
Coordinating Investment, Production and Subcontracting

Jan A. Van Mieghem (vanmieghem@kellogg.nwu.edu)

Nov 10, 1998 (Extended version with proofs; abridged version appeared in Management Science 45(7) 954-971, July 1999)

Abstract

We value the option of subcontracting to improve Þnancial performance and system coordi-
nation by analyzing a competitive stochastic investment game with recourse. The manufacturer
and subcontractor decide separately on their capacity investment levels. Then demand un-
certainty is resolved and both parties have the option to subcontract when deciding on their
production and sales. We analyze and present outsourcing conditions for three contract types:
(1) price-only contracts where an ex-ante transfer price is set for each unit supplied by the
subcontractor; (2) incomplete contracts, where both parties negotiate over the subcontracting
transfer; and (3) state-dependent price-only and incomplete contracts for which we show an
equivalence result.
While subcontracting with these three contract types can coordinate production decisions

in the supply system, only state-dependent contracts can eliminate all decentralization costs
and coordinate capacity investment decisions. The minimally sufficient price-only contract that
coordinates our supply chain speciÞes transfer prices for a small number (6 in our model) of
contingent scenarios. Our game-theoretic model allows the analysis of the role of transfer prices
and of the bargaining power of buyer and supplier. We Þnd that sometimes Þrms may be better
off leaving some contract parameters unspeciÞed ex-ante and agreeing to negotiate ex-post. Also,
a price-focused strategy for managing subcontractors can backÞre because a lower transfer price
may decrease the manufacturer�s proÞt. Finally, as with Þnancial options, the option value of
subcontracting increases as markets are more volatile or more negatively correlated.

Key Words: Supply chain, real investments, capacity, coordination, production, subcontracting, outsourcing,
supply contracts.

1 Introduction

We present analytic models to study subcontracting and outsourcing, two prevalent business prac-
tices across many industries. While the word subcontracting has been used for nearly two centuries,
outsourcing Þrst appeared in the English language only as recently as 1982 [2]. Both terms refer to
the practice of one company (the subcontractor or supplier) providing a service or good for another
(the contractor, buyer or manufacturer). Subcontracting typically refers to the situation where the
contractor �procures an item or service that is normally capable of economic production in the
contractor�s own facilities and that requires the contractor to make speciÞcations available to the
subcontractor [7].� Outsourcing refers to the special case where the contractor has no in-house
production capability and is dependent on the subcontractor for the entire product volume.

We value the option of subcontracting and outsourcing to improve Þnancial performance and
system coordination by analyzing a two-stage, two-player, two-market stochastic game. In stage
one, the manufacturer and subcontractor decide separately on their investment levels. Then de-
mand uncertainty is resolved and both parties have the option to subcontract when deciding on
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their production levels in stage two, constrained by their earlier investment decisions. Subcontract-
ing is viewed as a trade of the supplier�s product for the manufacturer�s money. Section 2 Þrst
analyzes two scenarios (the centralized Þrm vs. two independent Þrms without any subcontracting)
for performance reference. In Section 3 we study price-only contracts where an ex-ante transfer
price is set for each unit supplied by the subcontractor. We characterize the sub-game perfect in-
vestment strategy and formulate an outsourcing threshold condition in terms of the manufacturer�s
investment cost. A higher transfer price may increase the manufacturer�s proÞt. This suggests that
a price-focused strategy for managing subcontractors can backÞre on the manufacturer. While a
lower price allows cheap supply, it does not guarantee its availability. Our model conÞrms that op-
timal manufacturer and supplier capacity levels are imperfect substitutes with respect to capacity
costs and contribution margins. We also show that manufacturers will indeed subcontract more
when the level of market uncertainty (risk) increases and when markets are more negatively corre-
lated. Similar to Þnancial options, this increases the option value of subcontracting (real assets). In
Section 4 we study two other contract types. One uses the incomplete contracting approach where
no explicit contracts can be made and both parties negotiate over the subcontracting transfer. This
allows us to analyze the role of the �bargaining power� of the contractor on outsourcing decisions
and system performance improvement, which may be greater than with price-only contracts. The
latter suggests that sometimes Þrms may be better off leaving some contract parameters unspeci-
Þed ex-ante and agreeing to negotiate after demand is observed. Our third contract type consists
of state-dependent price-only and incomplete contracts for which we show an equivalence result.
While subcontracting with these three contract types can coordinate production decisions in the
supply system, only state-dependent contracts can eliminate all decentralization costs and coordi-
nate capacity investment decisions. We present the minimally sufficient price-only contract that
achieves coordination. Section 5 closes with a discussion of more complex contracts in the literature
and suggestions for further work.

Many literatures discuss the costs and beneÞts of subcontracting. According to the strategy
literature, subcontracting and outsourcing occur because a Þrm may Þnd it less proÞtable or infea-
sible to have all required capabilities in house: �a Þrm should concentrate on its core competencies
and strategically outsource other activities [19]� and �not one company builds an entire ßight ve-
hicle, not even the simplest light plane, because of the exceptional range of skills and facilities
required [1]�. Subcontracting and outsourcing may also be �an impetus and agent for change� and
�may improve unduly militant or change-resisting� employee relations [4]. These beneÞts come at
a cost by exposing the contractor to strategic risks, such as dependence on the subcontractor (with
its inherent loss of control and associated hold-up risk) and vulnerability (e.g., lower barriers to
entry and loss of competitive edge and conÞdentiality) [19]. The operations literature highlights
the ßexibility that subcontracting offers to production and capacity planning. Like demand and
inventory management, subcontracting allows for short term capacity adjustments in the face of
temporal demand variations. Subcontracting, however, has the distinguishing feature that it �re-
quires agreement with a third party who may be a competing Þrm with conßicting interests [14].�
(The implication being that any reasonable model of subcontracting must incorporate multiple
decision makers.) From a Þnancial perspective, the main reported beneÞts of subcontracting and
outsourcing are lower operating costs and lower investment requirements for the contractor, and the
spreading of risk between the two parties. Empirical studies report that cost efficiency is the prime
motivation for outsourcing maintenance [4] and information systems [16]. It is also argued that con-
tractors �push the high risk� onto subcontractors by having them �carry a disproportionate share of
market uncertainties [8].� The Þnancial costs of subcontracting include decreased scale economies
to the contractor [10] and the transaction costs resulting from the initiation and management of the
contracting relationship [19]. Finally, an extensive economics literature discusses our topic when
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studying vertical integration but that literature generally ignores capacity considerations.
Few papers explicitly study an analytic model of subcontracting. Kamien and Li [14] present a

multi-period, game theoretic aggregate planning model with given capacity constraints and show
that the option of subcontracting results in production smoothing. Kamien, Li and Samet [15] study
Bertrand price competition with subcontracting in a deterministic game with capacity constraints
implicit in their convex cost structure. Hanson [11] develops and empirically tests a model of
the optimal sharing of the ownership of a given, exogenously determined number of units of an
asset between a manufacturer and a subcontractor. Tournas [20] captures asymmetries in in-
house information in a principal-agent model and compares them with the bargaining cost of a
captive outside contractor. Brown and Lee [5] propose a ßexible reservation agreement in which
a manufacturer may reserve supplier capacity in the form of options. Finally, there is signiÞcant
literature on outsourcing in supply-chains. Cachon and Lariviere [6] give an overview of various
contract types, which will be discussed in more detail in Section 5.

Our model is different in that the capacity investment levels of both the manufacturer and the
subcontractor are decision variables. Our multi-variate, multi-dimensional competitive newsvendor
formulation is an extension of univariate, one-dimensional supply models and of the univariate
competitive newsvendor models of Li [17] and Lippman and McCardle [18]. The multi-variate
demand distribution allows us to investigate the important role of market demand correlation and
provides a graphical interpretation of the solution. Our multi-dimensional model allows us to
study the impact of subcontracting on both players� in-house investment levels and on the buyer�s
outsourcing decision, which is pre-assumed in captive-buyer captive-supplier models. We show
that the higher complexity of subcontracting (two capacity decisions) makes coordination more
difficult compared to traditional outsourcing models (only supplier capacity) in supply chains; we
explicitly distinguish coordination of ex-ante investment decisions from ex-post production and sales
decisions coordination. Finally, we have chosen to make both models essentially single-period and
to posit no information asymmetries between the two parties. Therefore we shall not discuss how
subcontracting can smooth production plans over time, create or mitigate information asymmetry
problems, or affect the long-run competitive position of the Þrms.

2 A Subcontracting Model

2.1 The Model

Consider a two-stage stochastic model of the investment decision process of two Þrms. In stage one
market demands are uncertain and both Þrms must decide separately, yet simultaneously, on their
capacity investment levels. At the beginning of stage two, market demands are observed and both
Þrms must decide on their production levels to satisfy optimally market demands, constrained by
their earlier investment decisions. At this stage, both Þrms have the option to engage in a trade.
The subcontractor S can supply the manufacturer M a transfer quantity xt ≥ 0 in exchange for a
payment ptxt, as shown in Figure 1. Before we explain the speciÞcs of the supply contract in the
next section, let us discuss model features, notation and two reference scenarios that are useful in
evaluating the impact of subcontracting on Þrm performance.

In the Þrst reference scenario both Þrms operate completely independent of each other and
subcontracting is not an option (i.e., transfer quantity xt = 0). Both Þrms go solo and each will
sell to its own market. For simplicity, we will assume that both Þrms have exclusive access to their
respective markets. Because the subcontractor lacks the assembly, marketing and sales clout of the
manufacturer, she does not have direct access to marketM . In practice, however, the manufacturer
may have access to market S through wholly owned upstream subsidiaries that provide them and
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Figure 1: The Subcontracting Model.

others with parts or subsystems. General Motors, for example, owns Delphi Automotives that
supplies GM and other auto assemblers with brake systems and other parts. At the same time, GM
multisources some parts from outside, independent subcontractors. Thus, market M would repre-
sent the end market for cars and market S the intermediate market for parts. GM could compete in
market S but we will abstract from such competition to highlight the subcontracting option. Also,
notice that direct sourcing from market S instead of from the subcontractor is not an option for
the manufacturer. This modeling assumption reßects the relationship-speciÞc information typically
present in subcontracting and it implies that we are not discussing the purchase of standardized,
off-the-shelf products in commodity markets.

The second reference scenario represents the other extreme in which both Þrms are integrated
and controlled by a single decision maker. In this centralized scenario the integrated Þrm will
serve both markets. Subcontracting, then, is the intermediate scenario in which both Þrms are
independently owned so that we have two decision makers, yet trading is possible. (Thus the
subcontractor�s technology is sufficiently ßexible that it can produce the same product as the
manufacturer�s technology.)

Let Ki ≥ 0 denote Þrm i�s capacity investment level, where i =M or S. Firm i is assumed to
face a constant marginal investment cost ci > 0, so that its capacity investment cost ciKi is linear
in the investment level. Production levels xM and xS + xt are linearly constrained by the capacity
investment levels: xM ≤ KM and xS + xt ≤ KS . For simplicity, we assume that both Þrms make
constant contribution margins pi per unit sold in market i. Stronger, we will assume zero marginal
production costs so that pi represents the Þxed sales price in market i. To avoid trivial solutions
we assume that ci < pi. Let Di ≥ 0 denote the product demand in market i. Like Kamien and
Li [14], we assume symmetric information in the sense that each Þrm has complete information
about the other�s cost and proÞt structure and investment level, and they share identical beliefs
regarding future market demands. These beliefs can then be represented by a single, multi-variate
probability measure P . For simplicity, we assume that market demands are Þnite with probability
one and that P has a continuous density f on the sample space R2+. The expectation operator
will be denoted by E. We assume zero shortage costs and zero salvage values for both products
and production assets1. Finally, both Þrms are assumed to be expected proÞt maximizers and the
research question can thus be formulated in the two reference scenarios as follows.

1Relaxation of these assumptions to include convex investment costs, market-and-Þrm speciÞc unit contribution
margins pij , shortage costs and salvage values, and non-unit capacity consumption rates is relatively straightforward
(as shown in [12]) at the expense of added notational complexity.
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Figure 2: Production decisions and total market supply vector X, represented by arrows, depend on the demand
D realization and the scenario.

2.2 Independents: Going Solo

When both Þrms do not subcontract, each Þrm decides on its production and sales decision xi in
stage two by maximizing its operating proÞt πi = pixi subject to the capacity constraint xi ≤ Ki
and the demand constraint xi ≤ Di. This �product mix� linear program has optimal activity level
xsoloi = min(Ki, Di) with proÞt πsoloi = pix

solo
i . In stage 1, Þrm i chooses its optimal investment

levelKsolo
i so as to maximize its expected Þrm value, denoted by Vi, which is the expected operating

proÞt minus investment costs:

Ksolo
i = arg max

Ki≥0
V soloi (K) where V soloi (K) = Eπsoloi (K,D)− ciKi. (1)

A critical fractile newsvendor solution is optimal: Ksolo
i = Gi(ci/pi), where G−1i is the tail distri-

bution of Di. To build some intuition for the solution technique that will be used below, let us
summarize brießy how this familiar result can be derived using the multi-dimensional newsvendor
model of Harrison and Van Mieghem [12]. It will be convenient to let capacity vector K partition
the demand space R2+ into 7 regions Ωl(K), l = 0, 1, · · · , 6, as in Figure 2 (where we abbreviated
the sum of the components of K by K+ = KM +KS). The rectangular region Ω0(K) is the ca-
pacity region of this two-Þrm supply system without subcontracting. Whenever D is outside this
capacity region, some demand cannot be met and the optimal market supply X = (xM , xS) ≤ D,
represented by an arrow emanating from D, will be on the capacity frontier.

Linear programming theory yields that the proÞt vector πsolo(K,D) is unique and concave in
K. Thus, the linear superposition Eπsoloi (K,D) and thus V soloi (·) are also concave so that the Þrst
order conditions of (1) are sufficient:

∂

∂Ki
V soloi = −νsoloi and νsoloi Ksolo

i = 0,

where νsoloi ≥ 0 is the optimal Lagrange multiplier of the non-negativity constraintKi ≥ 0. Invoking
[12], gradient and expectation can be interchanged to yield Eλi(Ksolo, D) = ci − νsoloi ,where λi is
Þrm i�s capacity shadow value: λi = ∂πi

∂Ki
. The shadow value λi, which is the optimal dual variable

of Þrm i�s production linear program, equals a constant λli in each domain Ωl of Figure 2. Thus, the
expected marginal proÞt can be expressed as ∂πi∂Ki

= Eλi =
P6
l=1 λ

l
iP (Ωl(K)). To simplify notation,

deÞne a 2× 6 matrix Λ whose l-th column is the shadow vector in domain Ωl : Λil = λli. Similarly,
deÞne a 6×1 vector P̄ (K)whose l-th coordinate is the probability of domain Ωl : P̄l(K) = P (Ωl(K)).
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When both Þrms �go solo� the marginal vector is

Eλ = ΛsoloP̄ (Ksolo) =

·
pM 0 pM pM pM pM
0 pS pS pS 0 0

¸
P̄ (Ksolo) =

·
pMP (DM > Ksolo

M )
pSP (DS > K

solo
S )

¸
.

Because contribution margins exceed investment costs (pi > ci) both Þrms will invest (νsolo = 0)
and the optimality equations directly yield the familiar newsvendor solutions.

2.3 Centralization

When both Þrms are controlled by one central decision maker, the optimal production and sales
vector x in stage two maximizes system operating proÞt, subject to system capacity and demand
constraints. Transfers xt are possible and optimal activity levels xcen and proÞt πcen are the solution
of the product mix linear program:

πcen = max
x≥0

pM(xM + xt) + pSxS (2)

s.t. xM ≤ KM , xt + xS ≤ KS , xt + xM ≤ DM , xS ≤ DS .
The optimal investment vector Kcen maximizes expected system value:

Kcen = argmax
K≥0

V cen(K) where V cen(K) = Eπcen(K,D)− c0K. (3)

The option of transfers xt enlarges the supply system�s capacity region to Ω0 ∪Ω1, or Ω01 in short.
Using this shorthand notation, if D ∈ Ω23456, demand exceeds supply and the optimal supply vector
X = (xM + xt, xS) will be on the boundary of the capacity region Ω01. The linear program (2)
can be solved parametrically in terms of K and D (thereby directly manifesting the domains Ωl
deÞned earlier). If market M yields higher margins than market S, it gets priority in the capacity
allocation decision yielding market supply vector Xb in Figure 2. Otherwise market S gets priority
yielding vector Xa in Figure 2. As before, πcen(K,D) is concave and the shadow vector λ(K,D) is
constant in each domain so that the optimal capacity vector Kcen solves ΛcenP̄ (Kcen) = c− νcen
and Kcen0νcen = 0, where

Λcen =

·
0 0 min(p) pM pM min(p)
0 pS pS max(p) pM min(p)

¸
. (4)

IfM-capacity is less expensive than S-capacity (cM < cS), it is proÞtable to invest in both types
of capacity (νcen = 0). Otherwise, it is optimal to supply both markets using only the cheaper
S-capacity: νcenM > 0 and Kcen

M = 0. In the Appendix of [23] we show that V cen is strict concave at
Kcen so that the optimal investment vector is unique.

We now have completely characterized the optimal investment strategies in both reference
scenarios. Clearly, system values under centralization V cen (weakly) dominate those when both
players go solo: V cen ≥ V solo+ = V solo1 + V solo2 . The value gap ∆V solo = V cen − V solo+ captures the
costs of decentralization. In the remainder of this article, we will investigate how subcontracting
can decrease the value gap and whether it can �coordinate� the supply network (that is, eliminate
the value gap).

3 Subcontracting with Price-Only Contracts

A price-only contract speciÞes ex-ante to both parties the transfer (or �wholesale�) price pt that
the manufacturer must pay for each unit supplied by the subcontractor. Because this simple
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contract does not specify a transfer quantity xt or any other model variables, it cannot force a party
to enter the subcontracting relationship. Using Cachon and Lariviere�s [6] terminology, contract
compliance is voluntary and both parties will enter the subcontracting relationship (or �trade�)
only if it beneÞts them. As before, both players must decide separately, yet simultaneously, on
their capacity investments in stage 1 before uncertainty is resolved. The resulting capacity vector
K is observable and becomes common information. After demand is observed, both parties make
their individual production-sales decisions x in stage 2 where they have the option to subcontract.
The manufacturer M can ask a supply xMt from the subcontractor S, who has the option to Þll the
request. That is, she offers a quantity xSt ≤ xMt , which is accepted by M in exchange for a payment
ptxt.

When making decisions, each player acts strategically and takes into account the other player�s
decisions. Any capacity vector K (or production vector x) with the property that no player can
increase Þrm value by deviating unilaterally from K (or x) is a Nash equilibrium in pure strategies
and is called simply an optimal investment (production) vector. Its resulting Þrm value (proÞt)
vector is denoted by V (K) (or π(x)). The analysis of our subcontracting model involves establishing
and characterizing the existence of a Nash equilibrium in this two-player, two-stage stochastic game.

3.1 The Production-Subcontracting Subgame

As with any dynamic decision model, we start with stage 2 and solve the production-subcontracting
subgame for any given pair (K,D). Both players decide sequentially on their production and
transfer levels in order to maximize their own operating proÞt:

max
xM ,xt,x

M
t ≥0

pMxM + (pM − pt)xt
s.t. xM ≤ KM ,
xM + xt ≤ DM ,

xt = min(xMt , x
S
t ),

and

max
xS ,x

S
t ≥0

pSxS + ptxt

s.t. xS + x
S
t ≤ KS ,
xS ≤ DS ,
xt = min(xMt , x

S
t ).

Incentives to subcontract depend on the transfer price pt. First, M will only subcontract if pt < pM ,
otherwise the independent solo solution emerges. Thus, for the remainder of this article we will
assume pt < pM so that M will always prioritize his internal capacity and will ask S to Þll the
remaining demand: xM = min(DM ,KM) and xMt = (DM −KM)+ . Second, S has an incentive to
Þll M�s demand if pt > pS , while she will prefer to Þll her own market demand if pt < pS. Thus,
we must distinguish between two cases:

1. High transfer price: pS < pt < pM . S prefers Þlling M�s request to the best of her capacity:
xSt = min(KS , x

M
t ). The subcontracting transfer is xt = min

¡
(DM −KM)+ ,KS

¢
, which material-

izes whenever M has excess demand, that is if D ∈ Ω13456. S will use any remaining capacity to Þll
her own market demand: xS = min(DS,KS − xt). (The resulting market supply vector in Figure
2 is Xb.)

2. Low transfer price: pt ≤ min(p). S prefers serving her own market: xS = min(DS ,KS). Any
remaining capacity can Þll M�s demand: xSt = min(xMt ,KS − xS). The subcontracting transfer
is xt = min

¡
(DM −KM)+ , (KS −DS)+

¢
, and subcontracting will materialize when M has excess

market demand and S has low market demand, that is if D ∈ Ω156. (The resulting market supply
vector in Figure 2 is Xa.)

In both cases, the production vector x(K,D) forms a unique Nash equilibrium because no
player has an incentive to deviate unilaterally. At any transition point between the two cases
(e.g., pS = pt), players are indifferent because they receive the same proÞt in either case, and a
continuum of production vectors are Nash equilibria. This poses no problems, however, because
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Figure 3: The intersection of the capacity reaction curves kM (bold) and kS (dashed bold) deÞnes the optimal
investment Ksub when subcontracting with low pt (left) and high pt (right).

linear programming theory yields that the associated proÞt vector π(K,D) is unique and concave
in K, which is all we need to solve the investment game in stage 1.

3.2 The Capacity Investment Game

To demonstrate the existence of a subgame perfect Nash equilibrium in pure investment strategies,
we will show that the capacity reaction curves have a stable intersection point. Firm i�s capacity
reaction curve ki(·) speciÞes its optimal investment level Ki = ki(Kj) given Þrm j has capacity
Kj . It is deÞned pointwise as ki(Kj) = argmaxKi≥0 Vi(K). As before, Eπi(·, D) and Vi(·) inherit
concavity from πi(K,D) so that the Þrst order conditions (FOC) are sufficient: ΛsubP̄ (K) = c− ν
and ν0K = 0,where

Λsub =


·
pt 0 pt pM pM pt
0 pS pS pt pt pS

¸
if pS ≤ pt < pM ,·

pt 0 pM pM pM pM
0 pS pS pS pt pt

¸
if pt < min(pS , pM).

Firm i0s reaction curve is found by solving FOCi as a function of Kj . The Appendix of [23] shows
that −1 ≤ dki

dKj
≤ 0 and that axis crossings and asymptotes are as shown in Figure 3. Thus, the

reaction curves have an intersectionKsub at which at least one reaction curve has a slope dki
dKj

> −1.
Hence, Ksub is unique and stable (Nash).

3.3 Production versus Investment Coordination

Subcontracting with price-only contracts can coordinate production decisions if pS ≤ pt ≤ pM or
pt ≤ pM ≤ pS , because only then is the contingent production vector under subcontracting x(K,D)
equal to the production xcen(K,D) in the centralized scenario. (Incentive incompatibilities arise
if pt < pS < pM and D ∈ Ω3456: under subcontracting the supplier will prioritize its own market
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cM cS pM pS pt

Ksub
M −(α1 + α3) ≤ 0 α2 ≥ 0 (α1 + α3)P45 ≥ 0 −α2P236 ≤ 0 (α1 + α3)P136 − α2P45

Ksub
S α1 ≥ 0 −(α2 + α4) ≤ 0 −α1P45 ≤ 0 (α2 + α4)P236 ≥ 0 −α1P136 + (α2 + α4)P45

V sub
M β1 −Ksub

M −β2 ≤ 0 ExsubM+t − β1P45 β2P236 ≥ 0 β5
∂Ksub

S
∂pt

− cM ∂KM
∂pt

− Exsubt

V sub
S β3 ≥ 0 −β4 −Ksub

S ≤ 0 −β3P45 ≤ 0 ExsubS + β4P236 ≥ 0 -β6
∂Ksub

M
∂pt

− cS ∂KS
∂pt

+ Exsubt

Table 1: Sensitivity of the optimal investment levels Ksub and value V sub, where α,β ≥ 0. Table entries represent
partial derivatives: α1 =

∂Ksub
S

∂cM
for example.

whereas the centralized system would prioritize market M.) This contract arrangement, however,
cannot coordinate ex-ante capacity investment decisions or eliminate all decentralization costs as
measured by the value gap ∆V = V cen − V sub+ . Mathematically, the optimal centralized and
subcontracting investment vectors in general differ as the unique solutions to ΛcenP̄ (Kcen) = c−νcen
and ΛsubP̄ (Ksub) = c − νsub, respectively, with Λcen 6= Λsub. Hence, V sub+ < V cen because the
value functions are strictly concave at the optimal investment vectors. Economically, our single-
parameter price-only contract is unable to provide sufficient ex-ante incentives for both players to
�build� Ksub = Kcen. As in most realistic multi-player models, the Þrst-best solution is not attained
and decentralization comes at a cost.

These contracts do, however, mitigate decentralization costs and improve performance. Com-
paring the capacity reaction curves with the optimality curves that deÞne the optimal centralized
and solo investment (the thin lines in Figure 3) directly shows that subcontracting drives investment
towards the centralized investment Kcen:

Kcen
M ≤ Ksub

M ≤ Ksolo
M and Kcen

S ≥ Ksub
S ≥ Ksolo

S .

This is what one expects: subcontracting allows the manufacturer to decrease his investment. The
option of subcontracting means potentially more business for the supplier and thus warrants addi-
tional �relationship-speciÞc� investment. Next, we investigate how other model primitives impact
the coordination improvement.

3.4 Sensitivity of the Investment-Subcontracting Strategies

The sensitivity of the optimal investment strategy with respect to changes in capacity costs c,
contribution margins p, and transfer price pt is summarized in Table 1. As expected, optimal
manufacturing and supplier capacity levels are imperfect substitutes with respect to capacity costs
c and margins p. Indeed, strategic decision making captured by our game-theoretic model makes one
party�s investment level and Þrm value dependent on the other party�s cost and revenue structure.
When the manufacturer faces higher investment costs, for example, he will decrease his investment
level. The supplier anticipates that lower manufacturing capacity most likely will lead to higher
supply requests xMt . This gives the supplier an incentive to increase her investment, reßecting the
externalities in our model. The increase in Ksub

S , however, does not make up for the decrease in
Ksub
M (because transfers are only made with a probability strictly less than one). A similar reasoning

applies to a change in margin p, but it has a smaller impact than a cost change simply because the
margin dependency is state-dependent. For example, an increase in pM only warrants an increase
in manufacturing capacity if demand is sufficiently large (e.g., D ∈ Ω45 if pt > pS). An increase
in cM , on the other hand, always justiÞes a decrease in manufacturing capacity, regardless of the
demand realization. This result is in stark contrast to deterministic systems and one expects this
sensitivity differential to increase in the amount of demand variability.
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Figure 4: Capacity levels, the option value of subcontracting V option and the decreased value gap∆V as a function

of the transfer price pt when market demands are uniform but strongly negatively correlated.

More interestingly, while the supplier�s value sensitivity directly reßects the externalities in the
model, the manufacturer�s value is a little more intricate. Clearly, an increase in supplier costs
leads to a decrease in total system capacity, which impacts both parties� value negatively. An
increase in manufacturing cost beneÞts the supplier who increases her capacity in anticipation of a
larger total demand xMt +DS . Recall that the centralized system would put all capacity with the
supplier if cM > cS . Hence, anything that shifts capacity from the manufacturer to the supplier
will tend to beneÞt the system. (The structure of the capacity reaction curves shows that Ksub

moves toward Kcen�and thus V sub+ moves toward V cen�if cM increases, even if cM ≤ cS .) This
effect can dominate to yield the unexpected result that the manufacturer�s value can be increasing
in its investment cost. The manufacturer enjoys spill-over beneÞts from increased supplier capacity
that may outweigh his increased investment costs.

Similar effects can occur when increasing the transfer price. The table shows that this has a
similar effect as a simultaneous increase in margins pM and pS . The absolute effect on investment
levels and Þrm values is ambiguous. An increase in pt makes subcontracting more expensive for
the manufacturer relative to internal capacity investment. This is reßected by a rightward move
of the manufacturer�s reaction curve kM in Figure 3. Increased transfer prices, however, give the
supplier a higher incentive to increase her �relationship-speciÞc� investment. Thus, while we expect
Ksub
M to decrease and Ksub

S to increase, the supplier�s reaction curve kS can move upward more
than kM moves right so that Ksub

M increases and Ksub
S decreases. Figure 4 illustrates the intricate

externalities that can occur in stochastic games. Contract design, or the choice of the optimal pt,
thus becomes very case speciÞc and depends on the objective. (One can maximize manufacturer,
supplier or system proÞts, or some combination, depending on how the transfer price is set. It
may be the outcome of negotiation between the two partners, or it may be equal to an external
reference price if another external supply market exists.) In all our numerical test problems, system
proÞts were maximized at pt = pS yielding a substantial improvement in the value gap ∆V , which
is in agreement with economic theory stating that transfer prices should be set equal to outside
opportunity costs. If the manufacturer sets the transfer price, however, he does not necessarily
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set it at pS . Indeed, because of demand variability, a transfer price below pS may yield optimal
proÞts for the manufacturer. Figure 4 illustrates this possibility when market demands are strongly
negatively correlated (ρ = −0.9). As argued earlier, the capacity levels are imperfect substitutes
while Table 1 shows that total industry investment level Ksub

+ is increasing in pt. The Þgure also
shows that in the context of our model subcontracting may reduce or increase industry investment
compared to the solo or centralized setting. (While the Þgure shows that Ksolo

+ < Ksub
+ , this is

not true in general either.) Interestingly, similar to the cM dependence described earlier, a higher
transfer price may increase the manufacturer�s proÞt. This suggests that a price-focused strategy
for managing subcontractors can backÞre on the manufacturer. While a lower price allows cheap
supply, it does not guarantee its availability.

Finally, to study the effect of uncertainty on the optimal investment strategies, we consider a
probability measure P (· | γ) with density f(· | γ) that is parameterized by an uncertainty measure
γ such as an element of the mean demand vector or correlation matrix. Formally, the impact of
changes in γ on the optimal investment strategy can be expressed as:

∂

∂γ
Ksub = −|J |−1

· P6
l=1

¡
J22Λ

sub
1l − J21Λsub2l

¢
P γlP6

l=1

¡−J12Λsub1l + J11Λsub2l ¢P γl
¸
,

where J is the Jacobian of the optimality equations ΛsubP̄ (Ksub) = c− νsub and

P γl =
∂

∂γ
P (Ωl(K

sub) | γ) =
Z
Ωl(Ksub)

∂

∂γ
f(z | γ)dz.

Although this expression is of limited practical value, it may be useful for estimating the sign
of ∂

∂γK
sub. The appendix of [23] shows that J22 ≤ J21 ≤ 0 and J11 ≤ J12 ≤ 0. Thus, ∂

∂γK
sub
M and

∂
∂γK

sub
S may have opposite signs so that the optimal manufacturer and supplier investment levels

would respond in opposite ways to changes in the demand distribution, akin to the substitution
effect stated earlier. This effect is present for changes in the standard deviation or correlation of
market demands in the example shown in Figure 5. For simplicity, we assumed identical mean and
standard deviations2 for DM and DS .

As shown in the left graphs of Figure 5, optimal investment levels are monotone in variability
as measured by the standard deviation, but they can be increasing or decreasing. This is similar to
the well-known effect in one-dimensional newsvendor models with symmetric demand distributions
where optimal investment increases (decreases) in variability if the critical ratio c

p > 0.5 (< 0.5).
More importantly, compared to the independent �solo� setting, an increase in market risk decreases
the manufacturer�s relative investment if there is a subcontracting option. This can be paraphrased
by saying that the manufacturer will subcontract more as market risk increases and the subcon-
tractor�s response is to invest more3. The presence of demand uncertainty is a key driver in the
option value of subcontracting, which is increasing in variability. Thus, similar to many Þnancial
options, more uncertainty is good for this real option. In absolute terms, however, more variability
reduces Þrm values. The graph at the right in Figure 5 shows that the manufacturer will subcontract
less as market correlation increases. Indeed, when market demands are positively correlated, the
subcontracting option has less value so that the optimal fraction of capacity that is subcontracted
decreases. In terms of our graphical solution technique of Figure 2, the triangular option region Ω1
gets more probability mass as correlation becomes more negative.

2This example was generated numerically using a two-dimensional demand distribution parameterized by corre-
lation and standard deviation in market demand. Explicit expressions for these distributions were Þrst presented in
[22, pp. 75-77].

3The subcontractor�s optimal investment level seems to be less sensitive to risk, which may be explained by risk
pooling: the supplier�s effective demand pools over both markets and therefore is less variable.
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Figure 5: Optimal investment and the option value of subcontracting V option as a function of standard deviation
σ of demand assuming σDM = σDS when market demands are uncorrelated (left) and of correlation when market
demands are uniform (right).

3.5 Outsourcing or Complete Subcontracting: Ksub
M = 0

The structure of the capacity reaction curves shows that the optimal investment strategy has one
of two distinct forms: either both Þrms invest or only the supplier invests. In the latter case, the
manufacturer relies for all sourcing on the outside party. One can express an outsourcing condition
in terms of a threshold c̄M on the manufacturer�s investment cost cM as follows. Set K̄ = (0, kS(0))
and deÞne the threshold cost c̄M = Λsub1· P̄ (K̄), where Λsub1· is the Þrst row of Λsub. Then the
manufacturer should outsource if and only if his investment cost cM exceeds the threshold cost c̄M .

Coordination of investment decisions would require that c̄M = cS , because the centralized sys-
tem puts all capacity at the supplier if cM > cS . Under price-only subcontracting, however, the
threshold cost c̄M depends not only on cS , but also on the margins p, the �cost to subcontract� as
expressed by the transfer price pt, and the joint demand distribution P . Figure 6 illustrates that
the �outsourcing zone� of the strategy space is smaller than the outsourcing zone under centraliza-
tion (cM ≥ cS). This conÞrms that subcontracting with simple price contracts improves system
performance as compared to the solo scenario (never outsourcing), yet it cannot eliminate the value
gap ∆V in general.
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Figure 6: The threshold cost c̄M partitions the strategy space. (Shown for increasing levels of uncertainty as

measured by the standard deviation σ of demand assuming σDM = σDS )

In the Appendix of [23] we show that for low levels of demand uncertainty, the threshold level
is independent of the demand distribution and

c̄M =


pM if pt < cS ,

pt +
³
pM
pt
− 1
´
cS if cS ≤ pt < pS,

pt if pS ≤ pt < pM .
(5)

Thus, c̄M > cS and with little demand uncertainty (σ ≤ σ∗) and low transfer prices, no outsourcing
will happen. Indeed, in this case M must still invest in in-house capacity because of two effects,
both related to the low transfer price and low uncertainty. First, M cannot induce the supplier to
Þll his requests: with pt < (cS <)pS , S will prioritize her own market. Second, little uncertainty
and low transfer prices pt < cS give the supplier insufficient incentive to invest in extra capacity
to serve the manufacturer. For transfer prices higher than the supplier�s capacity cost, outsourcing
is possible because S now has an incentive to build extra capacity (pt > cS). For medium transfer
prices, the threshold c̄M is decreasing in pt so that outsourcing becomes more likely with higher
transfer prices pt, reßecting a higher incentive for S. When the transfer price exceeds the supplier�s
margin, a discontinuous drop in c̄M makes outsourcing even more likely: pt > pS ensures M that
its requests will now get priority by S. As the transfer price increases, however, subcontracting
increasingly becomes more expensive for the manufacturer compared to in-house capacity so that
M has less incentive to outsource.

When the level of demand uncertainty rises above a certain level (σ > σ∗), the threshold
cost c̄M will decrease for low to medium transfer prices (pt < pS) but increase for high transfer
prices (pS < pt < pM). Thus, for low to medium transfer prices, more uncertainty makes higher
manufacturing requests more likely, creating a stronger incentive for the supplier to invest in extra
capacity, which makes outsourcing more likely. For high transfer prices, on the other hand, more
uncertainty increases the expected total transfer cost to the manufacturer who will prefer more
in-house capacity, making outsourcing less likely.
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4 Subcontracting with Other Contracts

4.1 Incomplete Contracts: Bargaining

In some situations, ex-ante contracts may be too expensive or impossible to specify or enforce.
Start-up companies and companies in developing countries may Þnd it too expensive to enforce
execution of a contract [11], while investments by suppliers in quality, information sharing sys-
tems, responsiveness and innovation are often non-contractible. �Without the ability to specify
contractually in advance the division of surplus from non-contractible investments, this surplus
will be divided based on the ex-post bargaining power of the parties involved [3].� This incom-
plete contracts approach was Þrst suggested by Grossman, Hart and Moore [9, 13] to study vertical
integration. The negotiation on the surplus division can be cast as bilateral bargaining. Many
bargaining games are possible (c.f. Kamien and Li [14, p. 1357]). Nash introduced a game that
leads to splitting the surplus evenly. Rubinstein presents a sequential game in which player i gets
fraction θ = 1−δi

1−δiδj of the surplus, where δi is the �impatience� or discount factor of player i, which
is ex-ante observable. Whichever bilateral bargaining game is used, the manufacturer can ex-ante
expect (but not contractually specify) to receive fraction θ of the surplus while the supplier will get
fraction θ̄ = 1− θ. One can also think of θ as the �bargaining power� of the manufacturer.

The analysis is similar to before in that both Þrms have the option to engage in a trade at
the beginning of stage two. The Þrms can decide jointly on production-sales decisions so that the
resulting activity vector equals the vector chosen in the centralized scenario. Engaging in subcon-
tracting thus yields a proÞt surplus ∆π(K,D) = πcen(K,D) − πsolo+ (K,D) ≥ 0, and both parties
thus have an incentive to implement the centralized production vector xcen(K,D) by engaging in
the trade xt(K,D). Hence, production decisions are always coordinated with incomplete contracts
(in contrast to price-only contracts where poor production decisions can occur if pt < pS < pM).

Investment coordination, however, is not achieved. Indeed, the manufacturer�s operating proÞt
is πsoloM + θ∆π while the supplier�s is πsoloS + θ̄∆π. Because ∂

∂Kj 6=iπ
solo
i = 0, the capacity reaction

curves can be constructed again in terms of a shadow matrix:

Λbar = Λcen + diag(θ̄, θ)(Λsolo − Λcen)

=


·
θpM 0 θpM + θpS pM pM θpM + θpS
0 pS pS θpM + θpS θpM θpS

¸
if pM ≥ pS·

θpM 0 pM pM pM pM
0 pS pS pS θpM θpM

¸
if pM < pS.

Both curves have a unique, stable intersection that deÞnes the optimal investment vector Kbar that
in general differs from Kcen because Λbar 6= Λcen. Thus, the division of the ex-post surplus gives
the supplier an incentive to make a relationship-speciÞc investment, yet insufficient4 to implement
Kcen. As shown in Figure 7, reduction in the value gap ∆V and the option value of subcontracting
with incomplete contracts is maximal when surplus is divided not too unevenly (but it need not be
a fair 50− 50 split). More importantly, incomplete contracts are not inferior to explicit price-only
contracts. For example, comparing Figure 7 with corresponding Figures 4 and 6 shows that the
option value can be larger and that outsourcing is more likely. The higher option value may reßect
the fact that with incomplete contracts production coordination is always achieved. It also suggests
that sometimes Þrms may be better off leaving some contract parameters unspeciÞed ex-ante and
agreeing to negotiate after demand is observed.

4Obviously, if ex-ante negotiations are allowed, both parties have an incentive to implement Kcen and investment
coordination would be achieved.
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dashed bounds) as a function of the manufacturer�s bargaining power for the same model parameters as Figure 4.

Let us highlight the role of the bargaining power θ, because the sensitivity of the investment
strategy to other parameters is similar to that under price-only contracts. As earlier, we can express
an outsourcing condition in terms of a threshold c̄M on the manufacturer�s investment cost cM .
The appendix of [23] derives the following bounds on the outsourcing threshold:

θcSmin

µ
1,
pM
pS

¶
+ θ̄pM ≤ cM ≤ min

µ
pM , θ̄pM +

θ

θ̄
cS

¶
.

The threshold is decreasing (almost linearly) for small θ, which implies that outsourcing is more
likely for more powerful manufacturers. The argument, however, cannot be generalized to very
powerful manufacturers (θ → 1): the threshold may be increasing near θ = 1 as shown in Figure
7. Indeed, if θ is near 1, outsourcing is less likely because the subcontractor receives less ex-post
surplus and has less ex-ante incentive to make a relation-speciÞc investment. Similarly, if bargain-
ing power is very small, most surplus goes to the supplier. As with price-only contracts, cM 6= cS ,
and the outsourcing zone under this contract is again smaller than the zone under centralization:
mere supplier cost advantage of the subcontractor is not sufficient for the manufacturer to out-
source because the surplus division incentive is insufficient for the subcontractor to implement the
centralized capacity level.

4.2 State-dependent Price-Only Contracts

A state-dependent price-only contract speciÞes an ex-ante transfer price pt(K,D) for each possible
contingent state vector. (Such a contract requires that capacity levels are not only observable by
the two Þrms as assumed earlier, but also veriÞable by a third party.) Not only can these contracts
improve performance because of their increased degrees of freedom, optimal state-dependent price-
only contract design can coordinate investment decisions and eliminate all decentralization costs.
Indeed, it is directly veriÞed that the sufficient condition Λsub = Λcen is satisÞed if pM ≤ pS with
pt(K,D) = 0 for D ∈ Ω1(K) and pt = pM in Ω56. Such a contract achieves investment coordination
(and production coordination because pt ≤ pM ≤ pS) by aligning incentives: subcontracting is

15



costless in Ω1 (equal to S�s marginal opportunity cost when going solo) giving M the correct
incentive to reduce its investment to Kcen

M and rely on subcontracting, while a transfer price in Ω56
equal to M�s marginal opportunity proÞt pM gives S the right incentive to increase its investment
to Kcen

S . Similarly, if pS ≤ pM coordination calls for pt = 0 in Ω1, pt = pS in Ω36 and pt = pM in
Ω45. Higher incentives are now necessary for S to prioritize market M above its own market (as
the centralized system would do): transfer prices must at least equal its own margin in Ω36 and be
higher in Ω45 to induce production and investment coordination.

It is surprising that our model setup allows us to characterize these necessary and sufficient
conditions for coordination this easily. In addition, notice that these sufficient state-dependent
contracts are actually simpler than their name suggests: one only must specify the transfer prices
under six scenarios Ωi in our model and not for each state D.

State-dependent price-only contracts can be related to incomplete contracts as follows. The
execution of the inter-Þrm transfer xbart (Kbar,D) and the surplus division is implemented by spec-
ifying the quantity xt(K,D) to be provided by the subcontractor and the unit transfer price pbart
to be paid by the manufacturer. This transfer price is deÞned implicitly in the bargaining model in
that it guarantees the correct division of surplus: πbarS = pSx

cen
S + pbart xcent (recall that xbar = xcen

and xcenM = xsoloM ) and rearranging terms yields

pbart xcent = θ̄pMx
cen
t + θpS(x

solo
S − xcenS ). (6)

This transfer payment pbart xcent is the composition of two terms: pMxcent is the gross surplus derived
from subcontracting while pS(xsoloS − xcenS ) is the subcontractor�s opportunity cost or the proÞt
forgone by subcontracting. The gross surplus is received by the manufacturer who pays the share
θ̄pMx

cen
t to the subcontractor. The subcontractor bears the opportunity cost and is compensated

by the manufacturer for the share θpS(xsoloS − xcenS ).
Solving (6) in each domain Ωi yields the state-dependent transfer prices: If pM < pS , pbart =

θ̄pM in Ω156 (its value in Ω0234 is irrelevant because no transfer occurs then). This pbart (K,D)
contract yields production coordination because pbart = θ̄pM ≤ pM < pS . Thus, if pM < pS ,
this state-dependent price-only contract is equivalent to the incomplete contract with parameter
θ: it implements identical centralized production decisions and the particular choice of pt(K,D)
guarantees that expected operating proÞts equal those under the bargaining model and hence
their investment vectors are identical. If pM > pS , however, the existence of an equivalent state-
dependent price-only contract is not guaranteed in general. Solving (6) yields pbart = θ̄pM in Ω1,
pbart = θ̄pM + θpS in Ω34, pbart = θ̄pM + θpS

DS
KS

in Ω5 and pbart = θ̄pM + θpS
D+−K+

DM−KM
in Ω6. In

general, such a price-only contract does not guarantee production coordination. If, however, M has
limited bargaining power so that θ̄pM ≥ pS , then pS ≤ pt(K,D) ≤ pM and production coordination
is guaranteed so that the pt contract yields the same investment vector as the incomplete contract.

4.3 State-dependent Incomplete Contracts

A state-dependent incomplete contract is an incomplete contract with state-dependent surplus di-
vision (bargaining) parameter θ(K,D). Given their equivalence with state-dependent price-only
contracts if supplier margins are higher (pS ≥ pM), it is not surprising that these contracts also
coordinate the supply system. Indeed, if pM ≤ pS , the sufficient condition for investment coordina-
tion Λbar = Λcen is satisÞed with θ = 1 (M receives all surplus) in Ω1, any constant θ in Ω234 and
θ = 0 (S receives all surplus) in Ω56. (This θ(K,D) is also found by requiring that the equivalent
pbart is coordinating: pbart = θ̄pM = 0 in Ω1 and pbart = θ̄pM = 1 in Ω56.)

Similarly, with pM > pS, equality of Λbar and Λcen requires θ = 1 in Ω13, any constant θ in
Ω2, θ = 0 in Ω45, but no constant θ in Ω6 exists to equalize Λbar·6 and Λcen·6 . Hence, we must
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look for a variable function θ(K,D) over Ω6. As before, to achieve investment coordination this
θ(K,D) must satisfy the sufficient FOC equality Eλbar = Eλcen(= ΛcenP̄ (K)). If θ varies over
a domain Ωi, however, the marginal proÞt vector in that domain must be expanded to λbar,i =
Λbar·i + ( ∂θ

∂KM
, −∂θ∂KS

)
0
∆Πi, where ∆Πi = ∆π in domain Ωi. Hence, the FOC become a system of

partial differential equations: with i = 6, θ(K,D) must satisfy·
θpM + θpS

θpS

¸
+∆π(K,D)

"
∂θ
∂KM

− ∂θ
∂KS

#
=

·
pS
pS

¸
, (7)

where ∆π(K,D) = (pM−pS)(DM−KM)+pS(KS−DS). Luckily, a valid solution 0 ≤ θ(K,D) ≤ 1
is inspired by the equivalent pbart = θ̄pM + θpS

D+−K+

DM−KM
in Ω6. Recall that a state-dependent price-

only contract requires pt = pS in Ω6 to induce investment coordination. Solving pbart = pS for θ
yields

θ(K,D) =
(pM − pS) (DM −KM)

(pM − pS)(DM −KM) + pS(KS −DS) =
(pM − pS) (DM −KM)

∆π(K,D)
in Ω6, (8)

which indeed satisÞes (7). Hence, this incomplete contract with truly state-dependent θ(K,D)
coordinates the supply system if pM > pS .

5 Discussion and Extensions

In addition to the three contracts studied here, many other contract structures can be used to
regulate subcontracting by adding more parameters to the contract speciÞcation. Cachon and
Lariviere [6] give an overview of more sophisticated contracts used in the literature, which typically
also specify some conditions on the transfer quantity xt or on the manufacturer�s liability of the
supplier�s excess capacity. Cachon and Lariviere show that these more advanced contracts can,
but do not necessarily, improve system coordination and highlight the role of the information
structure and the veriÞability (and thus enforcement) of the players� actions. In the presence
of information asymmetries, complex contracts provide for a powerful signaling device that can
improve performance. Tsay [21] has shown that some price-quantity contracts also improve system
coordination. While we analyzed only simple contracts, we believe that many of the characteristics
of more complex outsourcing contracts will carry over to our subcontracting model.

Other extensions such as the inclusion of speciÞc transaction costs and merging costs are rela-
tively straightforward. We have assumed that the initiation and management of the subcontracting
relationship was costless. A positive cost is directly incorporated so that both parties would enter
into the relationship only if the ex-post surplus exceeds the transaction cost. Similarly, one can
include merging costs, which would explain why both parties do not always choose to merge into a
single, centralized organization. Another variation is to make both Þrms more equal �partners� by
dropping the non-negativity constraint on xt to allow for bi-directional transfers. (This also yields
a two-location inventory model with transfers between proÞt centers.)

Allowing for demand-dependent sales prices (and thus margins) by incorporating downward
sloping demand curves (our Þrms are assumed to be price takers) would yield a duopoly model
more in-line with traditional economics. This generalization to incorporate tactical pricing deci-
sions, however, comes at considerable cost. One not only loses the connection to the traditional
newsvendor model and its intuitive, graphical interpretation, but the competitive pricing decision
under uncertainty greatly increases the complexity of the analysis5. Allowing for non-exclusive

5Allowing for inter-Þrm subcontracting transfers would amount to putting yet another layer of complexity on the
competitive investment-pricing model that we studied in [24].
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market access is an easier extension that, we believe, will not change the qualitative insights ob-
tained here. Finally, the time-horizon can be extended to a multi-period setting to study the effect
of predictable temporal demand variations, such as over a product life cycle (stochastic temporal
variations most likely will lead to a production smoothing effect as studied by Kamien and Li [14]).
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6 Appendix

All Þrst order conditions (FOC) for optimality are of the form Eλ = ΛP = c,where the 2 × 6 matrix Λ is
function only of pt, pM and pS, while the vector P is function only of K (and of parameters in the probability
distribution). The structure of the FOCs (or capacity reaction curves) and uniqueness of an optimal solution
will be established using partial derivatives which are found by implicitly differentiating one or both FOC.
Let x represent a cost or margin parameter of interest. Total differentiation of the FOC yields:

d

dx
Eλ =

d

dx
ΛP =

µ
∂

∂x
Λ

¶
P + J

∂

∂x
K,

where J is the Jacobian matrix of the FOC: Jij = ∂Eλi
∂Kj

= ∂Vi
∂Kj∂Ki

, which can be calculated explicitly:

J = Λ
£

∂
∂KM

P ∂
∂KS

P
¤
= Λ

³
∇KP 0

´0
,

where the 2× 6 matrix ∇KP 0 can be expressed in terms of the line integrals Lij of the probability density
f(·) over the boundary between domains Ωi and Ωj and Lij,kl = Lij + Lkl :

∇KP 0 =
·
L16 − L01 L23 L34 − L23 −L34 −L56 L56 − L16
L16 −L02 L34 − L36 −L34 − L45 L45 − L56 L56 + L36 − L16

¸
.

For example: L23 =
R∞
KS
f(KM ,DS)dDS. Thus, all effort is reduced to showing that J = Λ

³
∇KP 0

´0
is

invertible which then yields

∂

∂x
K = J−1

dc

dx
− J−1

µ
∂

∂x
Λ

¶
P. (9)

Thus, letting x = ci we directly have that£
∂

∂cM
K ∂

∂cS
K
¤
= J−1, (10)

and the slope of ki(·), the FOC forKi givenKj , follows from totally differentiating the i�th FOC: ∂
∂Ki

Eλi
dki
dKj

+
∂
∂Kj

Eλi = 0 or

dki
dKj

= −
∂2

∂Kj∂Ki
Vi

∂2

∂K2
i
Vi

= −Jij
Jii
.

6.1 Centralized Reference Scenario

The optimal solution Kcen is at the intersection of the two FOC curves. We have that

Jcen =


· −(pM − pS)L34,56 − pSL16,23 −(pM − pS)L34,56 − pSL16

−(pM − pS)L34,56 − pSL16 −(pM − pS)L34,56 − pSL02,16
¸

if pS ≤ pM ,· −pML16,23 −pML16
−pML16 −pSL02 − (pS − pM)L45,36 − pML16

¸
if pM < pS.

All entries in J are nonpositive with J11 ≤ J12 ≤ 0 and J22 ≤ J21 ≤ 0 so that |J | ≥ 0 and

|J | =

½
(pM − pS)pSL34,56L02,23 + p2S(L16L02 + L23L02 + L23L16) if pS ≤ pM ,
pMpSL16,23L02 + pM(pS − pM)L16,23L45,36 + p2ML23L16 if pM < pS.

.

−1 ≤ dki
dKj

= −Jij
Jii

≤ 0.

Clearly, if cM > cS, it is optimal to invest only in S-capacity: νM > 0 so that kcentM (·) = 0 and kcentS (·) =
Kcent
S . If pS ≤ pM , pSP236 + pMP45 = cS. Because P02 = 0, either L16 and/or L34,56 are positive so that

FOCS is strict concave at Kcen
S (J22 < 0), ergo uniqueness. If pM < pS, pSP234 + pMP56 = cS and either

L34,36 and/or L16 are positive, again showing uniqueness.
Otherwise, if cM < cS, we invest in both capacities and at least one of the terms in |J | is positive so that

V cen is strict concave at the unique optimal Kcen. We can compute some points of the centralized curves:
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� IfKS = 0 and cM < cS , then P01356 = 0, L23 = L34, L16,56 = 0 and pMP4 = pMP (DM > Kcent
M ) = cM .

Thus,

kcentM (0) = Ksolo
M and

dkM
dKS

=

½ −pM−pS
pM

> −1 if pS ≤ pM ,
0 if pS > pM .

.

� If KS →∞ and cM < cS, then P23456 = 0 so that L34,56,16 = 0 and EλM = 0 < cM so that

kM(∞) = 0 and dkM(∞)
dKS

= 0,

a situation that remains ifKS decreases as long as P01 ((0,KS)) = 1. Clearly, this minimalKS increases
in correlation and variability.

� If KM = 0, then P02 = 0 and L02 = 0. Thus,(
dkcentS (0)
dKM

= −1 if pS ≤ pM ,
−1 ≤ dkcentS (0)

dKM
≤ 0 if pS > pM .

.

� If KM →∞, then P13456 = 0 so that L34,56,16 = 0 and pSP2 = cS. Thus,

kcentS (∞) = GS( cS
pS
) = Ksolo

S and
dkcentS (∞)
dKM

= 0,

a situation that remains if KM decreases as long as P456 ((KM , kS(∞)) = 0. Clearly, this minimal KM
increases in variability.

6.2 Subcontracting with Price-Only Contracts

The Jacobian becomes

J =


· −(pM − pt)L34,56 − ptL01,23 −(pM − pt)L34,56

−(pt − pS)L34,56 − pSL16 −(pt − pS)L34,56 − pSL02,16
¸

if pS ≤ pt ≤ pM ,· −ptL01 − pML23 − (pM − pt)L16 −(pM − pt)L16
−ptL16 −pSL02 − (pS − pt)L45,36 − ptL16

¸
if pt < min(p).

.

6.2.1 Uniqueness of the solution Ksub

All entries in J are nonpositive with J11 ≤ J12 ≤ 0 and J22 ≤ J21 ≤ 0 so that |J | ≥ 0 and

|J | =

 (pM − pt)pSL34,56L02 + (pt − pS)ptL01,23L34,56 + ptpSL01,23L02,16 if pS ≤ pt ≤ pM ,
(pM − pt)pSL02L16 + (pM − pt)(pS − pt)L16L45,36 + pt(pS − pt)L01L45,36
+pM(pS − pt)L23L45,36 + ptpSL01L02 + p2tL01L16 + pMpSL23L02 + pMptL23L16 if pt < min(p).

.

−1 ≤ dki
dKj

= −Jij
Jii

≤ 0.

Existence of an intersection follows from the relative position of axis crossings and asymptotes:

� If KS = 0, then P01356 = 0, L23 = L34, L01,16,56 = 0 and pMP4 = pMP (DM > KM) = cM . Thus,

kM(0) = GM(
cM
pM
) = Ksolo

M and
dkM(0)

dKS
=

½ −pM−pt
pM

> −1 if pS ≤ pt ≤ pM ,
0 if pt < min(p).

.

(dkM (0)dKS
remains 0 as KS increases with low pt until P1 becomes positive. Clearly, this maximal KS

decreases in correlation and variability.)
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� If KS →∞, then P23456 = 0 so that L34,56,16 = 0 and EλM = ptP1 ≤ pt. Thus, if pt < cM , we have
kM(∞) = 0, else

kM(∞) = GM(cM
pt
) < Ksolo

M and
dkM(∞)
dKS

= 0,

a situation that remains if KS decreases as long as P01 ((kM(∞),KS)) = 1. Clearly, this minimal KS
increases in correlation and variability. Note that kM(·) is continuous in pt for pS < pt < pM , except
at pt = cM if DM is bounded from below by a positive number with probability one (the demand
density is zero at DM = 0).

� If KM = 0, then P02 = 0 so that L02 = 0. For high pt we have that pSP36 + ptP45 = cS and because
pS < pt, we have that

dkS(0)

dKM
= −1.

With small variability, we have that kS(0) ' D+ (exact: P (D+ > kS(0)) =
cS
pS
. Indeed, if KS ¿

(À)D+, we would have that P3456 = 1(0), which cannot satisfy FOCS.) For low pt we have that
pSP34 + ptP56 = cS. If pt < cS, then P34 > 0. If D has low variability in the sense that P (Ω1(K =
(0,Ksolo

S ))) = 0, then k2(·) is discontinuous at pt = c2 and we have that

k2(0) ≈ D+ (exactly: P56 =
cS
pt
) and

dkS(0)

dKM
= −1 IF pt > cS,

kS(·) = Ksolo
S ≈ DS and thus dkS(0)

dKM
= 0 IF pt < cS.

If D has high variability, 0 ≤ dkS(0)
dKM

≤ −1.
� If KM →∞, then P13456 = 0 so that L34,56,16 = 0 and pSP2 = cS. Thus,

kS(∞) = GM( cS
pS
) = Ksolo

S and
dkS(∞)
dKM

= 0,

a situation that remains if KM decreases as long as P456 ((KM , kS(∞)) = 0. Clearly, this minimal KM
increases in variability.

Uniqueness of Ksub follows from −1 < dkM
dKS

at intersection (assume high pt, low pt is similar)

� If pM ≥ pt > cM : 0 < P13645 < 1 and because P is a continuous measure we have that L23,01 > 0 so
that VM is strict concave at the optimal KM and thus the reaction curve kM(·) is unique. Moreover

−1 < dkM
dKS

≤ 0 (and dkM
dKS

= 0 if P45 = 0).

� If pM > cM ≥ pt : 0 < P45 < 1 so that L34,56 > 0. Again the reaction curve kM(·) is unique but now,
as long as kM > 0:

−1 ≤ dkM
dKS

< 0 (and
dkM
dKS

= −1 if P012 = 0).

At the intersection Ksub we have that −1 < dkM
dKS

which shows uniqueness (indeed P012 = 0 would
imply P3456 = 1, which cannot be a solution to FOCS : pSP36 + ptP45 ≥ min(pS, pt) = pS > cS).

Similarly for Þrm 2�s reaction curves (pSP236 + ptP45 = cS), if follows that

� Because pt > pS > cS : 0 < P236, P45 < 1 and thus 0 < P01 < 1 and L02,16 > 0 so that VS is strict
concave at the optimal KS and thus the reaction curve kS(·) is unique. Moreover

−1 ≤ dkS
dKM

≤ 0 (and dkS
dKM

= −1 if P2 = 0 and dkS
dKM

= 0 if P13456 = 0).

Given that the two reaction curves are unique with −1 ≤ dki
dKj

≤ 0, and the relative axis crossings are
as given higher together with −1 < dkM

dKS
at any solution to the FOC, it follows that hey have a unique

intersection which is a stable, and thus Nash, equilibrium.
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6.2.2 Sensitivity of Ksub

The intersection point K is the unique solution to the FOC and it follows from the FOC that one will never
invest to cover all demand with probability 1. In other words, if K > 0, then 0 < P01 < 1 and at least one
of the terms in det(J) is positive so that |J | > 0 and J is invertible:

J−1 =


|J |−1

· − (pt − pS)L34,56 − pSL02,16 (pM − pt)L34,56
(pt − pS)L34,56 + pSL16 − (pM − pt)L34,56 − ptL01,23

¸
if pS ≤ pt ≤ pM ,

|J |−1
· −pSL02 − (pS − pt)L45,36 − ptL16 (pM − pt)L16

ptL16 −ptL01 − pML23 − (pM − pt)L16
¸

if pt < min(p).

= −
·
α1 + α3 −α2
−α1 α2 + α4

¸
.

Because ∂Ki

∂cj
= Jij , we have that both capacities are imperfect substitutes w.r.t. the marginal cost vector.

Partials w.r.t. the margins are

∂

∂pM
K =


−J−1

·
0 0 0 1 1 0
0 0 0 0 0 0

¸
P =

·
α1 + α3
−α1

¸
P45 if pS ≤ pt ≤ pM ,

−J−1
·
0 0 1 1 1 1
0 0 0 0 0 0

¸
P =

·
α1 + α3
−α1

¸
P3456 if pt < min(p).

∂

∂pS
K =


−J−1

·
0 0 0 0 0 0
0 1 1 0 0 1

¸
P =

· −α2
α2 + α4

¸
P236 if pS ≤ pt ≤ pM ,

−J−1
·
0 0 0 0 0 0
0 1 1 1 0 0

¸
P =

· −α2
α2 + α4

¸
P234 if pt < min(p).

∂

∂pt
K =


−J−1

·
1 0 1 0 0 1
0 0 0 1 1 0

¸
P =

·
(α1 + α3)P136 − α2P45
−α1P136 + (α2 + α4)P45

¸
if pS ≤ pt ≤ pM ,

−J−1
·
1 0 0 0 0 0
0 0 0 0 1 1

¸
P =

·
(α1 + α3)P1 − α2P56
−α1P1 + (α2 + α4)P56

¸
if pt < min(p).

While ∂
∂pt
K cannot be signed in general, we do have that ∂

∂pt
K+ > 0.

6.2.3 Sensitivity of V sub

We have that dVidx =
∂Vi
∂KM

∂KM

∂x + ∂Vi
∂KS

∂KS

∂x +
∂Vi
∂x , where

∂Vi
∂Ki

= 0 under optimal investment. The cross-partial
∂Vi
∂Kj

= ∂
∂Kj

Eπi = E
∂
∂Kj

πi = Eλi,j can be computed as before by the weighted average of the constant λ
j
i,j

in each domain l:

∂V subM

∂KS
= Eλ1,2 = (pM − pt)P45 ≥ 0

∂V subS

∂KM
= Eλ2,1 =

½ −ptP1 − (pt − pS)P36 ≤ 0 if pS ≤ pt ≤ pM ,
−ptP1 ≤ 0 if pt < min(p).

Denoting Eλ1,2 = β5 ≥ 0 and Eλ2,1 = −β6 ≤ 0, we get
∂V sub

M

∂cM
= α1β5 −Ksub

1 = β1 −Ksub
M ,

∂V sub
S

∂cM
= β6(α1 + α3) = β3 ≥ 0,

∂V sub
M

∂cS
= −(α2 + α4)β5 = −β2 ≤ 0, ∂V sub

S

∂cS
= −β6α2 −Ksub

S = −β4 −Ksub
S ≤ 0.

As expected ∂VM
∂cS

, ∂VS∂cS
are negative and ∂VS

∂cM
is positive, while ∂VM

∂cM
cannot be signed in general. For price

sensitivity consider high transfer prices (the other case is similar but replace the P45 by P3456, P236 by P234,
P136 by P1, and P45 by P56):

∂V sub
M

∂pM
= −β5α1P45 +Ex1+t = −β1P45 +Ex1+t, ∂V sub

S

∂pM
= −β6(α1 + α3)P45 = −β3P45 ≤ 0,

∂V sub
M

∂pS
= β5(α2 + α4)P236 = β2P236 ≥ 0, ∂V sub

S

∂pS
= β6α2P236 +ExS = β4P236 +ExS ≥ 0.

∂V sub
M

∂pt
= β5

∂Ksub
S

∂pt
− cM ∂Ksub

M

∂pt
− Ext, ∂V sub

S

∂pt
= −β6 ∂K

sub
M

∂pt
− cS ∂K

sub
S

∂pt
+Ext.
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6.3 Outsourcing Conditions

First note that from the structure of the manufacturer�s reaction curve it follows that the threshold cost
c̄M ≥ pt, because a necessary condition for outsourcing is that cM ≥ pt so that GM( cMpt ) = 0.

6.3.1 Low transfer price: pt < min(p)

Because KM = 0, we have that P02 = 0 and P13456 = 1 and the optimality equations yield

ptP1 + pMP3456 = c̄M ,

pSP34 + ptP56 = cS,

so that cS
pS
≤ P3456 ≤ cS

pt

pt +
pM − pt
pS

cS ≤ c̄M = pt + (pM − pt)P3456 ≤ pt + pM − pt
pt

cS.

Also,

c̄M = cS + ptP1 + (pM − pS)P34 + (pM − pt)P56 ≥if pM≥pS cS .
Notice that with low levels of uncertainty, one either has

pt < cS : K̄S = kS(0) ' DS (exactly: pSP34 = cS), P3456 = 1⇒ c̄M = pM .

cS < pt : K̄S = kS(0) ' D+ (exactly: ptP6 = cS), P16 = 1, P02345 = 0⇒ c̄M = pt +
pM
pt
cS − cS.

As uncertainty increases, c̄M will decrease. Indeed, if pt < cS, increasing uncertainty will decrease P3456
from 1 and increase P1, but P1 has lower coefficient pt < pM in the deÞnition of c̄M . If pt > cS, increasing
uncertainty will decrease P6 and increase P534. From FOC 2 we see that P6 will decrease more than P345
will increase (pS > pt); thus P1 will also increase, but again less than the decrease in P6, so that c̄M will
decrease because pt < pM .

6.3.2 High transfer price: pS < pt < pM

Because KM = 0, we have that P02 = 0 and P13456 = 1 and the optimality equations yield

ptP136 + pMP45 = c̄M ,

pSP36 + ptP45 = cS,

so that 0 ≤ P45 ≤ cS
pt

pt ≤ c̄M = pt + (pM − pt)P45 ≤ pt + pM − pt
pt

cS.

Again, with limited levels of uncertainty, one can only have (pt > pS > cS):

K̄S = kS(0) ' D+ (exact: pSP6 = cS), P16 = 1, P02345 = 0⇒ c̄M = pt.

As uncertainty increases, P16 will decrease from 1 and P345 will grow, leading to an increase in c̄M because
pt < pM . Finally, notice that c̄M is discontinuous at pt = pS.

6.4 Incomplete Contracts (Bargaining)

6.4.1 FOC

With incomplete contracting the players� revenue functions are:

πbM = πsoloM + θ∆π = θπcen + θ̄πsoloM − θπsoloS ,

πbS = πsoloS + θ̄∆π = θ̄πcen − θ̄πsoloM + θπsoloS .
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Because ∂
∂Kj 6=i

πsoloi = 0, the capacity reaction curves can be constructed in terms of our primitive shadow
matrices

Λbar = diag(θ̄, θ)Λsolo + diag(θ, θ̄)Λcen

= Λsolo + diag(θ, θ̄)(Λcen − Λsolo) = Λcen + diag(θ̄, θ)(Λsolo − Λcen)

=


·
θpM 0 θpM + θpS pM pM θpM + θpS
0 pS pS θpM + θpS θpM θpS

¸
if pM > pS·

θpM 0 pM pM pM pM
0 pS pS pS θpM θpM

¸
elsewhere.

6.4.2 Outsourcing

Case 1: pM > pS. Because KM = 0, we have that P02 = 0 and P13456 = 1 and the optimality equations
yield:

θpMP1 + (θpM + θpS)P36 + pMP45 = c̄M ,

pSP3 + (θpM + θpS)P4 + θpMP5 + θpSP6 = cS,

so that

c̄M = θpM(1− P3456) + (θpM + θpS)P36 + pMP45

= θpM + θpSP36 + θpMP45

= θpM + θ
¡
cS − (θpM + θpS)P4 − θpMP5 + θpSP6

¢
+ θpMP45

= θpM + θ
¡
cS − (θpM + θpS)P4 − θpMP5 + pMP45 + θpSP6

¢
= θpM + θ (cS − (−θpM + θpS)P4 + θpMP5 + θpSP6)

= θpM + θcS + θ
2 ((pM − pS)P4 + pMP5 + pSP6)

θpM + θcS ≤ c̄M = θpM + θcS + θ
2 ((pM − pS)P4 + pMP5 + pSP6) ≤ θpM + θcS +

θ2

θ
cS = θpM +

θ

θ
cS.

Case 2: pM ≤ pS. With KM = 0, we have that P02 = 0 and P13456 = 1 and the optimality equations
yield:

(1− θ)pMP1 + pMP3456 = c̄M ,

pSP34 + (1− θ)pMP56 = cS,

If follows directly from FOC1 :

(1− θ)pM < c̄M < pM

and from FOC2 : (pS > pM)

(1− θ)pMP3456 < pMP34 + (1− θ)pMP56 < cS < pSP34 + pMP56 < pSP3456
so that

cS
pS
< P3456 <

cS
(1− θ)pM

c̄M = (1− θ)pM(1− P3456) + pMP3456
= (1− θ)pM + θpMP3456

And hence:

(1− θ)pM + θ
pM
pS
cS < c̄M = (1− θ)pM + θpMP3456 < (1− θ)pM +

θ

1− θ cS.
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6.4.3 State-Dependent Price-Only Contracts and Coordination

It is directly veriÞed that the sufficient condition for coordination Λsub = Λcen is satisÞed if pM ≤ pS with
pt(K,D) = 0 for D ∈ Ω1(K) and pt = pM in Ω56. Similarly, if pS ≤ pM coordination calls for pt = 0 in Ω1,
pt = pS in Ω36 and pt = pM in Ω45.

The equivalent transfer price is deÞned implicitly in the bargaining model in that it guarantees the
correct division of surplus πbarS = pSx

cen
S + pbart xcent (recall that xbar = xcen). We know that

πbarS = πsoloS + θ̄∆π

= θ̄πcen − θ̄πsoloM + θπsoloS

= θ̄(pM(x
cen
M + xcent ) + pSx

cen
S )− θ̄pMxsoloM + θpSx

solo
S

= θ̄(pMx
cen
t + pSx

cen
S ) + θpSx

solo
S [because xcenM = xsoloM ]

so that

pbart xcent = (1− θ)(pMxcent + pSx
cen
S ) + θpSx

solo
S − pSxcenS

= θ̄pMx
cen
t + θpS(x

solo
S − xcenS ),

or

pbart = θ̄pM + θpS
xsoloS − xcenS

xcent
.

Case 1: pM ≤ pS. We know that no transfers happen in Ω0234 and in the other domains:
xcent xsoloS xcenS pbart

Ω1 DM −KM DS DS θ̄pM
Ω56 KS −DS DS DS θ̄pM
Case 2: pM > pS. We know that no transfers happen in Ω02 and in the other domains:

xcent xsoloS xcenS pbart
Ω1 DM −KM DS DS θ̄pM
Ω3 DM −KM KS K+ −DM θ̄pM + θpS
Ω4 KS KS 0 θ̄pM + θpS
Ω5 KS DS 0 θ̄pM + θpS

DS

KS

Ω6 DM −KM DS K+ −DM θ̄pM + θpS
D+−K+

DM−KM
.

6.4.4 State-Dependent Bargaining and Coordination

Assume θ(K,D). Coordination would require that the FOCs for Kbar
i are identical with those of Kcen

i . Or,
in each domain Ωl, ∂

∂Ki
πbari = Λcenil . With incomplete contracting the players� revenue functions are:

πbM = πsoloM + θ∆π = θπcen + θ̄πsoloM − θπsoloS ,

πbS = πsoloS + θ̄∆π = θ̄πcen − θ̄πsoloM + θπsoloS .

Because ∂
∂Kj 6=i

πsoloi = 0, the FOCs can be constructed in terms of our primitive shadow matrices and the
gradient of θ:

∇Eπbar = Eλbar = ΛbarP̄ (K) + ( ∂θ
∂KM

,
−∂θ
∂KS

)0E∆π(K,D)

Requiring identical Þrst-order conditions Eλbar = ΛcenP̄ (K) now yields a system of partial differential
equations:

Λcen = Λbar + (θM ,−θS)0∆Π
where θi denotes ∂

∂Ki
θ and ∆Π is a 1× 6 matrix with ∆Πl = E∆π(K,D) if D ∈ Ωl.
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Lemma 1 If pM ≤ pS, state-dependent bargaining with θ = 1 in Ω1, any constant θ in Ω234 and θ = 0 in
Ω56 coordinates investment decisions.

Proof: Using the results of Λbar with a Þxed θ and calculating ∆π in each domain yields:

Λ =

·
θpM 0 pM pM pM pM
0 pS pS pS θpM θpM

¸
+·

θM
−θS

¸ £
pM(DM −KM) 0 0 0 pM(D+ −K+) pM(D+ −K+)

¤
.

Λcen =

·
0 0 pM pM pM pM
0 pS pS pS pM pM

¸
.

Coordination requires that Λ = Λcen. The appropriate solution for θ(K,D) is found directly by inspection:
θ = 1 in Ω1, any constant θ in Ω234 and θ = 0 in Ω56. To show that this is the unique solution, we solve the
system of partial differential equations in each domain:

- In domain Ω1:

(DM −KM) ∂

∂KM
θ − θ = −1,
∂

∂KS
θ = 0,

with unique solution:

θ =
C1 −KM
DM −KM ,

where C1 is a function that does not depend on K. To satisfy the boundary conditions 0 ≤ θ ≤ 1 in Ω1, we
must have C1 = DM and hence θ = 1 so that the manufacturer gets all the surplus in Ω1.

- In domains Ω234 we have equality. (There are no transfers; centralized production = solo production;
hence any θ will do.

- In domains Ω56:

∂

∂KM
θ = 0,

(D+ −K+) ∂

∂KS
θ + θ = 0.

The unique solution of the second PDE is:

θ = C5(D+ −K+),
and the Þrst PDE requires that C5 = 0, so that θ = 0 in Ω5 and all surplus goes to the supplier.

Lemma 2 If pM > pS, state-dependent bargaining with θ = 1 in Ω13, any constant θ in Ω2, θ = 0 in Ω45,
and θ = (pM−pS)(DM−KM )

∆π(K,D) in Ω6 coordinates investment decisions.

Proof: Calculation of ∆π in each domain: We have that ∆π = 0 in domain Ω02 and:

∆π =


pMDM + pSDS − pMKM − pSDS = pM(DM −KM) in Ω1
pMDM + pS(K+ −DM)− pMKM − pSKS = (pM − pS)(DM −KM) in Ω3
pMK+ − pMKM − pSKS = (pM − pS)KS in Ω4
pMK+ − pMKM − pSDS = pMKS − pSDS in Ω5
pMDM + pS(K+ −DM)− pMKM − pSDS = (pM − pS)(DM −KM) + pS(KS −DS) in Ω6

.
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Combining with the results of Λbar

Λ =

·
θpM 0 θpM + θpS pM pM θpM + θpS
0 pS pS θpM + θpS θpM θpS

¸
+

·
θM
−θS

¸


pM(DM −KM)
0

(pM − pS)(DM −KM)
(pM − pS)KS
pMKS − pSDS

(pM − pS)(DM −KM) + pS(KS −DS)



0

,

Λcen =

·
0 0 pS pM pM pS
0 pS pS pM pM pS

¸
By inspection we again see that we should have θ = 1 in Ω13, θ = 0 in Ω45. Domain Ω6 is more difficult

as no single constant θ yields a solution. Hence, we must look for a variable θ function. Recall that a
state-dependent price-only contract requires pt = pS in Ω6 to induce investment coordination. Now use the
equivalent pbart :

pbart = θ̄pM + θpS
D+ −K+
DM −KM = pS

which yields the following candidate soluation function

θ(K,D) =
(pM − pS) (DM −KM)

(pM − pS)(DM −KM) + pS(KS −DS) in Ω6.

We now verify that this θ function satisÞes the sufficient FOC, which simplify to require in domain Ω6:·
θpM + θpS

θpS

¸
+∆π(K,D)

·
θM
−θS

¸
=

·
pS
pS

¸
⇔ ((pM − pS)(DM −KM) + pS(KS −DS))

· ∂θ
∂KM

− ∂θ
∂KS

¸
=

·
(pS − pM)(1− θ)

pSθ

¸
Test the FOC to verify correctness of the candidate solution θ = (pM−pS)(DM−KM )

(pM−pS)(DM−KM )+pS(KS−DS)
:

FOC1 : [(pM − pS)(DM −KM) + pS(KS −DS)] ∂

∂KM

(pM − pS) (DM −KM)
(pM − pS)(DM −KM) + pS(KS −DS)

= (pS − pM) pS(KS −DS)
(pM − pS)(DM −KM) + pS(KS −DS)

= (pS − pM)
·
1− (p1 − p2)(D1 − x)

(p1 − p2)(D1 − x) + p2(y −D2)
¸

= (pS − pM)(1− θ)⇒ OK!

FOC2 : − [(pM − pS)(DM −KM) + pS(KS −DS)] ∂

∂KS

(pM − pS) (DM −KM)
(pM − pS)(DM −KM) + pS(KS −DS)

= pS
(pM − pS) (DM −KM)

(pM − pS)(DM −KM) + pS(KS −DS)
= pSθ⇒ OK!

Conclusion: the candidate solution θ(K,D) satisÞes the FOC and hence our state-dependent bargaining
contract induces investment coordination.
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