Discussion of "Collateralized Debt Networks with Lender Default" by Jin-Wook Chang

Alireza Tahbaz-Salehi

Northwestern University

Midwest Finance Association August 2020

Financial Networks

- Growing literature on how financial linkages...
 - (i) function as a mechanism for propagation and amplification of shocks
 - (ii) generate systemic risk from micro shocks
- · For the most part, the literature makes two simplifying assumptions
 - unsecured lending
 - exogenously-specified network of relationships
- But in reality....
 - interbank lending is mostly collateralized
 - banks choose their partners and terms of contracts

Financial Networks

- Growing literature on how financial linkages...
 - (i) function as a mechanism for propagation and amplification of shocks
 - (ii) generate systemic risk from micro shocks
- · For the most part, the literature makes two simplifying assumptions
 - unsecured lending
 - exogenously-specified network of relationships
- But in reality....
 - interbank lending is mostly collateralized
 - banks choose their partners and terms of contracts

This Paper: A Model of Collateralized Debt Markets

- Allows for collateralized lending and borrowing
- Quantities and prices (including that of the collateral) are endogenously determined
- Two methodological contributions:
 - a framework for propagation of shocks in a collateralized lending network
 - a model of financial network formation (though sidesteps some of the intricate issues of network formation by assuming lenders/borrowers are competitive)
- Main results:
 - trade-off between counterparty risk and leverage
 - under-diversification in equilibrium
 - an application to loss coverage by a CCP

This Paper: A Model of Collateralized Debt Markets

- Allows for collateralized lending and borrowing
- Quantities and prices (including that of the collateral) are endogenously determined
- Two methodological contributions:
 - a framework for propagation of shocks in a collateralized lending network
 - a model of financial network formation (though sidesteps some of the intricate issues of network formation by assuming lenders/borrowers are competitive)
- Main results:
 - trade-off between counterparty risk and leverage
 - under-diversification in equilibrium
 - an application to loss coverage by a CCP

Propagation of Shocks over Collateralized Debt Networks

· An exogenous network of pairwise collateralized debt contracts

 y_{ij} : borrowed cash per unit of collateral

- c_{ij} : amount of posted collateral
- Financial network represented by a pair of matrices (Y, C)

• Payment from *j* to *i*, per unit of posted collateral:

 $x_{ij}=\min\{y_{ij},p\},\,$

where *p* is the equilibrium price of collateral (non-recourse)

Propagation of Shocks over Collateralized Debt Networks

• Nominal wealth of agent *j*:

$$m_j = e_j - \epsilon_j + h_j p + \sum_k c_{jk} \min\{p, y_{jk}\}$$
$$- \sum_k c_{kj} \min\{p, y_{kj}\} - \sum_{k:m_k < 0} \zeta(c_{kj}) [p - y_{kj}]^+$$

- · failure of lender makes the borrower incur a cost to recover her collateral
 - counterparty risk channel
- nominal wealth depends on the equilibrium price of the asset
 - collateral price channel of contagion

Payment Equilibrium

• Collection of nominal wealth (m_1^*, \ldots, m_n^*) and asset price p^* such that:

(i) nominal wealths are mutually consistent with pairwise contracts:

$$m_j^* = e_j - \epsilon_j + h_j p^* + \sum_k c_{jk} \min\{p^*, y_{jk}\} - \sum_k c_{kj} \min\{p^*, y_{kj}\} - \sum_{k:m_k^* < 0} \zeta(c_{kj})[p^* - y_{kj}]^+$$

(ii) asset market clears:

$$\begin{cases} \sum_{i=1}^{n} \max\{m_{i}^{*}, 0\} = p^{*} \sum_{i=1}^{n} h_{i} & \text{if } p^{*} < s \\ \sum_{i=1}^{n} \max\{m_{i}^{*}, 0\} \ge p^{*} \sum_{i=1}^{n} h_{i} & \text{if } p^{*} = s, \end{cases}$$

where s is the asset's payoff.

Comment 1: Monotone Comparative Statics?

• Paper discusses the interaction of fire sale and counterparty risk channels:

- But this is an argument about "best responses" and not equilibrium.
- Should not be hard to prove a formal result for equilibrium using monotone comparative statics arguments:

Proposition

 p^* , (m_1^*, \ldots, m_n^*) , and aggregate welfare, are decreasing in the shock ϵ_j

Comment 1: Monotone Comparative Statics?

• Paper discusses the interaction of fire sale and counterparty risk channels:

- But this is an argument about "best responses" and not equilibrium.
- Should not be hard to prove a formal result for equilibrium using monotone comparative statics arguments:

Proposition

 p^* , (m_1^*,\ldots,m_n^*) , and aggregate welfare, are decreasing in the shock ϵ_i .

Comment 1: Monotone Comparative Statics?

• Paper discusses the interaction of fire sale and counterparty risk channels:

- But this is an argument about "best responses" and not equilibrium.
- Should not be hard to prove a formal result for equilibrium using monotone comparative statics arguments:

Proposition

 p^* , (m_1^*, \ldots, m_n^*) , and aggregate welfare, are decreasing in the shock ϵ_i .

Comment 2: Network Comparative Statics?

- There is a literature that studies the role of network structure for systemic risk, but mostly focused on unsecured lending.
- Current framework can be used to investigate the robustness of those results.

• Can one say anything about how changes in C and Y impact equilibrium objects?

- For example, suppose $y_{ij} \ge \tilde{y}_{ij}$ for all $i \ne j$. What can one say about p^* and \tilde{p}^* ?
- How about uniformly higher haircuts? More diversified patterns of lending?

Network Formation Stage

• Where do C and Y come from? Assume agents disagree about asset payoff $s \rightarrow$ gains from trade.

• Each agent takes pairwise interest rates and the price of the asset (today and tomorrow) as given and chooses the contracts:

$$\max_{\{c_{jk}, c_{kj}, y_{jk}, y_{kj}\}} \quad \mathbb{E}_j \left[\max \left\{ m_j \frac{s}{p_1}, 0 \right\} \right]$$

subject to budget constraint
$$\sum_k c_{kj} = \sum_k c_{jk} + h_j.$$

• Interest rates and prices determined such that asset market and contract markets clear.

 $(1)\,$ If there is a cost to recovering collateral, borrowers have an incentive to borrow from more than out lender

 \rightarrow counterpart risk vs. leverage trade-off

(2) Yet, they do not internalize the full benefit of diversification on others \rightarrow under-diversification externality.

Comment 3: Framing?

 Both results are novel, and yet, they have counterparts in the earlier literature and are well known (for non-secured lending).

• Would be great to use the powerful framework (and characterization) to obtain novel comparative statics and answer policy-relevant questions.

- Already some of the ingredients are there:
 - impact of distress on lending volume, velocity of collateral
 - CCP
- Would be great to push this further