Discussion of "Bail-ins and Bail-outs: Incentives, Connectivity, and Systemic Stability" by Bernard, Capponi, and Stiglitz

Alireza Tahbaz-Salehi Northwestern University

American Finance Association January 2019

Financial Contagion & Government Intervention

- A model of financial contagion, in the spirit of Eisenberg and Noe (2001)
 - *n* banks with (short-term) interbank liabilities to one another.
 - · negative shocks can result in socially costly default cascades

- Social cost of financial contagion
 - (i) costly liquidation of outside projects in case of lack of liquidity
 - (ii) deadweight losses in case of bankruptcy
 - (iii) spillovers over the interbank linkages

 \rightarrow Room for government intervention

Financial Contagion & Government Intervention

- A model of financial contagion, in the spirit of Eisenberg and Noe (2001)
 - *n* banks with (short-term) interbank liabilities to one another.
 - · negative shocks can result in socially costly default cascades

- Social cost of financial contagion
 - (i) costly liquidation of outside projects in case of lack of liquidity
 - (ii) deadweight losses in case of bankruptcy
 - (iii) spillovers over the interbank linkages
- \rightarrow Room for government intervention

Main Questions

- What form does "optimal" government intervention takes?
 - bailout? subsidized bail-ins? no intervention?
- How does the presence of government intervention shape systemic stability?
- Key assumption: the government has limited commitment power, in the sense that it cannot credibly commit to an ex-post suboptimal intervention policy.
 - $\rightarrow\;$ the nature of government intervention is endogenous to the architecture of the financial system.

Model: Main Ingredients

• Interbank network:

- *n* banks with pairwise interbank liabilities *L^{ij}*
- each bank *i* has access to an outside project e^i
- bank *i* also has (senior) commitment c_f^i to outside creditors

• Cost of contagion:

- liquidating the outside project is costly, with recovery rate = $\alpha \leq 1$
- if *i* defaults, only a fraction $\beta \leq 1$ of its assets are recoverable.

Model: Main Ingredients

• Interbank network:

- *n* banks with pairwise interbank liabilities *L^{ij}*
- each bank *i* has access to an outside project e^i
- bank *i* also has (senior) commitment c_f^i to outside creditors

• Cost of contagion:

- liquidating the outside project is costly, with recovery rate = $\alpha \le 1$
- if *i* defaults, only a fraction $\beta \leq 1$ of its assets are recoverable.

Model: Main Ingredients

- Government intervention:
 - The government can organize a rescue consortium (b_i, s_i)
 - $s_i \ge 0$: subsidy to bank *i*
 - $b_i \ge 0$: contribution of bank *i* to the rescue fund
 - any shortfall $\sum_i (s_i b_i)$ is paid by the government

- Special cases:
 - public bailout: $b_i = 0$ for all *i*.
 - no intervention: $b_i = s_i = 0$ for all i
 - private bail-in: $\sum_i b_i = \sum_i s_i$.

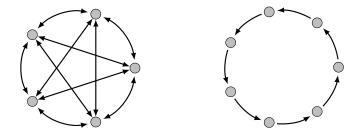
Model: Organizing the Rescue Consortium

- The government makes the proposal (b_i, s_i) to all banks
- Any bank with $b_i > 0$ has the option to accept or reject the proposal

- If all banks accept ($a_i = 1$ for all *i*), the rescue is implemented
- If some bank *i* rejects the proposal, then the government has three options:
 - (a) proceed, but make up for the contributions of rejecting banks
 - (b) resort to public bailout
 - (c) abandon the rescue

Rescue

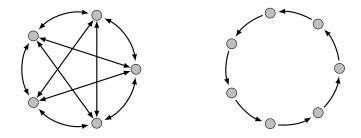
- Liquidation and bankruptcy costs —> public incentive for a rescue if a transfers from the taxpayer to the banks is not too socially costly.
- Bankruptcy costs \longrightarrow private incentive for a rescue


- Suppose *j* is short *z* dollars.
- Absent a rescue, $p_{ij} = \beta(L_{ji} z)$.
- But if *i* transfers *z* dollars to *j*, then it payoff will be $L_{ji} z$.
 - \rightarrow multiplier = 1/ β

Private and Public Incentives

- Two key forces:
 - (1) misalignment of public and private rescue incentives
 - (2) lack of commitment power by the government

Network Structure


• Allen and Gale (2000) and Acemoglu et al. (2015): for small enough shocks, the complete network is more stable than the ring network.

• Distress at each bank would be dispersed among more counterparties, resulting in a more stable architecture.

Network Structure & Equilibrium Rescue Outcomes

• What if we allow for government intervention? The result may change.

- For a bank to join the bail-in, it needs to be highly exposed to contagion and capture a large part of the social gains from its contribution.
- Complete: shock distributed among many banks, strong incentive to free-ride \rightarrow small contributions.
- Ring: few banks with significant exposures in case of no intervention \rightarrow large contributions.

Technical Comment 1: Equilibrium Existence?

- Static, simultaneous-move acceptance/rejection game $a = (a_1, ..., a_n)$
- Guaranteed that a pure-strategy Nash equilibrium exists for any proposal (*s*, *b*)?
- If not, then such proposals are not offered in equilibrium. But then can it be the model's predictions are driven by these non-existence results?

• Ideally: show that a pure strategy Nash equilibrium exists in all subgames (following any proposal).

Technical Comment 2: Equilibrium Selection?

- Static, simultaneous-move acceptance/rejection game $a = (a_1, ..., a_n)$
- The game can have multiple equilibria, many of which will be trivial.
- Paper refines the set of equilibria to those that are weakly renegotiation-proof: an SPE σ is WRP if after every history h_t , there exists no continuation SPE, which Pareto-dominates $\sigma | h_t$.
 - Justification: "it is implausible that the parties would have ever agreed on a bail-in plan that is Pareto-dominated."
- But this is a simultaneous-move game, whereas the original concept by Farrell and Maskin (1989) is defined for a repeated game. There is no history for the banks, as they have only a single decision.
- Is it meant to select the Pareto dominant equilibrium?
- Do you really have a dynamic framework in mind? If so, then this should be modeled explicitly.

Technical Comment 2: Equilibrium Selection?

- Static, simultaneous-move acceptance/rejection game $a = (a_1, ..., a_n)$
- The game can have multiple equilibria, many of which will be trivial.
- Paper refines the set of equilibria to those that are weakly renegotiation-proof: an SPE σ is WRP if after every history h_t , there exists no continuation SPE, which Pareto-dominates $\sigma | h_t$.
 - Justification: "it is implausible that the parties would have ever agreed on a bail-in plan that is Pareto-dominated."
- But this is a simultaneous-move game, whereas the original concept by Farrell and Maskin (1989) is defined for a repeated game. There is no history for the banks, as they have only a single decision.
- Is it meant to select the Pareto dominant equilibrium?
- Do you really have a dynamic framework in mind? If so, then this should be modeled explicitly.

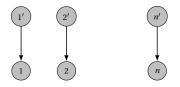
Technical Comment 2: Equilibrium Selection?

- Static, simultaneous-move acceptance/rejection game $a = (a_1, ..., a_n)$
- The game can have multiple equilibria, many of which will be trivial.
- Paper refines the set of equilibria to those that are weakly renegotiation-proof: an SPE σ is WRP if after every history h_t , there exists no continuation SPE, which Pareto-dominates $\sigma | h_t$.
 - Justification: "it is implausible that the parties would have ever agreed on a bail-in plan that is Pareto-dominated."
- But this is a simultaneous-move game, whereas the original concept by Farrell and Maskin (1989) is defined for a repeated game. There is no history for the banks, as they have only a single decision.
- Is it meant to select the Pareto dominant equilibrium?
- Do you really have a dynamic framework in mind? If so, then this should be modeled explicitly.

Comment: Bail-Ins and Government's Commitment Power

- The rescue consortium is a collection (*b*, *s*).
- If one party rejects, the government has the option to either abandon the rescue altogether (and choose the ex post optimal rescue) or put up the shortfall itself.
- But this means the government can proceed only if it puts up all the shortfall.
- What the government cannot do is implement partial bail-ins.
- By accepting the contribution of any bank, the government commits to the same (complex) allocation, but is unable to make various (but simpler) commitments to the banks.

 \rightarrow This can matter significantly for what threats are credible or not.

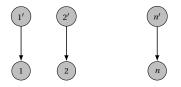

Comment: Bail-Ins and Government's Commitment Power

- The rescue consortium is a collection (*b*, *s*).
- If one party rejects, the government has the option to either abandon the rescue altogether (and choose the ex post optimal rescue) or put up the shortfall itself.
- But this means the government can proceed only if it puts up all the shortfall.
- What the government cannot do is implement partial bail-ins.
- By accepting the contribution of any bank, the government commits to the same (complex) allocation, but is unable to make various (but simpler) commitments to the banks.

 \longrightarrow This can matter significantly for what threats are credible or not.

Commitment Power

• The government proposes that each bank *i* rescues bank *i'* by contributing \$1 to save $1/\beta$ per bank.

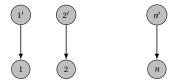


- Suppose taxpayer money is
 - too expensive to bailout the banks: $\lambda n \ge n/\beta$
 - cheap enough to save one bank if all others are contributing: $\lambda < n/\beta$

• If all other banks are accepting the proposal, then bank 1 knows government's threat is not credible → it free rides on others' contributions and rejects.

Commitment Power

• The government proposes that each bank *i* rescues bank *i'* by contributing \$1 to save $1/\beta$ per bank.



- Suppose taxpayer money is
 - too expensive to bailout the banks: $\lambda n \ge n/\beta$
 - cheap enough to save one bank if all others are contributing: λ < n/β

• If all other banks are accepting the proposal, then bank 1 knows government's threat is not credible → it free rides on others' contributions and rejects.

Commitment Power

• But now suppose the government could have implemented the policy partially: To use *i*'s contribution to save *i*', the government is not forced to also save 1'.

• If all other banks are accepting the proposal, then bank 1 knows the government's threat is credible because $\lambda > 1/\beta$.

Summary and a Wishlist?

- Summary:
 - Clean framework to model endogenous rescue policies
 - The credibility threshold depends on the financial system's architecture.
 - May change insights based on models without government interventions.

- Wishlist
 - A more thorough analysis of the acceptance/rejection game.
 - Contingencies of government's rescue offers?
 - Purely positive analysis. Any policy implications?
 - Comparative statics?