \quad I^{s}=\sum_{j=1}^{m} l_{j}^{d} \\
& c_{j}, x_{k j}, l_{j}^{d}, l^{s} \geq 0 .
\end{array}
$$

Efficiency Condition: Optimality with respect to $x_{j k}$

$$
\begin{aligned}
\max & u\left(c_{1}, \ldots, c_{j}, \ldots, c_{n}, l^{s}\right) \\
\text { subject to } & c_{j}+\sum_{k=1}^{m} x_{k j}=f_{j}\left(l_{j}^{d}, x_{j 1}, \ldots, x_{j k}, \ldots, x_{j n}\right), \quad I^{s}=\sum_{j=1}^{m} l_{j}^{d} \\
& c_{j}, x_{k j}, l_{j}^{d}, l^{s} \geq 0
\end{aligned}
$$

- If $x_{j k}>0$, then KT condition becomes:

$$
\theta_{k}=\theta_{j} \frac{\partial f_{j}}{\partial x_{j k}} \quad \text { and } \quad \theta_{j}=\frac{\partial u}{\partial c_{j}}+\eta_{j}
$$

Efficiency Condition: Optimality with respect to $x_{j k}$

$$
\begin{aligned}
\max & u\left(c_{1}, \ldots, c_{j}, \ldots, c_{n}, l^{s}\right) \\
\text { subject to } & c_{j}+\sum_{k=1}^{m} x_{k j}=f_{j}\left(l_{j}^{d}, x_{j 1}, \ldots, x_{j k}, \ldots, x_{j n}\right), \quad I^{s}=\sum_{j=1}^{m} l_{j}^{d} \\
& c_{j}, x_{k j}, l_{j}^{d}, l^{s} \geq 0
\end{aligned}
$$

- If $x_{j k}>0$, then KT condition becomes:

$$
\begin{gathered}
\theta_{k}=\theta_{j} \frac{\partial f_{j}}{\partial x_{j k}} \quad \text { and } \quad \theta_{j}=\frac{\partial u}{\partial c_{j}}+\eta_{j} \\
\frac{\partial u}{\partial c_{j}} \frac{\partial f_{j}}{\partial x_{j k}}-\frac{\partial u}{\partial c_{k}}=\eta_{k}-\eta_{j} \frac{\partial f_{j}}{\partial x_{j k}}
\end{gathered}
$$

Efficiency Condition: Optimality with respect to $x_{j k}$

$$
\begin{aligned}
\max & u\left(c_{1}, \ldots, c_{j}, \ldots, c_{n}, l^{s}\right) \\
\text { subject to } & c_{j}+\sum_{k=1}^{m} x_{k j}=f_{j}\left(l_{j}^{d}, x_{j 1}, \ldots, x_{j k}, \ldots, x_{j n}\right), \quad l^{s}=\sum_{j=1}^{m} l_{j}^{d} \\
& c_{j}, x_{k j}, l_{j}^{d}, I^{s} \geq 0 .
\end{aligned}
$$

- If $x_{j k}>0$, then KT condition becomes:

$$
\begin{gathered}
\theta_{k}=\theta_{j} \frac{\partial f_{j}}{\partial x_{j k}} \quad \text { and } \quad \theta_{j}=\frac{\partial u}{\partial c_{j}}+\eta_{j} . \\
\frac{\partial u}{\partial c_{j}} \frac{\partial f_{j}}{\partial x_{j k}}-\frac{\partial u}{\partial c_{k}}=\eta_{k}-\eta_{j} \frac{\partial f_{j}}{\partial x_{j k}}= \begin{cases}=0 & \text { if neither } j \text { nor } k \text { are pure intermediates } \\
\neq 0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Application $\sharp 1$: Big Picture

- Efficiency conditions in the paper coincide with the optimality conditions of the planner's problem (as they should!)...
... and the KT conditions naturally take care of all non-negativity constraints via complementarity slackness conditions.

Application $\sharp 1$: Big Picture

- Efficiency conditions in the paper coincide with the optimality conditions of the planner's problem (as they should!)...
... and the KT conditions naturally take care of all non-negativity constraints via complementarity slackness conditions.
- Put differently: the objects in the paper (MRS, social net valuations, network-adjusted social net valuations, etc.) are either identical to or regroupings of Lagrange multipliers in the planner's problem.

Application $\sharp 2$:

"Welfare Hulten Theorem"

Hulten's Theorem

- In an efficient economy with inelastic factor supplies and a representative household, the first-order impact of a shock is equal to an industry's Domar weight (sales as a fraction of output):

$$
\frac{\mathrm{d} \log \mathrm{GDP}}{\mathrm{~d} \log z_{j}}=\frac{p_{j} y_{j}}{\mathrm{GDP}}
$$

Hulten's Theorem

- In an efficient economy with inelastic factor supplies and a representative household, the first-order impact of a shock is equal to an industry's Domar weight (sales as a fraction of output):

$$
\frac{\mathrm{d} \log G D P}{\mathrm{~d} \log z_{j}}=\frac{p_{j} y_{j}}{G D P}
$$

- Where does it come from? applying the envelope theorem to the planner's problem

$$
\begin{aligned}
\mathrm{GDP}=\max & C\left(c_{1}, \ldots, c_{m}\right) \\
\text { s.t. } & c_{j}+\sum_{j=1}^{m} x_{j i}=z_{j} f_{j}\left(l_{j}^{d}, x_{j 1}, \ldots, x_{j n}\right),
\end{aligned} \quad \sum_{j=1}^{m} l_{j}^{d}=L
$$

Hulten's Theorem

- In an efficient economy with inelastic factor supplies and a representative household, the first-order impact of a shock is equal to an industry's Domar weight (sales as a fraction of output):

$$
\frac{\mathrm{d} \log G D P}{\mathrm{~d} \log z_{j}}=\frac{p_{j} y_{j}}{G D P}
$$

- Where does it come from? applying the envelope theorem to the planner's problem

$$
\begin{aligned}
\mathrm{GDP}=\max & C\left(c_{1}, \ldots, c_{m}\right) \\
\text { s.t. } & c_{j}+\sum_{j=1}^{m} x_{j i}=z_{j} f_{j}\left(l_{j}^{d}, x_{j 1}, \ldots, x_{j n}\right), \quad \sum_{j=1}^{m} l_{j}^{d}=L
\end{aligned}
$$

- Also shows why it requires inelastic labor supply: with elastic labor supply efficiency \neq maximum output

How to Obtain a Hulten's Theorem for Welfare

How to Obtain a Hulten's Theorem for Welfare

- Apply the envelope theorem to welfare: efficiency means that the planner maximizes welfare (not output)

$$
\begin{aligned}
& W=\max \\
& \sum_{i=1}^{n} \frac{1}{\lambda_{i}} u_{i}\left(c_{i j}, l_{i}^{s}\right) \\
& \text { s.t. } \\
& c_{i}+\sum_{j=1}^{m} x_{j i}=z_{j} f_{j}\left(I_{j}^{d}, x_{j 1}, \ldots, x_{j n}\right),
\end{aligned} \quad \sum_{j=1}^{m} I_{j}^{d}=\sum_{j=1}^{n} I_{i}^{s} .
$$

- One line proof:

$$
\frac{\mathrm{d} W}{\mathrm{~d} z_{j}}=\frac{\mu_{j} y_{j}}{z_{j}}
$$

How to Obtain a Hulten's Theorem for Welfare

- Apply the envelope theorem to welfare: efficiency means that the planner maximizes welfare (not output)

$$
\begin{aligned}
& W=\max \\
& \sum_{i=1}^{n} \frac{1}{\lambda_{i}} u_{i}\left(c_{i j}, l_{i}^{s}\right) \\
& \text { s.t. } c_{i}+\sum_{j=1}^{m} x_{j i}=z_{j} f_{j}\left(I_{j}^{d}, x_{j 1}, \ldots, x_{j n}\right),
\end{aligned} \quad \sum_{j=1}^{m} I_{j}^{d}=\sum_{j=1}^{n} I_{i}^{s} . ~ l
$$

- One line proof:

$$
\frac{\mathrm{d} W}{\mathrm{~d} z_{j}}=\frac{\mu_{j} y_{j}}{z_{j}} \Rightarrow \frac{W}{\log z_{j}}=p_{j} y_{j}
$$

How to Obtain a Hulten's Theorem for Welfare

- Apply the envelope theorem to welfare: efficiency means that the planner maximizes welfare (not output)

$$
\begin{aligned}
W=\max & \sum_{i=1}^{n} \frac{1}{\lambda_{i}} u_{i}\left(c_{i j}, l_{i}^{s}\right) \\
& \text { s.t. } \\
& c_{i}+\sum_{j=1}^{m} x_{j i}=z_{j} f_{j}\left(l_{j}^{d}, x_{j 1}, \ldots, x_{j n}\right),
\end{aligned} \quad \sum_{j=1}^{m} l_{j}^{d}=\sum_{j=1}^{n} l_{i}^{s} . ~ l
$$

- One line proof:

$$
\frac{\mathrm{d} W}{\mathrm{~d} z_{j}}=\frac{\mu_{j} y_{j}}{z_{j}} \Rightarrow \frac{W}{\log z_{j}}=p_{j} y_{j} \Rightarrow \frac{1}{\sum_{i} \mathbf{p}_{i} \mathbf{c}_{i}} \frac{\mathrm{~d} W}{\mathrm{~d} \log z_{j}}=\text { Domar }_{j}
$$

- Once again, not clear if one needs the decomposition.

Summary

- This paper:
- impressive, diligent work to understand the sources of welfare gain/loss
- part of a larger agenda to build the economy from the bottom up (disaggregated production, heterogeneous agents, etc.)
- two applications to showcase the applicability of the result

Summary

- This paper:
- impressive, diligent work to understand the sources of welfare gain/loss
- part of a larger agenda to build the economy from the bottom up (disaggregated production, heterogeneous agents, etc.)
- two applications to showcase the applicability of the result
- My comments:
- the applications in the paper do not need the decomposition machinery
- to show where the real value-added of the results are, it would be nice to use an application that needs the decomposition machinery

Summary

- This paper:
- impressive, diligent work to understand the sources of welfare gain/loss
- part of a larger agenda to build the economy from the bottom up (disaggregated production, heterogeneous agents, etc.)
- two applications to showcase the applicability of the result
- My comments:
- the applications in the paper do not need the decomposition machinery
- to show where the real value-added of the results are, it would be nice to use an application that needs the decomposition machinery
- What can l-or even better, a more applied person-use these results for?
- welfare impact of a particular shock?
- comparison of the relevance of various channels?

