Discussion of "Asset Pricing Implications of Systemic Risk in Network Economies" Buraschi and Tebaldi (2019)

Alireza Tahbaz-Salehi

Northwestern University

2019 Western Finance Association Conference June 2019

Economic and Financial Networks

• Growing literature on how network linkages between firms, banks, industries can

- (i) function as a mechanism for propagation and amplification of shocks.
- (ii) translate micro shocks into aggregate fluctuations.

- Applications:
 - potential explanation for the source of macroeconomic fluctuations
 - a theory of systemic risk in the banking system

• This paper: asset pricing implications of network interactions

This Paper

• Framework: endowment economy of *n* firms with interlinked dividend streams

- network Δ capturing the likelihood of distress spillovers (reduction in dividends)
- study whether the distress can persist for a long time due to spillovers
- subcritical regime: idiosyncratic shocks die out very rapidly
- supercritical regime: the distress can persist in the long run in a large economy

• Main Takeaways:

- \blacktriangleright the threshold between the two phases depends on the network Δ
- higher Δ_{ij} results in more spillovers and faster transition to the supercritical regime
- all this has to be priced ex ante: a model of endogenous long-run risk

This Paper

• Framework: endowment economy of *n* firms with interlinked dividend streams

- network Δ capturing the likelihood of distress spillovers (reduction in dividends)
- study whether the distress can persist for a long time due to spillovers
- subcritical regime: idiosyncratic shocks die out very rapidly
- supercritical regime: the distress can persist in the long run in a large economy

• Main Takeaways:

- \blacktriangleright the threshold between the two phases depends on the network Δ
- higher Δ_{ii} results in more spillovers and faster transition to the supercritical regime
- all this has to be priced ex ante: a model of endogenous long-run risk

Model

• Economy consisting of *n* firms with dividend streams

$$d_{it} = (a_i - \epsilon_i H_{it}) Y_t$$

- Y_t : common systematic shock (following $dY_t/Y_t = \mu dt + \sigma dW_t$)
- a_i: payout in the normal state
- e_i: reduction in the distress state
- ► H_{it} ∈ {0,1}: binary variable indicating the distress state

- *H_{it}* transitions between 0 and 1 following independent jump processes:
 - λ_i : transition rate to distress $(0 \rightarrow 1)$
 - η_i : transition rate out of distress $(1 \rightarrow 0)$

Model

• Economy consisting of *n* firms with dividend streams

$$d_{it} = (a_i - \epsilon_i H_{it}) Y_t$$

- Y_t : common systematic shock (following $dY_t/Y_t = \mu dt + \sigma dW_t$)
- a_i: payout in the normal state
- e_i: reduction in the distress state
- $H_{it} \in \{0, 1\}$: binary variable indicating the distress state

- *H_{it}* transitions between 0 and 1 following independent jump processes:
 - λ_i : transition rate to distress $(0 \rightarrow 1)$
 - η_i : transition rate out of distress $(1 \rightarrow 0)$

Model: Network Interdependence

 While transitions occur independently, transition rates are intertwined. Distress at some firm j increases the likelihood of distress at other firms:

$$\lambda_i(\mathbf{H}) = \lambda_i + \lambda \sum_{j=1}^n \Delta_{ij} H_j$$

• Network of distress spillovers: Δ

- Recovery rates not subject to spillovers: $\eta_i(\mathbf{H}) = \eta$
 - extreme asymmetry in how negative and positive shocks propagate!

Model: Network Interdependence

 While transitions occur independently, transition rates are intertwined. Distress at some firm j increases the likelihood of distress at other firms:

$$\lambda_i(\mathbf{H}) = \lambda_i + \lambda \sum_{j=1}^n \Delta_{ij} H_j$$

• Network of distress spillovers: Δ

- Recovery rates not subject to spillovers: $\eta_i(\mathbf{H}) = \eta$
 - extreme asymmetry in how negative and positive shocks propagate!

Markovian Model

• A Markovian model of transitions in and out of distress:

$$d_{it} = (a_i - \epsilon_i H_{it}) Y_t$$
$$\lambda_i = \lambda \sum_{j=1}^n \Delta_{ij} H_j$$

 $\eta_i = \eta$.

- Key question: suppose we start from a no distress state (H = 0) and push one firm to distress (H_i = 0 → H_i = 1). How long does it take for the system to get back to the full no distress state?
- Solution: use standard results for Markov chain convergence times to quantify this time as a function of Δ .

Cascades

Definition

A sequence of economies experiences a cascade if expected time to mixing of the Markov chain grows exponentially in n.

 $\lim_{n\to\infty}\frac{1}{n}\log\mathbb{E}[T_{\min}]>0.$

• Cascade: distress can persist for a very long time.

Theorem

There exists a critical threshold $\kappa(\Delta)$ such that a cascade can occur with positive probability if and only if $\lambda/\eta > \kappa(\Delta)$.

• Two very different regimes:

- subcritical: the effect of shocks die out in a large economy in the long run
- supercritical: the effect of shocks last for a long time even in a large economy

Cascades

Definition

A sequence of economies experiences a cascade if expected time to mixing of the Markov chain grows exponentially in n.

 $\lim_{n\to\infty}\frac{1}{n}\log\mathbb{E}[T_{\min}]>0.$

• Cascade: distress can persist for a very long time.

Theorem

There exists a critical threshold $\kappa(\Delta)$ such that a cascade can occur with positive probability if and only if $\lambda/\eta > \kappa(\Delta)$.

• Two very different regimes:

- subcritical: the effect of shocks die out in a large economy in the long run
- supercritical: the effect of shocks last for a long time even in a large economy

Cascades

Definition

A sequence of economies experiences a cascade if expected time to mixing of the Markov chain grows exponentially in n.

 $\lim_{n\to\infty}\frac{1}{n}\log\mathbb{E}[T_{\min}]>0.$

• Cascade: distress can persist for a very long time.

Theorem

There exists a critical threshold $\kappa(\Delta)$ such that a cascade can occur with positive probability if and only if $\lambda/\eta > \kappa(\Delta)$.

• Two very different regimes:

- subcritical: the effect of shocks die out in a large economy in the long run
- supercritical: the effect of shocks last for a long time even in a large economy

Intuition

• A network where each agent has *m* neighbors:

l	subcritical:	$m\lambda < \eta$
	supercritical:	$m\lambda > \eta$

• If *m* is large relative to the recovery rate, one distressed firm can infect many many others. But if *m* is small, the infection dies out.

Asset Pricing Implications

- If initial shocks do not dissipate away in the long run, then they should be priced.
- A model of generating long-run risks endogenously.
- Long term risk premium:

 $\mu_{\infty}^{i} = \gamma \sigma^{2} + (h_{i\infty} \epsilon / a) * (\text{network-dependent terms})$

- In the supercritical regime $(h_{i\infty} > 0)$, we no longer have a single-factor model.
- Therefore, CAPM β no longer captures priced risk exposure.

Comment

- Modeling assumptions indispensable to the creating long-lasting effects:
 - (i) asymmetric propagation between positive and negative shocks
 - (ii) epidemic-like propagation mechanism ("neighborhood independence")

- No reason to think the assumptions are unreasonable in principle
- Question: what environment the model is approximating?
 - in general, macro predictions of network models are highly sensitive to the assumptions made on micro interactions (Acemoglu et al., 2016)

Comment

$$\lambda_i(\mathbf{H}) = \lambda \sum_{j=1}^n \Delta_{ij} H_j$$

- The model has two key features:
- out-neighborhood independence:
 likelihood that j infects i is independent of how many others j can infect
- (2) in-neighborhood independence:

likelihood that j infects i is independent of how many others can infect i.

- Both forces imply more connections can only intensify the likelihood of cascades.
- Reasonable assumptions for epidemics and pandemics
 - You cannot diversify the risk of getting sick by hanging out with more people!

Comment

 More questionable for spillovers via economic interactions or financial markets: holding the exposure of *i* to *j* constant, changing *i* or *j*'s other connections can still change the propagation intensity.

production networks:

unless inputs are perfect complements, having more suppliers reduces the likelihood of spillover from a given supplier (in-neighborhood dependence)

interbank networks:

the likelihood of spillover of losses from debtor j to creditor i depends not only on i's exposure to j, but also on how much j owes others (out-neighborhood dependence)

 How important is this very strong propagation mechanism for the existence of a supercritical regime?

Summary

- Nice and innovative paper aimed at studying the asset pricing implications of network economies
- Analytical results on how firm-level shocks can persist for a very long time
 - phase transition and sub- vs. supercritical regimes
 - risk premia
 - characterization in terms of network centralities (see the paper)

- Comments/Wishlist: like any other model, results are sensitive to the specific propagation mechanism assumed in the model
 - holding interaction levels constant, shocks to neighbors cannot be diversified away
 - key in generating long-lasting effects
 - important to argue for contexts/applications where such assumptions are good approximations