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Commonality strategies assemble different products from at least one common component and one other
product-specific component. The distinguishing feature of commonality, i.e., the presence of dedicated com-

ponents to be assembled with a common component, is shown to be mathematically inconsequential in the
sense that the unified commonality problem for two products can be reduced to an equivalent substitution
flexibility problem without those dedicated components. This significant simplification provides the first gen-
eral, closed-form condition for commonality adoption and identifies its value drivers. Commonality is opti-
mal even for perfectly correlated demands if products have sufficiently different margins. This introduces
the “revenue-maximization option” of commonality as a second benefit that is independent of the traditional
risk-pooling benefit. “Pure commonality” strategies are never optimal unless complexity costs are introduced.
Dual sourcing, externalities, and operational hedging features of commonality are discussed.
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1. Summary and Literature Review
Commonality strategies assemble different products
from at least one common component and one other
product-specific component. Analytic studies of com-
monality traditionally compare two distinct models:
a no-commonality model, where each product requires
two product-dedicated components, and a pure com-
monality model, where each product requires one
dedicated and one common component. The value
of commonality is then explained in terms of the
risk-pooling benefit in the pure commonality model.
Clearly, this benefit comes at a cost, as the common
component is more expensive than the dedicated ones
that it replaces. The traditional requirement to adopt
commonality is that the optimal value of the com-
monality model exceeds that of the no-commonality
model, yet no simple conditions have been available.
This note analyzes a single unified model with five

inputs and two products, as shown in Figure 1, that
captures these two models as special cases. Under
the no-commonality strategy, product i ∈ �1�2� uses
dedicated components i and i + 3, while under the
pure commonality strategy it uses common compo-
nent 3 and its other input i + 3. In general, how-
ever, the model allows for stocking both dedicated
and common components and for alternate assem-
bly allocations by substituting components 1 or 2 for
the common component 3. Hence, we will refer to

inputs 1 and 2 as substitutable inputs, while inputs 4
and 5 may be called always-dedicated, or simply
“other,” inputs. The required presence of other inputs
in addition to a common input is the defining feature
of commonality that distinguishes it from substitution
flexibility. At their core, capacity flexibility, inventory
substitution, and dual sourcing refer to having a sec-
ond option to fill a product demand; they typically
do not require the assembly of multiple inputs. In
other words, those strategies only have inputs 1, 2,
and 3 in a two-product setting. (Among many, Bassok
et al. 1999, Tibben-Lembke and Bassok 2002, and Van
Mieghem 1998 (hereafter abbreviated as VM98), ana-
lyze substitution flexibility.)
This note shows that the distinguishing feature of

commonality, i.e., the required presence of the other
components 4 and 5, is mathematically inconsequen-
tial in the sense that the unified commonality problem
is equivalent to the substitution flexibility problem of
VM98. This equivalence is first established in a single-
period model and then extended to a multiperiod set-
ting with i.i.d. demand and negligible leadtimes. The
equivalence between a five- and three-variables prob-
lem is mathematically surprising and significantly
simplifies the analysis of commonality. It also estab-
lishes a precise relationship between different litera-
tures that intuitively are related, yet have been devel-
oped in isolation. The key advantage of the unified
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Figure 1 A Unified Commonality Model: Product i Always Requires
Dedicated Component i+3 and Either Dedicated Component
i or Common Component 3
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model is in allowing the optimal strategy, service lev-
els, and commonality adoption conditions to emerge
through direct optimization. This note presents the
first1 general, closed-form condition for when com-
monality should be adopted, and identifies its driv-
ing factors. In addition, contrary to earlier statements
in the literature,2 commonality can be valuable even
with perfect correlation when risk pooling is impos-
sible. The explanation is found in the concept of
a revenue-maximization option that is introduced as
another benefit of commonality, independent of risk
pooling. The note ends by describing the dual sourc-
ing, externalities, and operational hedging features of
optimal commonality strategies.
Commonality falls within the broader supply chain

operations umbrella of assemble-to-order systems,
which are reviewed by Song and Zipkin (2003) and
combine elements of assembly and distribution sys-
tems. Commonality research comes in three forms:
parsimonious analytic studies, detailed mathemati-
cal programming formulations, and product-design
studies. Early examples of analytic studies are Collier
(1982), Baker et al. (1986) and follow-up work by
McClain et al. (1984) and Gerchak et al. (1988). All
analyze the total inventory reduction due to risk pool-
ing inherent in commonality. Eynan (1996), Eynan and
Rosenblatt (1996, 1997), and Hillier (1999) add cost
considerations but restrict attention, as do all pre-
decessors, to uniform demand distributions. Gerchak
and Henig (1989), Hillier (2000), and Rudi (2000b)
continue comparing the two distinct models, but
under general demand distributions. Eynan (1996)
and Groenevelt and Rudi (2000) are the only papers,
to our knowledge, that consider correlation in the spe-
cific settings of bivariate uniform and four-state dis-
crete demand, respectively. Song (2002) and Lu and

1 This is the first such condition to our knowledge, as corroborated
by the statement in Hillier’s (2000, p. 756) literature review that “it
is not possible to easily determine conditions under which employ-
ing a common component would be beneficial” and by the lack of
mentioning any condition in the survey by Song and Zipkin (2003).
2 For example, Eynan (1996, p. 1591) states that with perfect corre-
lation “no savings can be realized as we cannot pool the risks.”

Song (2003) analyze significantly more general com-
monality problems with leadtimes; however, as with
all predecessors, complexity defied obtaining adop-
tion conditions.
The second strand of commonality research, start-

ing with Dogramaci (1979), investigates detailed
mathematical programming formulations and cap-
tures more reality, including setup costs and design
complexity costs. Thomas (1991) proposes clustering
heuristics to trade off production and design com-
plexity costs. Swaminathan and Tayur (1998, 1999)
use simulation-based optimization to determine the
appropriate amount and type of product differentia-
tion using component commonality. Thonemann and
Brandeau (2000) formulate all costs as a function of
the component design and use branch-and-bound and
simulated annealing algorithms.
Commonality is also studied in the product design

literature, which is largely separate from the two
strands above. Desai et al. (2001) review this lit-
erature and provide an analytic model that trades
off the cost benefits3 with the revenue loss that can
result from the perceived quality deterioration when
a high-end product shares a component with a low-
end product. Groenevelt and Rudi (2000) also inves-
tigate risk pooling and product-design choice using
commonality.
Finally, a dual-sourcing approach is pursued in

Hale et al. (2000) and Rudi (2000a), whose setup is
closest to this paper: The dedicated strategy involves
long-leadtime make-to-stock operations and common-
ality enables short-leadtime assemble-to-order, while
dual sourcing involves a mixed strategy.

2. Model and Equivalence Result
Model. The unified commonality model of Figure 1

is a newsvendor network as defined in Van Mieghem
and Rudi (2002) with three data sets: (1) Demand
data: The probabilistic forecast for demand vectorD is
represented here by a bivariate continuous probability
measure P . (2) Financial data: Activity vector x yields
gross margin m′x, where m equals price minus any
marginal assembly and transportation cost; inventory
incurs unit purchasing and holding costs cS and cH,
and unmet demand incurs shortage cost cP. (3) Net-
work data: The input-output matrices RS and RD,
where RS� ij denotes the amount of input stock i con-
sumed per unit of activity j , and RD� ij is the amount
of output i per unit of activity j . Without loss of gen-
erality, we assume the bill of material requires one

3 Using mostly deterministic models, the product design literature
often abstracts from risk-pooling benefits.
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unit of each input per unit output, so that

RS =




1

1

1 1

1 1

1 1




and RD =
[
1 1

1 1

]
�

The objective is to maximize expected value
by choosing inventory vector S before demand is
observed, and allocation or assembly activity x after-
wards. Let v = m + R′

DcP + R′
ScH denote the net

value vector associated with the various processing
activities, and let c = cS + cH. Denote an ex post
optimal recourse allocation vector by x∗	S�D
 =
argmax�v′x� x ≥ 0�RSx ≤ S�RDx ≤ D�. The expected
firm value to be maximized then is V 	S
 =
Ɛv′x∗	S�D
 − c′PD� − c′S, which is concave for any
newsvendor network and strictly concave with a con-
tinuous probability measure P . Thus, the optimal
stocking strategy S∗ is unique.
Natural assumptions are that: (1) The common

input is more expensive but a viable alternative:
max	c1� c2
 < c3 < c1 + c2; (2) it is economically prof-
itable to produce either product: ci+ ci+3 <vi; (3) v1 =
v3 ≥ v2 = v4 > 0. Assumption 3 labels product 1 as
the higher-margin product and follows tradition in
commonality research by assuming that ex post usage
of the common component versus the substitutable
component does not affect value. (The analysis carries
through with value penalty for assembling a product
using the common component.)

Analysis. Under Assumption 3, a greedy rule that
prioritizes product 1 in the ex post allocation of the
common component is optimal. For the ex ante stock-
ing decisions, it obviously is suboptimal to stock more
dedicated inputs for product i than maximal possible
product i output so that S∗

i ≤ S∗
i+3 ≤ S∗

i + S∗
3 . It also is

suboptimal to stock more of the common component
than ever can be used, so that S∗

3 ≤ 	S∗
4−S∗

1 
+ 	S∗
5−S∗

2 
.
These intuitive constraints extend those in Gerchak
et al. (1988) for the case of pure commonality (i.e.,
S1 = S2 = 0), as first noted by Rudi (2000a). With these
constraints, the optimal allocation decisions can be
represented as in Figure 2. The thick-lined area �0 is
the capacity of the firm where all demand can be met.
However, the commonality problem can be reduced
further:
Property 1 (Reduction). The optimal commonal-

ity strategy sets S∗
4 = S∗

1 + S∗
3 and S∗

5 = S∗
2 + S∗

3 .
Proof. Assume that S∗

i+3 < S∗
i + S∗

3 for product i ∈
�1�2�. This would imply S∗

3 > 0. Let j 
= i denote the
other product. Reducing S∗

3 by � > 0 and increasing S∗
j

by � would not change the effective operating profit

Figure 2 Total Product Sales Quantities Q= �x1+x3� x2+x4� Depend
on the �-Area in Which the Demand Vector D Falls
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Note. The optimal commonality strategy has no shaded areas.

v′x (the � partition in Figure 2 is unchanged, as is
the total product output4) but would reduce stock-
ing costs by 	cS3 − cSj 
� > 0, contradicting assumed
optimality. �

(This generalizes a similar property established by
Eynan and Rosenblatt 1997 in a simpler model that
minimizes cost subject to an exogenous service-level
constraint and uniform demand uncertainty.) With
only three independent variables, S∗

1 , S∗
2 , and S∗

3 ,
the reduced commonality problem is identical to the
problem in VM98:

Corollary 1 (Equivalence). The optimal common-
ality strategy sets S∗

1�3 = 	S∗
1� S

∗
2� S

∗
3 
 according to the opti-

mal flexible capacity strategy of VM98 with dedicated
capacity costs c̃i = ci + ci+3 and flexible capacity cost c̃3 =
c3+ c4+ c5 with necessary and sufficient conditions: There
exists a � ∈�3+ such that �′S∗

1�3 = 0 and


 0v2
v2


P	�1	S

∗
1�3

+


v2
v2
v2


P	�2	S

∗
1�3



+

v1
v2
v1


P	�3	S

∗
1�3

+


v1
0
v1


P	�4	S

∗
1�3

= c̃−�� (1)

The optimal assemble-to-order commonality sys-
tem dominates a pure assemble-to-stock (ATS) sys-
tem, which is a simple and useful benchmark. Clearly,
the optimal ATS system does not use commonality

4 This substitution is even more profitable in the more general case
when v1 ≥ v3 ≥ v2 ≥ v4. The substitution of common input 3 for
input j yields a substitution of activity xj+2 for higher-value activity
xj and increases the expected operating profit by 	vj −vj+2
�Pr	Dj ∈
Sj � Sj + ��
.
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and is denoted by �S = 	�S1��S2�0��S1��S2
, which is
defined by two separate newsvendor solutions:

viP	Di >�Si
= c̃i ⇔�Si = �F −1
i

(
ci + ci+3

vi

)
� (2)

which are a special case of (1) given that P	�2	�S

= 0
and where �Fi is the tail distribution of Di.

3. Commonality Adoption Criteria
and Value Drivers

Property 2 (Adoption). Commonality should be
adopted (S∗

3 > 0) if and only if c3 < c̄3, where

c̄3 = c1+ c2− v2P
(
D1 > �F −1

1 		c1+ c4
/v1
�

D2 > �F −1
2 		c2+ c5
/v2


)
(3)

= c1+ c2−
	c1+ c4
	c2+ c5


v1

(iff D1 and D2 independent)� (4)

(Expression (4) is new, while VM98 presents sim-
ilar expressions for perfectly positive and negative
demands.) A higher-margin product increases the
potential value of the ex post allocation option of
a common component and increases the parameter
domain of c3, for which commonality is valuable. Sim-
ilarly, higher costs for the substitutable inputs 1 and
2 allow for higher commonality cost. More interest-
ingly, adoption also depends on the presence of the
“other” inputs 4 and 5, but only through their costs.
This is due to an externality: While a common com-
ponent substitutes inputs 1 and 2, it requires a com-
plementary increase in the other inputs, as shown
by Property 1. Therefore, the higher the cost of the
other components, the higher the effective cost—and
the lower the likelihood—of adopting a commonality
strategy.
In general, the threshold cost (3) for commonal-

ity adoption depends on the financial terms and on
the demand distribution. When demands are inde-
pendent or perfectly correlated, however, the crite-
rion is entirely independent of the distributions of D1
and D2. This strongly suggests that the impact of
demand uncertainty on the commonality adoption
decision is predominantly driven by the correlation
coefficient �, and not by the mean or variance of either
product demand. While that conjecture has not been
proved in general, it is true for correlated normally
distributed demand: Its threshold cost c̄3 depends
only on uncertainty through � and is decreasing in �.
While commonality adoption thus becomes less likely
as correlation increases, it can remain optimal—and
thus valuable—with perfect correlation:
Property 3 (Revenue-Maximization Option).

Commonality remains optimal with perfectly pos-

itively correlated demand if �v = v1 − v2 > 0,
	c1+ c4
/v1 < 	min	c1� c2

/v2, and c3 < c̄3, where

c̄3 = c1+ c2−
v2 	c1+ c4


v1

= �v

v1
c1+ c2−

v2
v1

c4 >max	c1� c2
� (5)

(This extends Proposition 6 in VM98 by imposing
the more stringent condition max	c1� c2
 < c̄3.) Thus, if
product 1 has a higher margin and a higher markup,
commonality is optimal if c3 ∈ max	c1� c2
� c̄3
. The
property highlights a benefit that has not been iden-
tified in the commonality literature: Given that prod-
uct demands move in lockstep if �= 1, the reason for
commonality cannot be risk pooling. Rather, it is the
ex post revenue-maximization option inherent in com-
monality: Stocking the common component creates
the option to produce more (compared to stocking
only dedicated components �S) of the higher-margin
product at the expense of the other product when
demand exceeds capacity. (VM98 shows the associ-
ated revenue gain by detailed comparison to the ded-
icated strategy.)
In summary, commonality adoption depends only

on the financials and the correlation coefficient; it is
less likely with more costly “other” components and
higher correlation, but is independent of variances
and the magnitude of risk pooling. The discussion
above has focused on whether or not commonality
should be adopted. It is straightforward to show that
the value V 	S∗
 of the optimal commonality strat-
egy decreases in any of the cost parameters, increases
in any of the margins and expected demand, but
decreases in variances and covariances (or correla-
tion),5 reflecting the decreasing value of risk pool-
ing. The “option value of commonality,” V 	S∗
−V 	�S
,
also decreases in correlation but, as most options,
is expected to increase in variance terms.6 The
revenue-maximization option, however, can remain
valuable even with perfect positive correlation, so that
commonality adoption remains optimal.

4. Commonality Strategy
Implementation Features

The nature of the optimal strategy gives insights
into how commonality should be implemented in
terms of product and process design, as well as in
terms of tactical inventory-stocking quantities. Propo-
sition 2 in VM98 shows that the optimal strategy takes
on at most three forms, none of which completely

5 The operating profit function is submodular so the result follows
directly from Proposition 3 in Van Mieghem and Rudi (2002).
6 Aside from supporting numerical evidence, no general proof is
available to our knowledge. Such a proof must establish that V 	S∗

decreases less in �Di

than V 	�S
.
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substitutes all components 1 and 2 by the common
component. Hence:
Property 4 (Dual Sourcing). “Pure commonality”

(S1 = S2 = 0) is never optimal in this model.
One should follow a dual-sourcing strategy for the

higher-margin product even if commonality is very
inexpensive, in which case S∗

1� S
∗
3 > 0 while S∗

2 = 0.
Anupindi and Akella (1993) also find that dual sourc-
ing is preferred in a different setting where supply
is uncertain. Obviously, pure commonality would be
optimal if it were free (c3 ≤max	c1� c2
) or if we would
include a large fixed cost for product and process
redesign or “cost of complexity” for sourcing and
handling dual inputs.
Property 5 (Externality). Adopting commonal-

ity should be accompanied by an increase in the
stocking level of the “other,” nonsubstitutable inputs
(4 and 5 in our model): S∗

i <�Si =�Si+3 < S∗
i + S∗

3 = S∗
i+3�

Property 5 generalizes similar existing relationships
between the dedicated strategy and the (suboptimal)
pure commonality strategy. Commonality decreases
the level of substitutable inputs as expected, but also
introduces an externality by increasing that of the
other components. The effect of commonality adop-
tion on total stock (and thus safety stock) is, however,
parameter specific, as is typical in newsvendor sys-
tems where pooling can increase or decrease inven-
tory depending on financial data (e.g., for a symmetric
distribution depending on whether the critical fractile
is below 0.5 or above).
Commonality allows for alternate processing modes

and can be viewed as a form of operational hedging
that shares the “imbalance” feature and the “insur-
ance” interpretation as discussed in Van Mieghem
(2003):
Property 6 (Hedging). Commonality always over-

stocks the “other” components, regardless of their cost.
One will never use all the “other” components,

given that total output
∑

i x
∗
i ≤ S∗

1 + S∗
2 + S∗

3 < S∗
1 + S∗

2 +
2S∗
3 = S∗

4 + S∗
5 . While either S4 or S5 can be fully used,

never will both be, so that it is optimal to invest in
insurance or overstock in S4+ S5.

5. Extension to the Multiperiod Model
Van Mieghem and Rudi (2002) show that a base-stock
policy with the level S∗ of the single-period newsven-
dor network remains optimal for the dynamic version
of that newsvendor network with i.i.d. demand and
negligible replenishment leadtimes. Therefore, our
results directly extend to a dynamic setting with i.i.d.
demand and negligible replenishment leadtimes, both
under lost sales and backlogging.7 The open question

7 This always holds when unmet demand results in lost sales.
For our commonality problem it also holds under backlogging by
Proposition 6 in Van Mieghem and Rudi (2002) given that the dis-
cretionary activities x3 and x4 are “strong nonbasic.”

is whether the analysis also extends to leadtimes and
a general number of products and inputs. The conjec-
ture is that it does when procurement leadtimes are
identical, yet it may fail otherwise. Song (2002) and
Lu and Song (2003) consider commonality with lead-
times, while Rudi (2000a) presents analytic expres-
sions of the optimality conditions for n products
and one common component with zero leadtimes,
yet complexity defied crisp analysis on commonal-
ity adoption criteria and value drivers. It is hoped
that those papers form a stepping stone to generalize
reduction Property 1, and at the same time simplify
their analysis.
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