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1. Introduction

Coordination problems lie at the heart of many economic
and social phenomena such as bank runs, social uprisings,
and the adoption of new standards or technologies. The
common feature of these phenomena is that the benefit of
taking a specific action to any given individual is highly
sensitive to the extent to which other agents take the same
action. The presence of such strong strategic complemen-
tarities, coupled with the self-fulfilling nature of the agents’
expectations, may then lead to coordination failures: indi-
viduals may fail to take the action that is in their best
collective interest.

Bank runs present a concrete (and classic) example of
the types of coordination failures that may arise due to
the presence of strategic complementarities. In this context,
any given depositor has strong incentives to withdraw her
money from the bank if (and only if) she expects that a
large fraction of other depositors would do the same. Thus,
a bank run may emerge, not because of any financial dis-
tress at the bank, but rather as a result of the self-fulfilling
nature of the depositors’ expectations about other deposi-
tors’ behavior (Diamond and Dybvig 1983). Similarly, in
the context of adoption of new technologies with strong
network effects, consumers may collectively settle for an

inferior product simply because they expect other agents to
do the same (Argenziano 2008).1

Given the central role of self-fulfilling beliefs in coor-
dination games, it is natural to expect the emergence of
coordination failures to be highly sensitive to the availabil-
ity and distribution of information across different agents.
In fact, since the seminal work of Carlsson and van Damme
(1993), which initiated the global games literature, it has
been well known that the set of equilibria of a coordina-
tion game depends on whether the information available to
the agents is public or private: the same game that exhibits
multiple equilibria in the presence of public signals may
have a unique equilibrium if the information were instead
only privately available to the agents.
The global games literature, however, has for the most

part only focused on the role of public and private informa-
tion while ignoring the effects of local information chan-
nels in facilitating coordination. This is despite the fact that
in many real world scenarios, local information channels
play a key role in enabling agents to coordinate on differ-
ent actions. For instance, it is by now conventional wis-
dom that protesters in many recent antigovernment upris-
ings throughout the Middle East used decentralized modes
of communication (such as word-of-mouth communications
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and Internet-based social media platforms) to coordinate
on the time and location of street protests (Ali 2011).
Similarly, adopters of new technologies that exhibit strong
network effects may rely on a wide array of informa-
tion sources (such as blogs, professional magazines, expert
opinions), not all of which are used by all other potential
adopters in the market.

Motivated by these observations, we study the role of
local information channels in enabling coordination among
strategic agents. Building on the standard finite-player
global games framework, we show that the set of equilibria
of a coordination game is highly sensitive to how infor-
mation is locally shared among agents. More specifically,
rather than restricting our attention to cases in which infor-
mation is either purely public or private, we also allow for
the presence of local signals that are observable to subsets
of the agents. The presence of such local sources of infor-
mation guarantees that some (but not necessarily all) infor-
mation is common knowledge among a group of agents,
with important implications for the determinacy of equi-
libria. Our main contribution is to provide conditions for
uniqueness and multiplicity of equilibria based solely on
the pattern of information sharing among agents. Our find-
ings thus provide a characterization of the extent to which
coordination failures may arise as a function of which piece
of information is available to each agent.

As our main result, we show that the coordination game
has multiple equilibria if there exists a collection of agents
such that (i) they do not share a common signal with any
agent outside of that collection and (ii) their information
sets form an increasing sequence of nested sets, which we
refer to as a filtration. This result is a consequence of the
fact that agents in such a collection face limited strate-
gic uncertainty—that is, uncertainty concerning the equilib-
rium actions—about one another,2 which transforms their
common signals into a de facto coordination device. To
see this in the most transparent way, consider two agents
whose information sets form a filtration. It is clear that the
agent with the larger information set (say, agent 2) faces
no uncertainty in predicting the equilibrium action of the
agent with the smaller information set (agent 1). More-
over, even though the latter is not informed about other
potential signals observed by the former, the realizations
of such signals may not be extreme enough to push agent
2 toward either action, thus making it optimal for her to
simply follow the behavior of agent 1. In other words, for
certain realizations of signals, the agent with the smaller
information set becomes pivotal in determining the pay-
off maximizing action of agent 2. Consequently, the set of
signals that are common between the two can effectively
function as a coordination device, leading to the emergence
of multiple equilibria.

We then focus on a special case of our model by assum-
ing that each agent observes a single signal. We provide
an explicit characterization of the set of equilibria in terms
of the commonality in agents’ information sets and show

that the set of equilibrium strategies enlarges if information
is more centralized. In other words, as the signals become
more publicly available, the set of states under which agents
can coordinate on either action grows. This result is due
to the fact that more information concentration reduces the
extent of strategic uncertainty among the agents, even if it
does not impact the level of fundamental uncertainty.
We then use our characterization results to study the set

of equilibria in large coordination games. We show that as
the number of agents grows, the game exhibits multiple
equilibria if and only if a nontrivial fraction of the agents
have access to the same signal. Our result thus shows that
if the size of the subsets of agents with common knowledge
of a signal does not grow at the same rate as the number of
agents, the information structure is asymptotically isomor-
phic to a setting in which all signals are private. Conse-
quently, all agents face some strategic uncertainty regard-
ing the behavior of almost every other agent, resulting in a
unique equilibrium.
Finally, even though our benchmark model assumes that

the agents’ information sets are common knowledge, we
also show that our results are robust to the introduction
of small amounts of noise in the information structure of
the game. In particular, by introducing uncertainty about
the information sets of different agents, we show that the
equilibria of this new, perturbed game are close (in a formal
sense) to the equilibria of the original game in which all
information sets were common knowledge.
In sum, our results establish that the distribution and

availability of information play a fundamental role in deter-
mining coordination outcomes, thus highlighting the risk
of abstracting from the intricate details of information dis-
semination within coordination contexts. For example, on
the positive side, ignoring the distribution and reach of dif-
ferent information sources can lead to wrong predictions
about potential outcomes. Similarly, on the normative side
(say for example, in the context of a central bank facing a
banking crisis), the interventions of policymakers may turn
out to be counterproductive if such actions are not informed
by the dispersion and penetration of different information
channels within the society.
Related Literature. Our paper is part of the by now large

literature on global games. Initiated by the seminal work
of Carlsson and van Damme (1993) and later expanded by
Morris and Shin (1998, 2003), this literature focuses on
how the presence of strategic uncertainty may lead to the
selection of a unique equilibrium in coordination games.
The machinery of global games has since been used exten-
sively to analyze various applications that exhibit an ele-
ment of coordination, such as currency attacks (Morris and
Shin 1998), bank runs (Goldstein and Pauzner 2005), polit-
ical protests (Edmond 2013), partnership investments (Das-
gupta 2007), emergence of financial crises (Vives 2014),
and adoption of technologies and products that exhibit
strong network effects (Argenziano 2008). For example,
Argenziano (2008) uses the global games framework to
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study a model of price competition in a duopoly with prod-
uct differentiation and network effects. She shows that the
presence of a sufficient amount of noise in the public infor-
mation available about the quality of the goods guarantees
that the coordination game played by the consumers for
any given set of prices has a unique equilibrium, and hence
the demand function for each product is well defined.

All the above papers, however, restrict their attention to
the case in which all information is either public or pri-
vate. Our paper, on the other hand, focuses on more general
information structures by allowing for signals that are nei-
ther completely public nor private and provides conditions
under which the presence of such signals may lead to equi-
librium multiplicity.

Our paper is also related to the works of Morris et al.
(2015) and Mathevet (2014), who characterize the set of
equilibria of coordination games in terms of the agents’
types while abstracting away from the information struc-
ture of the game. Relatedly, Weinstein and Yildiz (2007)
provide a critique of the global games approach by argu-
ing that any rationalizable action in a game can always
be uniquely selected by properly perturbing the agents’
hierarchy of beliefs. Our work, on the other hand, pro-
vides a characterization of the set of equilibrium strategies
when the perturbation in the beliefs are generated by pub-
lic, private, or local signals that are informative about the
underlying state. Despite being more restrictive in scope,
our results shed light on the role of local information in
enabling coordination.

A different set of papers studies how the endogeneity of
agents’ information structure in coordination games may
lead to equilibrium multiplicity, thus qualifying the refine-
ment of equilibria proposed by the standard global games
argument. For example, Angeletos and Werning (2006),
and Angeletos et al. (2006, 2007) show how prices, the
action of a policymaker, or past outcomes can function
as endogenous public signals that may restore equilibrium
multiplicity in settings that would have otherwise exhib-
ited a unique equilibrium. We study another natural setting
in which agents may rely on overlapping (but not neces-
sarily identical) sources of information and show how the
information structure affects the outcomes of coordination
games.

Our paper also belongs to the strand of literature that
focuses on the role of local information channels and social
networks in shaping economic outcomes. Some recent
examples include Acemoglu et al. (2011), Golub and Jack-
son (2010), Jadbabaie et al. (2012, 2013), and Galeotti et al.
(2013). For example, Acemoglu et al. (2011) study how
patterns of local information exchange among few agents
can have first-order (and long-lasting) implications for the
actions of others.

Within this context, however, our paper is more closely
related to the subset of papers that studies coordination
games over networks, such as Galeotti et al. (2010) and

Chwe (2000). Galeotti et al. (2010) focus on strategic inter-
actions over networks and characterize how agents’ inter-
actions with their neighbors and the nature of the game
shape individual behavior and payoffs. They show that the
presence of incomplete information about the structure of
the network may lead to the emergence of a unique equi-
librium. The key distinction between their model and ours
is in the information structure of the game and the nature
of payoffs. Whereas they study an environment in which
individuals care about the actions of their neighbors (whose
identities they are uncertain about), we study a setting in
which network effects are only reflected in the game’s
information structure: individuals need to make deductions
about an unknown parameter and the behavior of the rest
of the agents while relying on local sources of information.
Chwe (2000), on the other hand, studies a coordination

game in which individuals can inform their neighbors of
their willingness to participate in a collective risky behav-
ior. Thus, our work shares two important aspects with that
of Chwe (2000): not only do both papers study games with
strategic complementarities, but also consider information
structures in which information about the payoff-relevant
parameters are locally shared among different individuals.
Nevertheless, the two papers focus on different questions.
Whereas Chwe’s main focus is on characterizing the set of
networks for which, regardless of their prior beliefs, agents
can coordinate on a specific action, our results provide a
characterization of how the penetration of different chan-
nels of information can impact coordination outcomes.
Outline of the Paper. The rest of the paper is organized

as follows: §2 introduces our model. In §3, we present a
series of simple examples that capture the intuition behind
our results. Section 4 contains our results on the role of
local information channels in the determinacy of equilibria.
We then provide a characterization of the set of equilibria
in §5 and show that the equilibrium set shrinks as informa-
tion becomes more decentralized. Section 6 concludes. All
proofs are presented in the appendix.

2. Model

Our model is a finite-agent variant of the canonical model
of global games studied by Morris and Shin (2003).

2.1. Agents and Payoffs

Consider a coordination game played by n agents whose set
we denote by N = 81121 0 0 0 1n9. Each agent can take one of
two possible actions, ai 2 80119, which we refer to as the
safe and risky actions, respectively. The payoff of taking the
safe action is normalized to zero, regardless of the actions
of other agents. The payoff of taking the risky action, on
the other hand, depends on (i) the number of other agents
who take the risky action and (ii) an underlying state of
the world à 2✓, which we refer to as the fundamental. In
particular, the payoff function of agent i is

ui4ai1aÉi1 à5=
(
è4k1 à5 if ai = 11
0 if ai = 01
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where k = Pn
j=1 aj is the number of agents who take the

risky action and è2 80111 0 0 0 1n9⇥✓!✓ is a function that
is Lipschitz continuous in its second argument. Throughout,
we impose the following assumptions on the agents’ payoff
function, which are standard in the global games literature.

Assumption 1. Function è4k1 à5 is strictly increasing in k
for all à. Furthermore, there exists a constant ê> 0 such

that è4k1 à5Éè4kÉ 11 à5> ê for all à and all kæ 1.

The above assumption captures the presence of an ele-
ment of coordination between agents. In particular, taking
either action becomes more attractive the more other agents
take that action. For example, in the context of a bank
run, each depositor’s incentive to withdraw her deposits
from a bank not only depends on the solvency of the bank
(i.e., its fundamental) but also increases with the number
of other depositors who decide to withdraw. Similarly, in
the context of adoption of technologies that exhibit net-
work effects, each user finds adoption more attractive the
more widely the product is adopted by other users in the
market. Thus, the above assumption simply guarantees that
the game exhibits strategic complementarities. The second
part of Assumption 1 is made for technical reasons and
states that the payoff of switching to the risky action when
one more agent takes action 1 is uniformly bounded from
below, regardless of the value of à.

Assumption 2. Function è4k1 à5 is strictly decreasing

in à for all k.

That is, any given individual has less incentive to take
the risky action if the fundamental takes a higher value.
Thus, taking other agents’ actions as given, each agent’s
optimal action is decreasing in the state. For instance, in the
bank run context, if the fundamental value à corresponds to
the financial health of the bank, the depositors’ withdrawal
incentives are stronger the closer the bank is to insolvency.
Similarly, in the context of the adoption of network goods,
à can represent the quality of the status quo technology
relative to the new alternative in the market: regardless of
the market shares, a higher à makes adoption of the new
technology less attractive. Finally, we impose the following
assumption:

Assumption 3. There exist constants à1 à̄ 2 ✓ satisfying

à< à̄ such that

(i) è4k1 à5> 0 for all k and all à< à.

(ii) è4k1 à5< 0 for all k and all à> à̄.

Thus, each agent strictly prefers to take the safe (risky)
action for sufficiently high (low) states of the world, irre-
spective of the actions of other agents. If, on the other hand,
the underlying state belongs to the so-called critical region
6à1 à̄7, then the optimal behavior of each agent depends on
her beliefs about the actions of other agents. Thus, once
again, in the bank run context, the above assumption sim-
ply means that each depositor finds withdrawing (leaving)

her deposit a dominant action if the bank is sufficiently
distressed (healthy).
In summary, agents face a coordination game with strong

strategic complementarities in which the value of coordi-
nating on the risky action depends on the underlying state
of the world. Furthermore, particular values of the state
make either action strictly dominant for all agents.

2.2. Information and Signals

As in the canonical global games model, agents are not
aware of the realization of the fundamental. Rather, they
hold a common prior belief on à 2 ✓, which for simplic-
ity we assume to be the (improper) uniform distribution
over the real line. Furthermore, conditional on the realiza-
tion of à, a collection 4x11 0 0 0 1xm5 2 ✓m of noisy signals
is generated, where xr = à+ ér . We assume that the noise
terms 4é11 0 0 0 1 ém5 are independent from à and are drawn
from a continuous joint probability density function with
full support over ✓m.
Not all agents, however, can observe all realized sig-

nals. Rather, agent i has access to a nonempty subset Ii ✓
8x11 0 0 0 1xm9 of the signals, which we refer to as her infor-
mation set.3 This assumption essentially captures that each
agent may have access to multiple sources of information
about the underlying state. Going back to the bank run
example, this means that each depositor may obtain some
information about the health of the bank via a variety of
information sources (such as the news media, the results of
stress tests released by the regulatory agencies, inside infor-
mation, expert opinions, etc.). The depositor would then
use the various pieces of information available to her to
decide whether to run on the bank or not.
The fact that agent i’s information set can be any

(nonempty) subset of 8x11 0 0 0 1xm9 means that the extent
to which any given signal xr is observed may vary across
signals. For example, if xr 2 Ii for all i, then xr is essen-
tially a public signal observed by all agents. On the other
hand, if xr 2 Ii for some i but xr 62 Ij for all j 6= i, then xr
is a private signal of agent i. Any signal that is neither
private nor public can be interpreted as a local source of
information observed only by a proper subset of the agents.
The potential presence of such local signals is our point of
departure from the canonical global games literature, which
only focuses on games with purely private or public sig-
nals. Note that in either case, following the realization of
signals, the mean of agent i’s posterior belief about the fun-
damental is simply equal to her Bayesian estimate ⇧6à ó Ii7.
We remark that even though agents are uncertain about

the realizations of the signals they do not observe, the
information structure of the game—that is, the collection
of information sets 8Ii9i2N—is common knowledge among
them.4 Therefore, a pure strategy of agent i is simply a
mapping si2 ✓

óIi ó ! 80119, where óIió denotes the cardinal-
ity of agent i’s information set.
Finally, we impose the following mild technical assump-

tion, ensuring that the agents’ payoff function is integrable.
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Assumption 4. For any collection of signals 8xr9r2H , H ✓
811 0 0 0 1m9 and all k 2 801 0 0 0 1n9,

⇧6óè4k1 à5ó ó 8xr9r2H 7<à0

We end this section by remarking that given that the pay-
off functions have nondecreasing differences in the actions
and the state, the underlying game is a Bayesian game with
strategic complementarities. Therefore, by Van Zandt and
Vives (2007, Theorem 14), the game’s Bayesian Nash equi-
libria form a lattice whose extremal elements are monotone
in types. This lattice structure also implies that the extremal
equilibria are symmetric, in the sense that each agent’s strat-
egy only depends on the signals she observes but not on her
identity (Vives 2008). Therefore, to characterize the range
of equilibria, without loss of generality, we can restrict our
attention to symmetric equilibria in threshold strategies.

3. A Simple Example

Before proceeding to our general results, we present a sim-
ple example and show how the presence of local signals
determines the set of equilibria. Consider a game consisting
of n = 3 agents and, for expositional simplicity, suppose
that

è4k1 à5= kÉ 1
nÉ 1

É à0 (1)

It is easy to verify that this payoff function, which is sim-
ilar to the one in the canonical finite-player global games
literature such as Morris and Shin (2000, 2003), satisfies
Assumptions 1–3 with à= 0 and à̄= 1. We consider three
different information structures, contrasting the cases in
which agents have access to only public or private informa-
tion to a case with a local signal. Throughout this section,
we assume that the noise terms ér are mutually indepen-
dent and normally distributed with mean zero and variance
ë2 > 0.

Public Information. First, consider a case in which all
agents observe the same public signal x, that is, Ii = 8x9
for all i 2 8112139. Thus, no agent has any private informa-
tion about the state. It is easy to verify that under such an
information structure, the coordination game has multiple
Bayesian Nash equilibria. In particular, for any í 2 60117,
the strategy profile in which all agents take the risky action
if and only if x < í is an equilibrium, regardless of the
value of ë . Consequently, as the public signal becomes
infinitely accurate (i.e., as ë ! 0), the underlying game
has multiple equilibria as long as the underlying state à
belongs to the critical region 60117.

Private Information. Next, consider the case in which all
agents have access to a different private signal. In particu-
lar, suppose that three signals 4x11x21x35 2✓3 are realized
and that xi is privately observed by agent i; that is, Ii = 8xi9
for all i. As is well known from the global games litera-
ture, the coordination game with privately observed signals

has an essentially unique Bayesian Nash equilibrium. To
verify that the equilibrium of the game is indeed unique,
it is sufficient to focus on the set of equilibria in threshold
strategies, according to which each agent takes the risky
action if and only if her private signal is smaller than a
given threshold.5 In particular, let íi denote the threshold
corresponding to the strategy of agent i. Taking the strate-
gies of agents j and k as given, agent i’s expected pay-
off of taking the risky action is equal to ⇧6è4k1 à5 ó xi7=
1
2 6⇣4xj < íj ó xi5 + ⇣4xk < ík ó xi57 É xi. For íi to corre-
spond to an equilibrium strategy of agent i, she has to be
indifferent between taking the safe and the risky actions
when xi = íi. Hence, the collection of thresholds 4í11 í21 í35
corresponds to a Bayesian Nash equilibrium of the game if
and only if for all permutations of i, j , and k, we have

íi =
1
2
Í

✓
íj É íi

ë
p
2

◆
+ 1

2
Í

✓
ík É íi

ë
p
2

◆
1

where Í4 · 5 denotes the cumulative distribution function of
the standard normal. Note that à ó xi ⇠ N 4xi1ë

25, and as
a result, xj ó xi ⇠ N 4xi12ë25. It is then immediate to ver-
ify that í1 = í2 = í3 = 1/2 is the unique solution of the
above system of equations. Thus, in the (essentially) unique
equilibrium of the game, agent i takes the risky action if
she observes xi < 1/2, whereas she takes the safe action
if xi > 1/2. Following standard arguments from Carlsson
and van Damme (1993) or Morris and Shin (2003), one
can show that this strategy profile is also the (essentially)
unique strategy profile that survives the iterated elimination
of strictly dominated strategies. Consequently, in contrast
to the game with public information, as ë ! 0, all agents
choose the risky action if and only if à < 1/2. This obser-
vation shows that in the limit as signals become arbitrarily
precise and all the fundamental uncertainty is removed, the
presence of strategic uncertainty among the agents leads to
the selection of a unique equilibrium.
Local Information. Finally, consider the case where only

two signals 4x11x25 are realized and the agents’ informa-
tion sets are I1 = 8x19 and I2 = I3 = 8x29; that is, agent 1
observes a private signal whereas agents 2 and 3 have
access to the same local source of information. All the
information available to agents 2 and 3 is common knowl-
edge between them, which distinguishes this case from the
canonical global game model with private signals.
To determine the extent of equilibrium multiplicity, once

again it is sufficient to focus on the set of equilibria in
threshold strategies. Let í1 and í2 = í3 denote the thresh-
olds corresponding to the strategies of agents 1, 2, and 3,
respectively. If agent 1 takes the risky action, she obtains an
expected payoff of ⇧6è4k1 à5 ó x17 = ⇣4x2 < í2 ó x15É x1.
On the other hand, the expected payoff of taking the risky
action to agent 2 (and, by symmetry, agent 3) is given by

⇧6è4k1 à5 ó x27= 1
2 6⇣4x1 < í1 ó x25+ ⌧8x2 < í297É x21
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where ⌧8 · 9 denotes the indicator function. Thus, for thresh-
olds í1 and í2 to correspond to a Bayesian Nash equilib-
rium, it must be the case that

í1 =Í

✓
í2 É í1

ë
p
2

◆
0 (2)

Furthermore, agents 2 and 3 should not have an incentive
to deviate, which requires that their expected payoffs have
to be positive for any x2 < í2 and negative for any x2 > í2,
leading to the following condition:

2í2 É 1∂Í

✓
í1 É í2

ë
p
2

◆
∂ 2í20 (3)

It is easy to verify that the pair of thresholds 4í11 í25 simul-
taneously satisfying (2) and (3) is not unique. In particular,
as ë ! 0, for every í1 2 61/312/37, there exists some í2
close enough to í1 such that the profile of threshold strate-
gies 4í11 í21 í25 is a Bayesian Nash equilibrium. Conse-
quently, as the signals become very precise, the underlying
game has multiple equilibria as long as à 2 6 13 1

2
3 7.

Thus, even though there are no public signals, the pres-
ence of common knowledge between a proper subset of the
agents restores the multiplicity of equilibria. In other words,
the local information available to agents 2 and 3 serves as a
coordination device, enabling them to predict one another’s
actions. The presence of strong strategic complementarities
in turn implies that agent 1 will use his private signal as
a predictor of how agents 2 and 3 coordinate their actions.
Nevertheless, because of the presence of some strategic
uncertainty between agents 2 and 3 on the one hand and
agent 1 on the other, the set of rationalizable strategies is
strictly smaller compared to the case where all three agents
observe a public signal. Therefore, the local signal (par-
tially) refines the set of equilibria of the coordination game,
though not to the extent that would lead to uniqueness.

4. Local Information and Equilibrium

Multiplicity

The examples in the previous section show that the set of
equilibria in the presence of local signals may not coincide
with the set of equilibria under purely private or public
signals. In this section, we provide a characterization of
the role of local information channels in determining the
equilibria of the coordination game presented in §2. Before
presenting our main result, we define the following concept:

Definition 1. The information sets of agents in C =
8i11 0 0 0 1 ic9 form a filtration if Ii1 ✓ Ii2 ✓ · · ·✓ Iic .

Thus, the information sets of agents in set C constitute a
filtration if they form a nested sequence of increasing sets.
This immediately implies that the signals of the agent with
the smallest information set is common knowledge among
all agents in C. We have the following result:

Theorem 1. Suppose that Assumptions 1–4 are satisfied.

Also, suppose that there exists a subset of agents C ✓ N
such that

(a) The information sets of agents in C form a filtration.

(b) Ii \ Ij =ô for any i 2C and j 62C.
Then the coordination game has multiple Bayesian Nash

equilibria.

The above result thus shows that, in general, the pres-
ence of a cascade of increasingly rich observations guaran-
tees equilibrium multiplicity. Such filtration provides some
degree of common knowledge among the subset of agents
in C, reduces the extent of strategic uncertainty they face
regarding each other’s behavior, and as a result leads to the
emergence of multiple equilibria. Therefore, in this sense,
Theorem 1 generalizes the standard, well-known results in
the global games literature to the case when agents have
access to local information channels that are neither public
nor private.
We remark that even though the presence of local signals

may lead to equilibrium multiplicity, the set of Bayesian
Nash equilibria does not necessarily coincide with that of a
game with purely public signals. Rather, as we show in the
next section, the set of equilibria crucially depends on the
number of agents in C as well as the information structure
of other agents.
To see the intuition underlying Theorem 1, suppose that

the information sets of agents in some set C form a fil-
tration. It is immediate that there exists an agent i 2 C
whose signals are observable to all other agents in C. Con-
sequently, agents in C face no uncertainty (strategic or oth-
erwise) in predicting the equilibrium actions of agent i.
Furthermore, the signals in Ij\Ii provide agent j 2 C\8i9
with information about the underlying state à beyond what
agent i has access to. Nevertheless, there exist realizations
of such signals such that the expected payoff of taking the
risky action to any agent j 2 C\8i9 would be positive if
and only if agent i takes the risky action. In other words,
for such realizations of signals, agent i’s action becomes
pivotal in determining the payoff maximizing actions of all
other agents in C. Consequently, signals in Ii can essen-
tially serve as a coordination device among C’s members,
leading to multiple equilibria.
Finally, note that condition (b) of Theorem 1 plays a cru-

cial role in the above argument. In particular, it guarantees
that agents in C effectively face an induced coordination
game among themselves, in which they can use the signals
in Ii as a coordination device.

4.1. The Role of Information Filtrations

In this subsection, we use a series of examples to exhibit
the main intuition underlying Theorem 1 and highlight the
role of its different assumptions.

Example 1. Consider a two-player game with linear pay-
offs è4k1 à5 = k É 1É à as in (1). Furthermore, suppose
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that the realized signals 4x11x25 are normally distributed,
with agents’ information sets given by

I1 = 8x191 I2 = 8x11x290

It is immediate that the above information structure satisfies
the assumptions of Theorem 1.

As before, focusing on threshold strategies is sufficient for
determining the set of equilibria. Let í1 denote the thresh-
old corresponding to agent 1’s strategy. The fact that x1 is a
signal that is observable to both agents implies that agent 2
can predict the equilibrium action of agent 1 with certainty
and change her behavior accordingly. On the other hand, the
expected payoff of agent 2 when she takes the risky action
is given by a1 É ⇧6à ó x11x27= a1 É 4x1 + x25/2. These two
observations together imply that the best response of agent 2
would be a threshold strategy 4í21 í 0

25 constructed as follows:
if x1 < í1, then agent 2 takes the risky action if and only if
4x1 + x25/2< í2, whereas if x1 æ í1, agent 2 takes the risky
action if and only if 4x1 + x25/2< í 0

2.
Therefore, the expected payoff of taking the risky action

to agent 2 is equal to

⇧6è4k1 à5 ó x11x27= ⌧8x1 < í19É 1
2 4x1 + x250

The fact that agent 2 has to be indifferent between taking
the safe and the risky actions at her two thresholds implies
that í2 = 1 and í 0

2 = 0. On the other hand, the expected
payoff of taking the risky action to agent 1 is given by

⇧6è4k1 à5 ó x17= ⇣4x2 < 2í2 É x1 ó x15⌧8x1 < í19

+⇣4x2 < 2í 0
2 É x1 ó x25⌧8x1 æ í19É x10

Given that í1 captures the threshold strategy of agent 1, the
above expression has to be positive if and only if x1 < í1,
or equivalently:

Í

✓
É í1

ë
p
2

◆
∂ í1 ∂Í

✓
2É í1

ë
p
2

◆
0

It is immediate to verify that the value of í1 that satisfies
the above inequalities is not unique, thus guaranteeing the
multiplicity of equilibria.

To interpret this result, note that whenever ⇧6à ó x11x27 2
40115, agent 2 finds it optimal to simply follow the behav-
ior of agent 1, regardless of the realization of signal x2.
This is because (i) within this range, agent 2’s belief about
the underlying state à lies inside the critical region; and
(ii) agent 2 can perfectly predict the action of agent 1, mak-
ing agent 1 pivotal and hence leading to multiple equilibria.

It is important to note that the arguments following The-
orem 1 and the above example break down if agent 1 has
access to signals that are not in the information set of
agent 2, even though there are some signals that are com-
mon knowledge between the two agents. To illustrate this

point, consider a three-agent variant of the above example,
where the agents’ information sets are given by

I1 = 8x21x391 I2 = 8x31x191 I3 = 8x11x290 (4)

Thus, even though there is one signal that is common
knowledge among any given pair of agents, the information
sets of no subset of agents form a filtration. We have the
following result:

Proposition 2. Suppose that agents’ information sets are

given by (4). There exists ë̄ such that if ë > ë̄ , then the

game has an essentially unique equilibrium.

Thus, the coordination game has a unique equilibrium
despite the fact that any pair of agents shares a common
signal. This is because, unlike Theorem 1 and Example 1
above, every agent faces some strategic uncertainty about
all other agents in the game, hence guaranteeing that no
collection of signals can serve as a coordination device
among a subset of agents.
In addition to the presence of a subset of agents C whose

information sets form a filtration, Theorem 1 also requires
that the information set of no agent outside C contain any
of the signals observable to agents in C. To clarify the role
of this assumption in generating multiple equilibria, once
again consider the above three-player game but instead sup-
pose that agents’ information sets are given by

I1 = 8x191 I2 = 8x11x291 I3 = 8x290 (5)

It is immediate to verify that the conditions of Theorem 1
are not satisfied, even though there exists a collection of
agents whose information sets form a filtration. We have
the following result:

Proposition 3. Suppose that agents’ information sets are

given by (5). Then the game has an essentially unique equi-

librium. Furthermore, as ë ! 0, all agents choose the risky
action if and only if à< 1/2.

Thus, as fundamental uncertainty is removed, informa-
tion structure (5) induces the same (essentially) unique
equilibrium as the case in which all signals are private.
This is despite the fact that the information sets of agents
in C = 81129 form a filtration.
To understand the intuition behind this result, it is

instructive to compare the above game with the game
described in Example 1. Notice that in both games, agents
with the larger information sets do not face any uncer-
tainty (strategic or otherwise) about predicting the actions
of agents with smaller information sets. Nevertheless, the
above game exhibits a unique equilibrium, whereas the
game in Example 1 has multiple equilibria. The key dis-
tinction lies in the different roles played by the extra pieces
of information available to the agents with larger informa-
tion sets. Recall that in Example 1, there exists a set of
realizations of signals for which agent 2 finds it optimal to
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imitate the action of agent 1. Therefore, under such condi-
tions, agent 2 uses x2 solely as a means of obtaining a more
precise estimate of the underlying state à. This, however,
is in sharp contrast with what happens under information
structure (5). In this case, signal x2 plays a second role in
the information structure of agent 2: it not only provides
an extra piece of information about à but also serves as
a perfect predictor of agent 3’s equilibrium action. Thus,
even if observing x2 does not change the mean of agent 2’s
posterior belief about à by much, it still provides her with
information about the action that agent 3 is expected to take
in equilibrium. This extra piece of information, however,
is not available to agent 1. Thus, even as ë ! 0, agents 1
and 3 face some strategic uncertainty regarding the equilib-
rium action of one another and, as a consequence, regarding
that of agent 2. The presence of such strategic uncertainties
implies that the game with information structure (5) would
exhibit a unique equilibrium.

We conclude our argument by showing that even though
the conditions of Theorem 1 are sufficient for equilibrium
multiplicity, they are not necessary. To see this, once again
consider a variant of the game in Example 1 but instead
assume that there are four agents whose information sets
are given by

I1 = 8x191 I2 = 8x11x291 I3 = 8x291 I4 = 8x291 (6)

Note that the above information structure does not satisfy
the conditions of Theorem 1. Nevertheless, one can show
that the game has multiple equilibria:

Proposition 4. Suppose that agents’ information sets are

given by (6). Then the game has multiple Bayesian Nash

equilibria.

The importance of the above result is highlighted when
contrasted with the information structure (5) and Proposi-
tion 3. Note that in both cases, agent 2 has access to the
signals available to all other agents. However, in informa-
tion structure (6), signal x2 is also available to an additional
agent, namely, agent 4. The presence of such an agent
with an information set identical to that of agent 3 means
that agents 3 and 4 face no strategic uncertainty regarding
one another’s actions. Therefore, even though they may be
uncertain about the equilibrium actions of agents 1 and 2,
there are certain realizations of signal x2 under which they
find it optimal to imitate one another’s action, thus leading
to the emergence of multiple equilibria.

5. Local Information and the Extent of

Multiplicity

Our analysis thus far was focused on the dichotomy
between multiplicity and uniqueness of equilibria. How-
ever, as the example in §3 shows, even when the game
exhibits multiple equilibria, the set of equilibria depends on
how information is locally shared between different agents.

In this section, we provide a characterization of the set of
all Bayesian Nash equilibria as a function of the informa-
tion sets of different agents. Our characterization quantifies
the dependence of the set of rationalizable strategies on the
extent to which agents observe common signals.
To explicitly characterize the set of equilibria, we restrict

our attention to a game with linear payoff functions given
by (1). We also assume that m ∂ n signals, denoted by
4x11 0 0 0 1xm5 2 ✓m, are realized, where the noise terms
4é11 0 0 0 1 ém5 are mutually independent and normally dis-
tributed with mean zero and variance ë2 > 0. Furthermore,
we assume that each agent observes only one of the real-
ized signals; that is, for any given agent i, her information
set is Ii = 8xr9 for some 1 ∂ r ∂ m. Finally, we denote
the fraction of agents that observe signal xr by cr , and let
c= 4c11 0 0 0 1cm5. Since each agent observes a single signal,
we have c1 + · · · + cm = 1. Note that as in our benchmark
model in §2, we assume that the allocation of signals to
agents is deterministic, prespecified, and common knowl-
edge. Our next result provides a simple characterization of
the set of all rationalizable strategies as ë ! 0.

Theorem 5. Let si denote a threshold strategy of agent i.
As ë ! 0, strategy si is rationalizable if and only if

si4x5=
(
1 if x < í

0 if x > í̄1

where

í = 1É í̄ = n

24nÉ 15
41Éòcò225∂

1
2

and òcò2 denotes the Euclidean norm of vector c.

The above theorem shows that the distance between the
thresholds of the “largest” and “smallest” rationalizable
strategies depends on how information is locally shared
between different agents. More specifically, a smaller òcò2
implies that the set of rationalizable strategies would
shrink.
Note that òcò2 is essentially a proxy for the extent to

which agents observe common signals: it takes a smaller
value whenever any given signal is observed by fewer
agents. Hence, a smaller value of òcò2 implies that agents
would face higher strategic uncertainty about one another’s
actions, even when all the fundamental uncertainty is
removed as ë ! 0. As a consequence, the set of ratio-
nalizable strategies shrinks as the Euclidean norm of c
decreases. In the extreme case that agents’ information is
only in the form of private signals (that is, when m= n and
cr = 1/n for all r), the upper and lower thresholds coin-
cide 4í = í̄ = 1/25, implying that the equilibrium strategies
are essentially unique. This is indeed the case that corre-
sponds to maximal level of strategic uncertainty. On the
other hand, when all agents observe the same public sig-
nal (i.e., when m = 1 and òcò2 = 1), they face no strate-
gic uncertainty about each other’s actions, and hence all
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undominated strategies are rationalizable. Thus, to summa-
rize, the above two extreme cases coincide with the stan-
dard results in the global games literature. Theorem 5 above
generalizes those results by characterizing the equilibria of
the game in the intermediate cases in which signals are
neither fully public nor private.

Recall that since the Bayesian game under consideration
is monotone supermodular in the sense of Van Zandt and
Vives (2007), there exist a greatest and a smallest Bayesian
Nash equilibrium, both of which are in threshold strate-
gies. Moreover, by Milgrom and Roberts (1990), all profiles
of rationalizable strategies are “sandwiched” between these
two equilibria. Therefore, Theorem 5 also provides a char-
acterization of the set of equilibria of the game, showing
that a higher level of common knowledge, captured via a
larger value for òcò2, implies a larger set of equilibria. Note
that if m<n, by construction, there are at least two agents
with identical information sets. Theorem 5 then implies that
í < 1/2< í̄ , which means that the game exhibits multiple
equilibria, an observation consistent with Theorem 1.

A simple corollary to Theorem 5 implies that with m<n
sources of information, the set of Bayesian Nash equilibria
is largest when mÉ 1 agents each observe a private signal
and nÉm+ 1 agents have access to the remaining signal.
In this case, common knowledge of signals among such
a large group of agents minimizes the extent of strategic
uncertainty and hence leads to the largest set of equilibria.
On the other hand, the set of equilibria shrinks whenever
the sizes of the sets of agents with access to the same
signal are more equalized. In particular, the case in which
cr = 1/m for all r corresponds to the highest level of inter-
group strategic uncertainty, leading to the greatest extent of
refinement of rationalizable strategies.

5.1. Large Coordination Games

Recall from Theorem 1 that the existence of two agents i
and j with identical information sets is sufficient to guar-
antee equilibrium multiplicity, irrespective of the number
of agents in the game or how much other agents care about
coordinating with i and j . In particular, no matter how
insignificant and uninformed the two agents are, the mere
fact that i and j face no uncertainty regarding each other’s
behavior leads to equilibrium multiplicity. On the other
hand, as Theorem 5 and the preceding discussion show,
even under information structures that lead to multiplicity,
the set of equilibria still depends on the extent to which
agents observe common signals. To further clarify the role
of local information in determining the size of the equilib-
rium set, we next study large coordination games.

Formally, consider a sequence of games 8G4n59n2� pa-
rametrized by the number of agents, in which each agent i
can observe a single signal, and assume that the noise terms
in the signals are mutually independent and normally dis-
tributed with mean zero and variance ë2 > 0. We have the
following corollary to Theorem 5.

Proposition 6. The sequence of games 8G4n59n2� exhibits

an (essentially) unique equilibrium asymptotically as

n!à and in the limit as ë ! 0 if and only if the size of

the largest set of agents with a common observation grows

sublinearly in n.

Thus, as the number of agents grows, the game exhibits
multiple equilibria if and only if a nontrivial fraction of the
agents have access to the same signal. Even though such a
signal is not public—in the sense that it is not observed by
all agents—the fact that it is common knowledge among
a nonzero fraction of the agents implies that it can func-
tion as a powerful enough coordination device and hence
induce multiple equilibria. On the other hand, if the size
of the largest subset of agents with common knowledge of
a signal does not grow at the same rate as the number of
agents, information is diverse and effectively private: any
agent faces strategic uncertainty regarding the behavior of
most other agents, even as all the fundamental uncertainty
is removed (ë ! 0). Consequently, as the number of agents
grows, the set of equilibrium strategies of each agent col-
lapses to a single strategy.

5.2. Robustness to Uncertainty in the

Information Structure

So far, we have assumed that the information structure of
the game is common knowledge. In this subsection, we
relax this assumption and show that our results are robust
to a small amount of uncertainty regarding the information
structure of the game.
To capture this idea formally, consider a game G⇤ with

information structure Q⇤ = 8I11 0 0 0 1 In9 that is common
knowledge among the agents, where each signal is observed
by more than a single agent. Furthermore, consider a per-
turbed version of G⇤ in which the information structure is
drawn according to a probability distribution å that is inde-
pendent from the realization of à and the signals. In partic-
ular, the likelihood that a certain information structure Q is
realized is given by å4Q5.6 This means that as long as å
is not degenerate, agents are not only uncertain about the
realization of the underlying state à and other agents’ sig-
nals, but they may also have incomplete information about
one another’s information sets.
We consider the case where the cardinality of any agent’s

information set is identical across all possible information
structures for which å4Q5> 0. This assumption guarantees
that any strategy of a given agent is a mapping from the
same subspace of ✓n to 80119 regardless of the realization
of the information structure, thus allowing us to compare
agents’ strategies for different probability measures å. We
have the following result:7

Theorem 7. Consider a sequence of probability distribu-

tions 8ås9
à
s=1 such that lims!àås4Q

⇤5 = 1, and let Gs

denote the game whose information structure is drawn

according to ås . Then for almost all equilibria of G⇤
, there

exists a large enough s̄ such that for all s > s̄, that equilib-
rium is also a Bayesian Nash equilibrium of Gs .
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The above result thus highlights that even if the informa-
tion structure of the game is not common knowledge among
the agents, the equilibria of the perturbed game would be
close to the equilibria of the original game. Consequently,
it establishes that our earlier results on the multiplicity of
equilibria are also robust to the introduction of a small
amount of uncertainty about the information structure of
the game.

As a last remark, we note that in the above result, we
did not allow agents to obtain extra, side signals about the
realization of the information structure of the game. Never-
theless, a similar argument shows that the set of equilibria
is robust to small amounts of noise in the information struc-
ture of the game, even if agents obtain such informative
signals.

6. Conclusions

Many social and economic phenomena (such as bank runs,
adoption of new technologies, social uprisings, etc.) exhibit
an element of coordination. In this paper, we focused on
how the presence of local information channels can affect
the likelihood and possibility of coordination failures in
such contexts. In particular, by introducing local signals—
signals that are neither purely public nor private—to the
canonical global game models studied in the literature, we
showed that the set of equilibria depends on how informa-
tion is locally shared among agents. Our results establish
that the coordination game exhibits multiple equilibria if
the information sets of a group of agents form an increas-
ing sequence of nested sets: the presence of such a filtration
removes agents’ strategic uncertainty about one another’s
actions and leads to multiple equilibria.

We also provided a characterization of how the extent
of equilibrium multiplicity is determined by the extent to
which subsets of agents have access to common informa-
tion. In particular, we showed that the size of the equilib-
rium set is increasing in the standard deviation of the frac-
tions of agents with access to the same signal. Our result
thus shows that the set of equilibria shrinks as information
becomes more decentralized in the society.

On the theoretical side, our results highlight the impor-
tance of local information channels in global games by
underscoring how the introduction of a signal commonly
observed by even a small number of agents may lead to
equilibrium multiplicity in an environment that would have
otherwise exhibited a unique equilibrium. On the more
applied side, our results show that incorporating local com-
munication channels between agents may be of first-order
importance in understanding many phenomena that exhibit
an element of coordination. In particular, they highlight the
risk of abstracting from the intricate details of information
dissemination within such contexts. For instance, policy
interventions that are not informed by the dispersion and
penetration of different information channels among agents
may turn out to be counterproductive.
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Appendix. Proofs

Notation and Preliminary Lemmas

We first introduce some notation and prove some preliminary lem-
mas. Recall that a pure strategy of agent i is a mapping si2 ✓

óIi ó !
80119, where Ii denotes i’s information set. Thus, a pure strategy
si can equivalently be represented by the set Ai ✓✓óIi ó over which
agent i takes the risky action; i.e.,

Ai = 8yi 2✓óIi ó2 si4yi5= 191

where yi = 4xr5r2Ii denotes the collection of the realized signals in
the information set of agent i. Hence, a strategy profile can equiv-
alently be represented by a collection of sets A = 4A11 0 0 0 1An5

over which agents take the risky action. We denote the set of all
strategies of agent i by Ai and the set of all strategy profiles by A.
Given the strategies of other agents, AÉi, we denote the expected
payoff to agent i of the risky action when she observes yi by
Vi4AÉi ó yi5. Thus, a best response mapping BRi2 AÉi ! Ai is
naturally defined as

BRi4AÉi5= 8yi 2✓óIi ó2 Vi4AÉi ó yi5> 090 (7)

Finally, we define the mapping BR2 A!A as the product of the
best response mappings of all agents; that is,

BR4A5=BR14AÉ15⇥ · · ·⇥BRn4AÉn50 (8)

The BR4 · 5 mapping is monotone and continuous. More formally,
we have the following lemmas:

Lemma 1 (Monotonicity). Consider two strategy profiles A

and A0
such that A✓A0

. (We write A✓A0
whenever Ai ✓A0

i for

all i.) Then BR4A5✓BR4A05.

Proof. Fix an agent i and consider yi 2BRi4AÉi5, which by defi-
nition satisfies Vi4AÉi ó yi5> 0. Because of the presence of strate-
gic complementarities (Assumption 1), we have Vi4A

0
Éi ó yi5 æ

Vi4AÉi ó yi5 and, as a result, yi 2BRi4A
0
Éi5. É

Lemma 2 (Continuity). Consider a sequence of strategy pro-

files 8Ak9k2� such that Ak ✓Ak+1
for all k. Then

à[

k=1

BR4Ak5=BR4Aà51

where Aà =Sà
k=1A

k
.
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Proof. Clearly, Ak ✓ Aà and by Lemma 1, BR4Ak5✓ BR4Aà5
for all k. Thus,

à[

k=1

BR4Ak5✓BR4Aà50

To prove the reverse inclusion, suppose that yi 2BRi4A
à
Éi5, which

implies that Vi4A
à
Éi ó yi5 > 0. On the other hand, for any à and

any observation profile 4y11 0 0 0 1yn5, we have

lim
k!à

ui4ai1 s
k
Éi4yÉi51 à5= ui4ai1 s

à
Éi4yÉi51 à51

where sk and sà are strategy profiles corresponding to sets Ak and
Aà, respectively. Thus, by the dominated convergence theorem,

lim
k!à

Vi4A
k
Éi ó yi5= Vi4A

à
Éi ó yi51 (9)

where we have used Assumption 4. Therefore, there exists r 2
� large enough such that Vi4A

r
Éi ó yi5 > 0, implying that yi 2Sà

k=1 BR4A
k
i 5. This completes the proof. É

Throughout the rest of the proofs, we let 8Rk9k2� denote the
sequence of strategy profiles defined recursively as

R1 =ô1

Rk+1 =BR4Rk50 (10)

Thus, any strategy profile A that survives k rounds of iterated
elimination of strictly dominated strategies must satisfy Rk+1 ✓A.
Consequently, A survives the iterated elimination of strictly dom-
inated strategies only if R✓A, where

R=
à[

k=1

Rk0 (11)

Proof of Theorem 1

Without loss of generality, let C = 811 0 0 0 1 `9 and I1 ✓ I2 · · ·✓ I`,
where ` æ 2. Before proving the theorem, we first define an
“induced coordination game” between agents in C = 811 0 0 0 1 `9 as
follows: suppose that agents in C play the game described in §2,
except the actions of agents outside of C are prescribed by the
strategy profile R defined in (10) and (11). More specifically, the
payoff of taking the risky action to agent i 2C is given by

è̃4k1 à5=è

✓
k+

X

j 62C
⌧8yj 2Rj91 à

◆
1

where k=P`
j=1 aj denotes the number of agents in C who take

the risky action. As in the benchmark game in §2, the payoff of
taking the safe action is normalized to zero.

For this game, define the sequence of strategy profiles
8R0k9k2� as

R01 =ô1 (12)

R0k+1 =BR4R0k51 (13)

and set R0 = Sà
k=1R

0k. Clearly, the strategy profile 4R0
11 0 0 0 1R

0
`5

corresponds to a Bayesian Nash equilibrium of the induced game
defined above. Furthermore, it is immediate that R0

i = Ri for all
i 2C.

We have the following lemma:

Lemma 3. The induced coordination game between the ` agents

in C has an equilibrium strategy profile B = 4B11 0 0 0 1B`5 such

that ã✓óIi ó4Bi \ R0
i5 > 0 for all i 2 C, where ã✓r is the Lebesgue

measure in ✓r
and the equilibrium strategy profile R0

is given by

(12) and (13).

Proof. We denote yj = 8xr 2 xr 2 Ij9. Recall that any strategy
profile of agents in C can be represented as a collection of sets
A = 4A11 0 0 0 1A`5, where Aj is the set of realizations of yj over
which agent j takes the risky action. On the other hand, recall
that since I1 ✓ I2 · · ·✓ I`, agent j observes the realizations of sig-
nals yi for all i ∂ j . Therefore, any strategy Aj of agent j can
be recursively captured by indexing it to the realizations of sig-
nals 4y11 0 0 0 1yiÉ15. More formally, given the realization of signals
4y11 0 0 0 1y`5 and the strategies 4A11 0 0 0 1AjÉ15, agent j takes the
risky action if and only if

yj 2A
4s110001sjÉ15

j 1

where

si = ⌧8yi 2A
4s110001siÉ15
i 9

for all i ∂ j É 1. In other words, j first considers the set of sig-
nals 4y11 0 0 0 1yjÉ15 and, based on their realizations, takes the risky
action if yj 2 A

4s110001sjÉ15

j . Note that in the above notation, rather
than being captured by a single set Aj ✓✓óIj ó, the strategy of agent
j is captured by 2jÉ1 different sets of the form A

4s110001sjÉ15

j . Thus,
the collection of sets

A= 8A
4s110001sjÉ15

j 91∂j∂`1 s280119`É1 (14)

capture the strategy profile of the agents 811 0 0 0 1 `9 in the induced
coordination game. Finally, to simplify notation, we let sj =
4s11 0 0 0 1 sj5 and Sj =

PjÉ1
i=1 si.

With the above notation at hand, we now proceed with the
proof of the lemma. Note that since the induced coordination
game is a game of strategic complementarities, it has at least one
equilibrium. In fact, the iterated elimination of strictly dominated
strategies in (12) and (13) leads to one such equilibrium A= R0.
Let A, represented in (14), denote one such strategy profile, where
we assume that agents take the safe action whenever they are
indifferent between the two actions.

For the strategy profile A to be an equilibrium, the expected
payoff of paying the risky action to agent j has to be positive
for all yj 2 A

s110001sjÉ1
j , and nonpositive for yj 62 A

s110001sjÉ1
j . In other

words, if yj 2A
s110001sjÉ1
j , then

X

411sj+110001srÉ15

⇧6è̃41+S`1à5 óyj 7⇣4y`2As
`1yk2A4skÉ15

k 8sk=11

yk 62A4skÉ15
k 8sk=02 j <k<` óyj5

+
X

411sj+110001srÉ15

⇧6è̃4S`1à5 óyj 7⇣4y` 62As
`1yk2A4skÉ15

k 8sk=11

yk 62A4skÉ15
k 8sk=02 j <k<` óyj5>03

whereas, on the other hand, if yj 62A
s110001sjÉ1
j , then

X

401sj+110001srÉ15

⇧6è̃41+S`1à5 óyj 7⇣4y`2As
`1yk2A4skÉ15

k 8sk=11

yk 62A4skÉ15
k 8sk=02 j <k<` óyj5

+
X

401sj+110001srÉ15

⇧6è̃4S`1à5 óyj 7⇣4y` 62As
`1yk2A4skÉ15

k 8sk=11

yk 62A4skÉ15
k 8sk=02 j <k<` óyj5∂00
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To understand the above expressions, note that in equilibrium,
agent j faces no strategic uncertainty regarding the behavior of
agents i∂ jÉ1. However, to compute her expected payoff, agent j
needs to condition on different realizations of signals 4sj+110001s`5.
Furthermore, she needs to take into account that the realizations
of such signals not only affect the belief of agents k>j about the
underlying state à but also determine which set As4kÉ15

k they would
use for taking the risky action.

Given the equilibrium strategy profile A whose properties we
just studied, we now construct a new strategy profile D as fol-
lows. Start with agent ` at the top of the chain and define a set
D

4s110001s`É15
` to be such that it satisfies

⇧6è̃41+S`1à5 óy`7>0 if y`2D4s110001s`É15
` 1

⇧6è̃41+S`1à5 óy`7∂0 if y`yD
4s110001s`É15
` 0

Note that for any given s, the set Ds
` is essentially an extension of

As
` to the whole space ✓óI`ó in the sense that the two sets coincide

with one another over the subset of signals realizations

8y`2 yi2AsiÉ1

i if si=1 and yiyAsiÉ1

i if si=090

Similarly, (and recursively) define the sets Dj as extensions of
the sets Aj such that they satisfy the following properties: if yj 2
D

4s110001sjÉ15

j , then
X

411sj+110001srÉ15

⇧6è̃41+S`1à5 óyj 7⇣4y`2Ds
`1yk2D4skÉ15

k 8sk=11

yk 62D4skÉ15
k 8sk=03k>j óyj5

+
X

411sj+110001srÉ15

⇧6è̃4S`1à5 óyj 7⇣4y` 62Ds
`1yk2D4skÉ15

k 8sk=11

yk 62D4skÉ15
k 8sk=03k>j óyj5>03 (15)

and, on the other hand, if yj 62D
s110001sjÉ1
j , then

X

401sj+110001srÉ15

⇧6è̃41+S`1à5 óyj 7⇣4y`2Ds
`1yk2D4skÉ15

k 8sk=11

yk 62D4skÉ15
k 8sk=03k>j óyj5

+
X

401sj+110001srÉ15

⇧6è̃4S`1à5 óyj 7⇣4y` 62Ds
`1yk2D4skÉ15

k 8sk=11

yk 62D4skÉ15
k 8sk=03k>j óyj5∂00 (16)

Note that given that the sets D are simply extensions of sets A,
by construction, the strategy profile 4D110001D`5 also forms a
Bayesian Nash equilibrium. In fact, it essentially is an alternative
representation of the equilibrium strategy profile A.

Now, consider the expected payoff to agent 1, at the bottom of
the chain. In equilibrium, agent 1 should prefer to take the risky
action in set D1. In other words,

f 4y15>0 8y12D1 (17)

f 04y15∂0 8y1 62D11 (18)

where

f 4y15=
X

s280119`É12s1=1

⇧6è̃41+S`1à5 óy17⇣4y`2Ds
`1

yk2D4skÉ15
k 8sk=11yk 62A4skÉ15

k 8sk=02 1<k<` óy15
+

X

s280119`É12s1=1

⇧6è̃4S`1à5 óy17⇣4y` 62Ds
`1

yk2D4skÉ15
k 8sk=11yk 62A4skÉ15

k 8sk=02 1<k<` óy151

and

f 04y15=
X

s280119`É1 2s1=0

⇧6è̃41+S`1à5 óy17⇣4y`2Ds
`1

yk2D4skÉ15
k 8sk=11yk 62A4skÉ15

k 8sk=02 k>1 óy15
+

X

s280119`É1 2s1=0

⇧6è̃4S`1à5 óy17⇣4y` 62Ds
`1

yk2D4skÉ15
k 8sk=11yk 62A4skÉ15

k 8sk=02 k>1 óy151

are simply determined by evaluating inequalities (15) and (16) for
agent 1. Notice that unlike the definition of f 4y15, in the definition
of f 04y15 we have to start from s1=0 because agent 1 is not
supposed to take the risky action whenever y1 62D1.

We have the following lemma, the proof of which is provided
later on:

Lemma 4. Let X=8y12 f 4y15>09 and Y =8y12 f
04y15>09. Then

there exists a set B1 such that Y ✓B1✓X and ã✓óI1 ó4B1„D15>0,
where ã✓óI1 ó refers to the Lebesgue measure and „ denotes the

symmetric difference.

In view of the above lemma, we now use the set B1 to construct
a new strategy profile B represented as the following collections
of sets:

B=4B118D
4s110001sjÉ15

j 92∂j∂`1s280119`É150

In other words, agent 1 takes the risky action if and only if y12B1.
The rest of the agents follow the same strategies as prescribed
by strategy profile D except for the fact that rather than choos-
ing their D sets based on whether y1 belongs to D1 or not, they
choose the sets based on whether y12B1 or not. By construc-
tion, the strategy profile above is an equilibrium. Note that since
Y ✓B1✓X, agent 1 is best responding to the strategies of all other
agents. Furthermore, given that for j 6=1 we have that B4sjÉ15

j =
D

4sjÉ15
j , inequalities (15) and (16) are also satisfied, implying that

agent j also best responds to the behavior of all other agents,
hence, completing the proof. É

We now present the proof of Theorem 1.
Proof of Theorem 1. Lemma 3 establishes that the induced

coordination game between agents in C has an equilibrium
B=4B110001B`5 that is distinct from the equilibrium R0 derived
via iterated elimination of strictly dominated strategies in (12)
and (13). We now use this strategy profile to construct an equi-
librium for the original n-agent game.

Define the strategy profile B̃=4B110001B`1R`+1 0001Rn5 for the
n-agent game, where Rj is defined in (10) and (11). Lemma 3
immediately implies that B̃✓BR4B̃5. Define the sequence of strat-
egy profiles 8Hk9k2� as

H 1= B̃

Hk+1=BR4Hk50

Given that H1✓H 2, Lemma 1 implies that Hk✓Hk+1 for all k.
Thus, H=Sà

k=1H
k is well defined and by continuity of the BR

operator (Lemma 2) satisfies H=BR4H5. As a consequence, H
is also a Bayesian Nash equilibrium of the game that, in light
of Lemma 3, is distinct from R. Note that R is itself a Bayesian
Nash equilibrium of the game because it is a fixed point of the
best response operator. É
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Proof of Lemma 4. The definitions of sets X and Y imme-
diately imply that Y ✓D1✓X. On the other hand, the second
part of Assumption 1 implies that ã✓óI1 ó4X\Y 5>0. Consequently,
there exists a set B1 distinct from D1 such that Y ✓B✓X and
ã✓óI1 ó4B1„D15>0. This completes the proof. É

Proof of Proposition 2

Recall the sequence of strategy profiles Rk and its limit R defined
in (10) and (11), respectively. By Lemma 2, R=BR4R5, which
implies that yi2Ri if and only if Vi4RÉi óyi5>0. We have the
following lemma.

Lemma 5. There exists a strictly decreasing function h2 ✓!✓
such that Vi4RÉi óyi5=0 if and only if xj =h4xl5, where yi=
4xj 1xl5 and i, j , and l are different.

Proof. Using an inductive argument, we first prove that for all k
(i) Vi4R

k
Éi óyi5 is continuously differentiable in yi,

(ii) Vi4R
k
Éi óyi5 is strictly decreasing in both arguments,

4xj 1xl5=yi, and
(iii) ó°Vi4R

k
Éi óyi5/°xj ó2 61/21Q7,

where j 6= i and

Q= ë
p
3è+1

2ë
p
3èÉ2

0

The above clearly hold for k=1 because Vi4ôóyi5=É4xj+xl5/2.
Now suppose that (i)–(iii) are satisfied for some kæ1. By the
implicit function theorem,8 there exists a continuously differen-
tiable function hk2 ✓!✓ such that

Vi4R
k
Éi óxj 1hk4xj55=01

and É2Q∂h0
k4xj5∂É1/42Q5. (Given the symmetry between the

three agents, we drop the agent’s index for function hk.) The
monotonicity of hk implies that Vi4R

k
Éi óyi5>0 if and only if xj <

hk4xl5. Therefore,

Vi4R
k+1
Éi óyi5

= 1
2 6⇣4yj 2Rk+1

j óyi5+⇣4yl2Rk+1
l óyi57É 1

2 4xj+xl5

= 1
2 6⇣4xi <hk4xl5 óyi5+⇣4xi <hk4xj5 óyi57É 1

2 4xj+xl5

= 1
2


Í

✓
hk4xl5É4xj+xl5/2

ë
p
3/2

◆

+Í

✓
hk4xj5É4xj+xl5/2

ë
p
3/2

◆�
É 1
2
4xj+xl51

which immediately implies that Vi4R
k+1
Éi óyi5 is continuously differ-

entiable and strictly decreasing in both arguments. Furthermore,
°

°xj
Vi4R

k+1
Éi óyi5

=É 1

2ë
p
6
î

✓
hk4xl5É4xj+xl5/2

ë
p
3/2

◆

+ 2h0
k4xj5É1

2ë
p
6

î

✓
hk4xj5É4xj+xl5/2

ë
p
3/2

◆
É 1
2
1

which guarantees

É1
2
É 1+2Q

2ë
p
3è

∂ °

°xj
Vi4R

k+1
Éi óyi5∂É1

2
1

completing the inductive argument because
1
2
+ 1+2Q

2ë
p
3è

=Q0

Now using (9) and the implicit function theorem once again com-
pletes the proof. É

Proof of Proposition 2. By definition,

Vi4RÉi óyi5= 1
2 6⇣4yj 2Rj óyi5+⇣4yl2Rl óyi57É 1

2 4xj+xl5

= 1
2 6⇣4Vj4RÉj óyj5>0 óyi5
+⇣4Vl4RÉl óyl5>0 óyi57É 1

2 4xj+xl51

where R=BR4R5. By Lemma 5,

Vi4RÉi óyi5=
1
2
Í

✓
h4xl5É4xj+xl5/2

ë
p
3/2

◆

+ 1
2
Í

✓
h4xj5É4xj+xl5/2

ë
p
3/2

◆
É 1
2
4xj+xl50

Setting Vi4RÉi óyi5=0 and any solution yi=4xj 1xl) of
Vi4RÉi óyi5=0 satisfies h4xl5=xj and h4xj5=xl imply that
xj+xl=1. Therefore,

Ri=
�
4xj 1xl52✓22 1

2 4xj+xl5<
1
2

 
0

Hence, in any strategy profile that survives iterated elimination of
strictly dominated strategies, an agent takes the risky action when-
ever the average of the two signals she observes is less than 1/2.
A symmetrical argument implies that in any strategy profile that
survives the iterated elimination of strictly dominated strategies,
the agent takes the safe action whenever the average of her signals
is greater than 1/2. Thus, the game has an essentially unique ratio-
nalizable strategy profile and hence an essentially unique Bayesian
Nash equilibrium. É

Proof of Proposition 3

It is sufficient to show that there exists an essentially unique equi-
librium in monotone strategies. Note that because of symmetry,
the strategies of agents 1 and 3 in the extremal equilibria of the
game are identical. Denote the (common) equilibrium threshold
of agents 1 and 3’s threshold strategies by í 2 60117, in the sense
that they take the risky action if and only if their observation is
less than í . Then the expected payoff of taking the risky action
to agent 2 is equal to

⇧6è4k1à5 óx11x27= 1
2 6⌧8x1<í9+⌧8x2<í9É4x1+x2570

First suppose that í>1/2. Then the best response of agent 2 is
to take the risky action if either (i) x1+x2∂1 or (ii) x11x2∂í

hold. On the other hand, for í to correspond to the threshold of an
equilibrium strategy of agent 1, her expected payoff of taking the
risky action has to be positive whenever x1<í . In other words,

1
2 ⇣4x2<í óx15
+ 1

2 6⇣4x1+x2∂1 óx15+⇣41Éx1∂x2∂í óx157æx1

for all x1<í . As a result, for any x1<í , we have

1
2
Í

✓
íÉx1

ë
p
2

◆
+ 1
2
Í

✓
1É2x1
ë
p
2

◆

+ 1
2


Í

✓
íÉx1

ë
p
2

◆
ÉÍ

✓
1É2x1
ë
p
2

◆�
æx11
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which simplifies to

Í

✓
íÉx1

ë
p
2

◆
æx10

Taking the limit of the both sides of the above inequality as
x1"í implies that í∂1/2. This, however, contradicts the original
assumption that í>1/2. A similar argument would also rule out
the case that í<1/2. Hence, í corresponds to the threshold of
an equilibrium strategy of agents 1 and 3 only if í=1/2. As a
consequence, in the essentially unique equilibrium of the game,
agent 2 takes the risky action if and only if x1+x2<1. This proves
the first part of the proposition. The proof of the second part is
immediate. É

Proof of Proposition 4

One again, we can simply focus on the set of equilibria in thresh-
old strategies. Let í1, í3, and í4 denote the thresholds of agents 1,
3, and 4, respectively. Note that by symmetry, í3=í4. Also let
function f2 denote the strategy of agent 2, in the sense that agent 2
takes the risky action if and only if x2<f24x15.

The expected value of taking the risky action to agent 1 is
given by

⇧6è4k1à5 óx17= 1
3 ⇣4x2<f24x15 óx15+ 2

3 ⇣4x2<í3 óx15Éx10

Thus, for í1 to be the equilibrium threshold strategy for agent 1,
the above expression has to be zero at x1=í1:

í1=
1
3
Í

✓
f24í15Éí1

ë
p
2

◆
+ 2
3
Í

✓
í3Éí1

ë
p
2

◆
(19)

On the other hand, the expected value of taking the risky action
to agents 3 and 4 is given by

⇧6è4k1à5 óx27= 1
3 ⇣4x1<í1 óx25+ 1

3 ⇣4x1<f É1
2 4x25 óx25

+ 1
3⌧8x2<í39Éx21

where f É1
2 is the inverse function of f2. For í3 to be the equi-

librium threshold strategy for agents 3 and 4, the above expres-
sion has to be positive for x2<í3 and negative for x2>í3, which
implies

í2É
1
3
∂ 1

3
Í

✓
í1Éí3

ë
p
2

◆
+ 1
3
Í

✓
f É1
2 4í35Éí3

ë
p
2

◆
∂í20 (20)

It is easy to verify that the triplet 4í11f21í35 that satisfies condi-
tions (19) and (20) simultaneously is not unique. É

Proof of Theorem 5

As already mentioned, the Bayesian game under consideration
is monotone supermodular in the sense of Van Zandt and Vives
(2007), which ensures that the set of equilibria has well-defined
maximal and minimal elements, each of which is in threshold
strategies. Moreover, by Milgrom and Roberts (1990), all profiles
of rationalizable strategies are “sandwiched” between these two
equilibria. Hence, to characterize the set of rationalizable strate-
gies, it suffices to focus on threshold strategies and determine the
smallest and largest thresholds that correspond to Bayesian Nash
equilibria of the game.

Denote the threshold corresponding to the strategy of an agent
who observes signal xr with ír . The profile of threshold strategies
corresponding to thresholds 8ír9 is a Bayesian Nash equilibrium
of the game if and only if for all r ,

n

nÉ1

X

j 6=r

cjÍ

✓
íjÉxr

ë
p
2

◆
Éxr ∂0 for xr >ír

ncrÉ1
nÉ1

+ n

nÉ1

X

j 6=r

cjÍ

✓
íjÉxr

ë
p
2

◆
Éxr æ0 for xr <ír 1

where the first (second) inequality guarantees that the agent has
no incentive to deviate to the risky (safe) action when the sig-
nal she observes is above (below) threshold ír . Taking the limit
as xr converges to ír from above in the first inequality implies
that in any symmetric, Bayesian Nash equilibrium of the game in
threshold strategies,

4nÉ15íænHc1

where í= 6í110001ím7 is the vector of thresholds and H 2✓m⇥m is
a matrix with zero diagonal entries, and off-diagonal entries given
by Hjr =Í44íjÉír5/ë

p
25. Therefore,

24nÉ15c0íænc04H 0+H5c

=nc041105cÉnc0c1

where 1 is the vector of all ones and Í4z5+Í4Éz5=1. Conse-
quently,

24nÉ15c0íæn41Éòcò2250

Finally, given that óírÉíj ó!0 as ë!0 and òcò1=1, the left-
hand side of the above inequality converges to 24nÉ15í⇤ for
some constant í⇤; as a result, the smallest possible threshold that
corresponds to a Bayesian Nash equilibrium is equal to

í= n

24nÉ15
41Éòcò2250

The expression for í̄ is derived analogously. É

Proof of Proposition 6

We first prove that if the size of the largest set of agents with a
common observation grows sublinearly in n, then asymptotically
as n!à, the game has a unique equilibrium. We denote the
vector of the fractions of agents observing each signal by c4n5 to
make explicit the dependence on the number of agents n. Note that
if the size of the largest set of agents with a common observation
grows sublinearly in n, then

lim
n!à

òc4n5òà=01

where òzòà is the maximum element of vector z. On the other
hand, by Hölder’s inequality,

òc4n5ò22∂òc4n5ò1 ·òc4n5òà0

Given that the elements of vector c4n5 add up to one,
limn!àòc4n5ò2=0. Consequently, Theorem 5 implies that thresh-
olds í4n5 and í̄4n5 characterizing the set of rationalizable strate-
gies of the game of size n satisfy

lim
n!à

í4n5= lim
n!à

í̄4n5=1/20

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

28
.5

9.
83

.2
7]

 o
n 

13
 Ju

ly
 2

01
6,

 a
t 0

9:
20

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Dahleh et al.: Coordination with Local Information
636 Operations Research 64(3), pp. 622–637, © 2016 INFORMS

Thus, asymptotically, the game has an essentially unique Bayesian
Nash equilibrium.

To prove the converse, suppose that the size of the largest
set of agents with a common observation grows linearly in n,
which means that òc4n5òà remains bounded away from zero as
n!à. Furthermore, the inequality òc4n5òà∂òc4n5ò2 immedi-
ately implies that òc4n5ò2 also remains bounded away from zero
as n!à. Hence, by Theorem 5,

limsup
n!à

í4n5<1/2

liminf
n!à

í̄4n5>1/21

guaranteeing asymptotic multiplicity of equilibria as n!à. É

Proof of Theorem 7

Pick a nonextremal equilibrium in the game with information
structure Q⇤=8I110001In9 and denote it by 4A110001An5, according
to which agent i takes the risky action if and only if yi2Ai. We
denote the expected payoff of taking the risky action to agent i
under information structure Q⇤ by V ⇤

i 4AÉi óyi5. Given that each
signal is observed by at least two agents and that the strategy pro-
file 4A110001An5 is a nonextremal equilibrium, there exists Ö>0
such that

V ⇤
i 4AÉi óyi5>Ö for all yi2Ai

V ⇤
i 4AÉi óyi5<ÉÖ for all yi 62Ai0

Now consider the sequence of games 8Gs9 in which the informa-
tion structure is drawn according to the sequence of probability
distributions 8ås9. It is easy to see that in the game indexed by
s, agent i’s expected payoff of taking the risky action, when all
other agents follow strategies AÉi, is given by

V
4s5
i 4AÉi óyi5=

X

Q

ås4Q5V Q
i 4AÉi óyi51

where we denote the expected payoff of taking the risky action
to agent i under information structure Q by V Q

i 4AÉi óyi5. Since
lims!àås4Q

⇤5=1, it is immediate that the above expression con-
verges to V ⇤

i 4AÉi óyi5.
Consequently, given that V ⇤

i 4AÉi óyi5 is uniformly bounded
away from zero for all yi, there exists a large enough s̄ such that
for s>s̄, the expected payoff of taking the risky action in game
Gs when other agents follow strategies AÉi is strictly positive if
yi2Ai, whereas it would be strictly negative if yi 62Ai. Thus, for
any s>s̄, the strategy profile 4A110001An5 is also a Bayesian Nash
equilibrium of game Gs . É

Endnotes

1. See Morris and Shin (2003) for more examples.
2. Note that strategic uncertainty is distinct from fundamental
uncertainty. Whereas fundamental uncertainty simply refers to the
agents’ uncertainty about the underlying, payoff-relevant state of
the world, strategic uncertainty refers to their uncertainty concern-
ing the equilibrium actions of one another.
3. With some abuse of notation, we use Ii to denote both the
set of actual signals observed by agent i as well as the set of
indices of the signals observed by that agent. Zoumpoulis (2014)
discusses the special case where the agents are organized in a
network, such that each agent observes a signal that pertains to
her and the signals of her neighbors.

4. We relax this assumption in §5.2.
5. As already mentioned, this is a consequence of the underlying
game being a Bayesian game with strategic complementarities,
and hence the extremal equilibria are monotone in types. For a
detailed study of Bayesian games with strategic complementari-
ties, see Van Zandt and Vives (2007).
6. Note that since the information set of any given agent is a sub-
set of the finitely many realized signals, å is a discrete probability
measure with finite support.
7. We thank an anonymous referee for suggesting this result.
8. See, for example, Hadamard’s global implicit function theorem
in Krantz and Parks (2002).
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CORRECTION

In the print version of this article, “Coordination with Local Information” by Munther A. Dahleh, Alireza Tahbaz-
Salehi, John N. Tsitsiklis, and Spyros I. Zoumpoulis (Operations Research, Vol. 64, No. 3, pp. 622–637), the research
article was mislabeled as a technical note. “Technical Note” has been removed from the title in the online version and
an erratum will be printed in the July–August issue.
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