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We consider a simple game in which strategic agents select arrival times to a service facility. Agents find
congestion costly and, hence, try to arrive when the system is underutilized. Working in discrete time, we

characterize pure-strategy Nash equilibria for the case of ample service capacity. In this case, agents try to spread
themselves out as much as possible and their self-interested actions will lead to a socially optimal outcome if
all agents have the same well-behaved delay cost function. For even modest sized problems, the set of possible
pure-strategy Nash equilibria is quite large, making implementation potentially cumbersome. We consequently
examine mixed-strategy Nash equilibria and show that there is a unique symmetric Nash equilibrium. Not only
is this equilibrium independent of the number of agents and their individual delay cost functions, the arrival
pattern it generates approaches a discrete-time Poisson process as the number of agents and arrival points gets
large. Our results extend to the case of time varying preferences. With an appropriate initialization, the results
also extend to a system with limited capacity. Our model lends support to the traditional literature on managing
service systems. This work has generally ignored customers strategically choosing arrival times. Rather it is
commonly assumed that customers seek service according to some well-behaved process (e.g., that interarrival
times follow a renewal process). We show that assuming Poisson arrivals is an acceptable assumption even with
strategic customers if the population is large and the horizon is long.
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1. Introduction
Woody Allen has claimed that 80% of success is show-
ing up, but there are instances in which Allen’s dic-
tum seems an underestimate. Consider errands such
as dropping off dry cleaning or mailing a package.
For such mundane services, convenience is often as
important as price. Success then is almost entirely
about showing up. If one arrives when the service
facility is lightly loaded, one encounters little or no
delay. If one arrives when the facility is heavily uti-
lized, waits are likely significant. Minimizing the cost
of the errand consequently depends on when one
seeks service relative to when others arrive at the
facility.
Here, we study how strategic agents should seek

service. A set of agents patronizes a service facility.
All are delay sensitive and choose arrival times from
a discrete set simultaneously. A self-interested agent
maximizes her net utility (i.e., the difference between

her value of the service and the congestion cost she
incurs) by arriving with as few other agents as pos-
sible. Each agent consequently takes into account the
actions of the others when deciding when to show up.
We first characterize possible Nash equilibria. In par-
ticular, we examine how numerous and complicated
equilibria are. Implementing a Nash equilibrium
requires that agents “coordinate” their actions either
explicitly or implicitly: Each agent must know which
Nash equilibrium is being played (assuming there is
more than one) and what action she is supposed to
take under the chosen equilibrium. Such coordination
may be difficult if the set of Nash equilibria is large
or the chosen equilibrium is complicated.
We next consider whether any of the possible Nash

equilibria can be linked to standard arrival processes
assumed in the literature. We are most interested in
this point. The management of service facilities is gen-
erally predicated on customers arriving according to
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a well-understood process. For example, one might
assume that the time between arrivals is given by a
renewal process. But is there any reason to believe
that customers strategically trying to minimize their
individual delay costs should be so obliging? The
arrival process generated by strategic customers may
bear no relation to standard assumptions, calling into
question the recommendations of models built on
customers arriving according to a convenient pro-
cess. Fortunately, we have an encouraging result: In
our model, there exists a simple, plausible equilib-
rium in which competing customers generate Poisson
arrivals. Thus, customers arrive according to a com-
monly assumed stochastic process as a consequence of
strategic interaction.
Below, we show that many pure-strategy Nash

equilibria exist. These equilibria are all independent
of the agents’ delay cost functions. In any pure-
strategy Nash equilibrium, customers spread out as
much as possible; the number of arrivals to any two
periods differs by at most one. For symmetric prob-
lems, pure-strategy Nash equilibria minimize total
system delay costs subject to a mild regularity con-
dition. Self-interested agents thus implement socially
efficient outcomes.
While a pure-strategy Nash equilibrium is attrac-

tive, its implementation is cumbersome. All agents
must agree on the specific equilibrium being played.
Such coordination is possible if agents choose sequen-
tially and choices are observable, i.e., an appointment
system results in a Stackelberg equilibrium which
is identical to some pure-strategy Nash equilibrium.
However, such an arrangement may not be possi-
ble. We therefore consider mixed-strategy Nash equi-
libria. Again, there is a large number of outcomes,
but equilibria may now depend on agents’ delay cost
functions. We show that there is a unique symmetric
equilibrium. Further, this equilibrium is independent
of the number of agents and their individual delay
cost functions. In this equilibrium, each agent puts
equal probability on every arrival time and, thus, the
number of arrivals in any time period has a bino-
mial distribution. The distribution of arrivals per time
period is stationary over the horizon and converges
to a Poisson distribution as the number of agents and
time periods gets large. In the limit, the distribution
of arrivals across periods is independent. Hence, the

arrival pattern converges to a discrete-time Poisson
process as the number of agents and time periods gets
large.
In §2, we provide a brief literature review. In §3, we

present the model and develop results assuming that
agents have preferences independent of when they
receive service and that agents must be served in the
period in which they arrive. In §4, we consider time-
varying preferences. In §5, we suppose that agents
may have to wait one or more periods to be served.
§6 concludes.

2. Related Literature
Much of economics is based on the observation that,
all else being equal, people prefer the same goods at
a lower cost. As most find waiting inconvenient, a
natural generalization is to assume that people prefer
to avoid congestion and the concomitant delay. How
rational agents respond to expected delays is con-
sequently an active area of study. Customers have
been assumed to be sophisticated in whether they join
or balk from a queue (Naor 1969, Yechiali 1971), in
how they submit work (Dewan and Mendelson 1990,
Stidham 1992), and in how they declare their pri-
ority class (Mendelson 1985, Mendelson and Whang
1990, Van Mieghem 2000). However, all of this work
assumes that customers arrive according to a renewal
process. Hassin and Haviv (2003) provide an excellent
review of this literature.
Economists have considered games in which pay-

offs depend on the order of arrivals or departures. For
example, in a small market, multiple firms may not
be able to cover fixed costs although one firm alone
could be profitable. A war of attrition results, and
the analysis focuses on when firms exit the market.
See Fudenberg and Tirole (1986). Alternatively, a firm
might benefit from being the first to enter a market.
Fudenberg and Tirole (1985) present an example of
such a preemption game. See Park and Smith (2003)
for a general formulation of these rank-order timing
games and additional references. In our model, agents
care only about the congestion they encounter, not the
order in which they arrive.
In Vickrey (1969), commuters use a bottleneck

stretch of road. A queue forms when the arrival
rate is above the road’s capacity. He examines the
arrival rate to the bottleneck and the optimality of toll
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schemes. His commuters balance the cost of leaving
early or arriving late but are not sensitive to conges-
tion while using the road. In our model, an agent’s
costs increase with congestion. All agents prefer to be
the only one at the service facility.
In Ostrovsky and Schwarz (2003), all agents must

arrive for processing to start, but all find waiting for
the last arrival costly. Coordination requires simul-
taneous arrivals, but independent agents may have
an incentive to be late. In our model, coordination
requires agents to spread out their arrival times and
failure occurs when too many arrive at once.
Most relevant to our work is Glazer and Hassin

(1983). A random number of symmetric customers
with linear delay costs seek service over some hori-
zon. They may queue before the service facility opens.
Service times are exponentially distributed. Working
in continuous time, they derive equations that a sym-
metric Nash equilibrium must satisfy. The arrival rate
is generally not constant over the horizon. After an
early spike, expected arrivals taper off. The equilib-
rium depends on system parameters. We work in dis-
crete time which allows us to ignore details of the
service process and accommodate asymmetric agents.
Also, Glazer and Hassin (1983) focus on transient
behavior over a fixed time horizon. We are inter-
ested in limiting (stationary) results as the horizon
and number of customers gets large.
Rapoport et al. (2003) and Seale et al. (2003) calcu-

late the symmetric mixed-strategy Nash equilibrium
for a particular discrete-time version of Glazer and
Hassin (1983) and compare the theoretical equilib-
rium with how experimental subjects actually choose
arrival times. They find support for mixed-strategy
play at an aggregate level. In our model, the unique
symmetric equilibrium involves mixed strategies.

3. Model Basics and Equilibria with
Ample Capacity

We consider a finite horizon divided into T ≥ 2 equal-
sized time periods or “bins” (we will use the terms
interchangeably). Without loss of generality, fix the
length of a time period at one. There areM ≥ 2 agents
or customers who seek service over the horizon by
choosing an arrival bin. Let �t = 0� � � � �M be the num-
ber of customers arriving to bin t, and A�t	=∑t

i=1�i

be the associated cumulative arrival process. Let �=

M/T be the average number of customers per bin.
We adopt the convention that all customers arrive at
the start of the time period. For now we assume that
the system has ample capacity, i.e., there is sufficient
resources to serve allM customers in one time period.
A customer arriving in time period t is therefore cer-
tain to receive service in that time period. No cus-
tomers remain in the system from period t to period
t + 1� so the only customers in the system during
period t are the �t who arrive in that period. We relax
this assumption in §5.
Customer m values service at Vm > 0 regardless of

the period in which she is served. All customers pre-
fer to avoid congestion. Let Wm��t	 denote agent m’s
expected disutility of being one of �t arrivals in
period t. (�t includes agent m.) Agent m’s objective
is to maximize her net utility Um��t	 = Vm − Wm��t	
through her choice of arrival bin t. Equivalently,
agent m seeks to minimize her expected congestion or
delay cost Wm��t	.
This formulation embeds an important assumption.

Vm is independent of t, so agent m’s net utility
depends on the time bin only through the number of
arrivals �t . Thus, we are assuming a nonurgent ser-
vice for which agents care only about the wait they
encounter and not about the exact timing of service.
We consider time-varying preferences in §4.
We allow for significant flexibility in modeling the

expected delay cost Wm��t	; all we require is that
Wm��t	 is strictly increasing in �t , the number of
arrivals to bin t. We will emphasize two basic forms
of Wm depending on whether the agents are served
sequentially or in a batch. Thus, Wm captures both
agent preferences and the physics of how the ser-
vice operates. In the sequential-service case, agent m
incurs a cost Cm�k	 ≥ 0 for k = 1� � � � ��t if she is the
kth customer to be served for some function Cm. On
arrival, the agents are randomly ordered such that
each agent has an equal probability of being in any
position in line. Given �t ≥ 1, agent m’s expected
delay costs are

Wm��t	=
1
�t

�t∑
k=1

Cm�k	� (1)

We assume that Cm�k	 increases sufficiently fast so
that Wm��t	 is strictly increasing.1

1 This requires that Cm��+ 1	 > �−1∑�
k=1 Cm�k	 for �= 1� � � � �M − 1.
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On occasion, we will consider two special cases
of (1). First, suppose that delay costs are linear.
Cm�k	= �m × �k− 1	 for �m > 0. We then have

Wm��t	=
�m

�t

�t∑
k=1

�k− 1	= �m

�t − 1
2

� (2)

Alternatively, delay costs can increase at an increasing
rate. Suppose Cm�k	= �k−1

m −1 for �m > 1. The resulting
expected delay costs are

Wm��t	=
1
�t

�t∑
k=1

�k−1
m − 1= �

�t
m − 1

�t��m − 1	 − 1� (3)

In a batch setting, all arrivals are served simultane-
ously but the quality of service falls with the number
of agents being served

Wm��t	= �m − �m

�t

for �m > 0� (4)

If m’s delay cost is (2), the agent only cares about
the average number arrivals to bin t and, thus,
behaves as if she were risk neutral. In contrast, (3)
is convex, making the agent’s net utility concave in
arrivals.2 Hence, such an agent behaves as if she
were risk averse and prefers to avoid variability. The
reverse holds in a batch setting. The agent’s delay cost
is concave and her net utility is convex. With batch
costs, an agent behaves as if she were risk seeking
and prefers variability in the number of arrivals. We
exploit these properties below.
Agents choose arrival times simultaneously and

irrevocably. Agent m cannot balk or condition her
choice on the decisions of others or on realized queue
lengths. For convenience, we assume agent m knows
the number of agentsM , the number of arrival bins T ,
and the delay cost functions of all agents. Below we
note instances in which common knowledge of all
system parameters is not required.

3.1. Pure-Strategy Nash Equilibria
Agent m would like to seek service in the bin that
would maximize her expected net benefit, Um��t	. Of
course, that benefit depends on the actions of the

2 Convexity (concavity) is overly restrictive. Wm is defined for nat-
ural numbers and need not be continuous. We use convexity (con-
cavity) as short hand for increasing (decreasing) first differences,
i.e., Wm��+ 1	−Wm��	≥ �≤�Wm��	−Wm��− 1	.

other agents. We must look for equilibrium arrival
patterns. For now we restrict our attention to pure-
strategy Nash equilibria in which each agent reports
deterministically to one bin. Defining such a Nash
equilibrium requires some notation. Let ej denote the
jth 1 × T unit vector, and let �m denote agent m’s
strategy: �m = et if agent m reports to bin t. Let �=
��1� � � � ��M	 be a strategy profile for the M agents,
and let �−m = ��1� � � � ��m−1��m+1� � � � ��M	. Define
���	 as the arrival vector that results from �:

���	= ��1��	� � � � ��T ��		=
M∑
j=1

�j

and ���−m	 as the arrival vector of all agents but m:

���−m	= ��1��−m	� � � � ��T ��−m		=
M∑

j �=m

�j �

Finally, let Bm��	 denote the bin chosen by agent m

under strategy profile �. Bm��	= t if �m = et . We can
now state that �∗ is a pure-strategy Nash equilibrium
if the following holds for m= 1� � � � �M :

Vm −Wm��Bm��∗	��
∗		

≥ Vm −Wm��t��
∗
−m	+ 1	 for t = 1� � � � � T �

In words, a pure-strategy Nash equilibrium requires
that holding the proposed actions of others fixed, an
agent cannot improve her payoff by unilaterally mov-
ing to a different bin.

Theorem 1. A strategy profile �∗ is a pure-strategy
Nash equilibrium if and only if �t��

∗	 − �s��
∗	 ≤ 1 for

all s� t = 1� � � � � T .

Proof. Suppose that �∗ is a Nash equilibrium and
that Bm��∗	= t. Consider agent m’s incentive to devi-
ate. As Wm is strictly increasing, she has no inter-
est in moving to any bin s such that �s��

∗	≥ �t��
∗	.

Suppose there is a bin s′ such that �t��
∗	 > �s′��

∗	.
Deviating is profitable if �t��

∗	 > �s′��
∗
−m	 + 1 =

�s′��
∗	+ 1. Thus, if �∗ is an equilibrium, it must be

the case that �t��
∗	−�s��

∗	≤ 1 for all s� t = 1� � � � � T .
Now suppose �t��

∗	 − �s��
∗	 ≤ 1 for all s� t =

1� � � � � T and Bm��∗	= t. If she were to move to bin s,
the number of arrivals to s would be �s��

∗
−m	 + 1 =

�s��
∗	+ 1≥ �t��

∗	. Hence, she has no reason to uni-
laterally deviate from t, and �∗ is an equilibrium. �



Lariviere and Van Mieghem: How Competition Can Generate Poisson Arrivals
Manufacturing & Service Operations Management 6(1), pp. 23–40, © 2004 INFORMS 27

In a pure-strategy Nash equilibrium each bin must
have a “Yogi-Berra” property: In equilibrium, no one
goes there anymore; it’s too crowded. Each agent is
content to report to her assigned bin because, holding
everyone else’s decision constant, she cannot find one
sufficiently less congested. Compared to her current
assignment every other bin is either as crowded, more
crowded, or will become as crowded if she were to
deviate by moving to it. Much as drops of water in a
glass settle at a uniform level to minimize their poten-
tial energy, agents here spread out as close to uni-
formly as possible to minimize their expected delay.
Deviations from a uniform level occur only because
agents are not infinitely divisible.
Theorem 1 requires only that delay cost functions

are strictly increasing. Although it is convenient to
assume delay cost functions are commonly known,
it is unnecessary when implementing a pure-strategy
Nash equilibrium. A pure-strategy Nash equilibrium
for a given set of strictly increasing delay cost func-
tions is an equilibrium for any set of strictly increasing
delay cost functions.
To construct a pure-strategy Nash equilibrium, let

�x� denote the smallest integer less than or equal
to x. Let � = ��� and � = M − �T . Clearly, � =
0 if � = � and 0 < � < T if � > �. If one assigns
�T customers such that each bin has � agents, �

agents remain. A Nash equilibrium �∗
1 can be formed

by assigning each of these � agents to a distinct
bin. As all agents are assigned an arrival time and
each agent is assigned to only one bin, the vector
is feasible. As the maximum difference in arrivals is
one, �∗

1 is a pure-strategy Nash equilibrium. An arbi-
trary pure-strategy Nash equilibrium thus has � ≥ 0
“crowded” bins with �+ 1 arrivals and T − � > 0
“uncrowded” bins with only � arrivals, i.e., there is
at least one bin with just � arrivals.
We now consider how many Nash equilbria exist

and whether Nash equilibria can be socially efficient
in the sense of minimizing total delay costs. To speak
to the first point, it is easy to see that because T ≥ 2
and M ≥ 2, a Nash equilibrium �∗

1 is not unique. If
one merely interchanges an agent assigned to bin t

with an agent assigned to bin s �= t, one has created a
new equilibrium �∗

2. Indeed, the set of pure-strategy
Nash equilibria can be quite large.

Corollary 1. Let � denote the set of all possible pure-
strategy Nash equilibria. Let �X� denote the cardinality of
the set X.

� �� = M !
�!�T−�	��+ 1	!�

(
T

�

)
�

Proof. See the Appendix. �

Table 1 gives the number of pure-strategy Nash
equilibria for sample values of M and T . For even
modest-sized problems, there are thousands—if not
millions—of equilibria to choose from.
To say something about the social optimality of

a pure-strategy Nash equilibrium, we must consider
symmetric agents. Suppose all agents have the same
delay cost function W��t	. If �t agents are assigned
to bin t, the resulting social congestion costs for that
bin are S��t	 = �tW��t	. If S��t	 is well behaved,
pure-strategy Nash equilibria are socially efficient in
the sense of minimizing total delay costs.

Theorem 2. If S��t	 is weakly convex, the minimum
social cost is S = �S��+ 1	+ �T − �	S��	 and any pure-
strategy Nash equilibrium �∗ achieves cost S. If S��t	 is
strictly convex, only implementing a pure-strategy Nash
equilibrium can achieve cost S.

Proof. Because any pure-strategy Nash equilib-
rium must have � ≥ 0 bins with � + 1 arrivals and
T − � > 0 bins with only � arrivals, all pure-strategy
equilibria must have social cost S. Now suppose there
exists an arrival vector �′ =  �′

1� � � � ��
′
T ! that min-

imizes costs but that cannot be implemented by a
pure-strategy Nash equilibrium (i.e., ���∗	 �= �′ for
all �∗ ∈ �). Because �′ is not the result of a pure-
strategy Nash equilibrium, it must be that �′

t > �′
s + 1

Table 1 How the Number of Equlibria Varies
with M and T

Number of Pure-Strategy
M T Nash Equilibria

5 10 30,240
10 10 3,628,800
15 10 1.03E+13
20 10 2.38E+15

10 20 6.70E+11
20 20 2.43E+18
30 20 4.79E+34
40 20 7.78E+41
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for some s and t. However, because S��t	 is weakly
convex,

S��′
t	+ S��′

s	≥ S��′
t − 1	+ S��′

s + 1	� (5)

Thus, costs are weakly lowered by transferring agents
from t to s until �′

t − �′
s ≤ 1 for all s and t. Such

an arrival vector could then be implemented by a
pure-strategy Nash equilibrium. Note that if (5) holds
as a strict inequality for all �′

t and �′
s , minimum

cost can only be achieved by a pure-strategy Nash
equilibrium. �

Just as no agent can single-handedly lower her con-
gestion cost under a pure-strategy Nash equilibrium,
there is no way a central planner can lower system
costs in a symmetric problem. Self-interested agents
will choose a socially efficient outcome that minimizes
total waiting costs. The required condition is fairly
weak. It is obviously satisfied by any weakly convex
delay cost function. Some concave cost functions such
as (4) also satisfy it.
Pure-strategy Nash equilibria thus have some

attractive properties, but with such a large number of
equilibria, implementation is potentially an issue. The
following offers a possible means for selecting one.

Theorem 3. Suppose agents select bins sequentially.
Agent m observes all prior arrivals before choosing a bin. If
agent m is indifferent among bins, assume she chooses ran-
domly among bins with equal probability. This procedure
leads to an element of �.

Proof. For the last agent, there must be at least one
bin with � or fewer agents. She prefers this to any bin
with �+ 1 or more agents. Similarly, no earlier agent
will choose a bin already occupied by � + 1 agents.
Thus, the final arrangement of agents will have bins
with either � or � + 1 agents and must be a pure-
strategy Nash equilibrium by Theorem 1. �

Customers benefit from an appointment system
that enforces sequential choice with visibility. An
appointment scheme results in a Stackelberg game,
the outcome of which is also a pure-strategy Nash
equilibrium. The agents again do not need to know
everyone’s delay cost function, but they do need to
know the total number of agents to know when a
bin is full.3 In addition, some assumption about how

3We are assuming that agents are signing up on an open list and
are determining for themselves when a bin is too crowded to join.

indifferent agents choose is required. If the initial
sequencing of agents is random, the assumption that
indifferent agents randomize implies that any element
of � is a feasible outcome. This does not hold for
other behavioral assumptions. Suppose instead that
an agent choosing among bins having � occupants
always selects the earliest bin. Then, ifM > T , the first
��T −�	 agents always opt to arrive in the last �T −�	
time periods because they anticipate that the final �
agents will choose to arrive in one of the first � peri-
ods. Hence, the first � bins will always be the crowded
bins with �+ 1 occupants.
3.2. Mixed-Strategy Nash Equilibria
Sequential choice requires less upfront coordination
and information than picking an arbitrary pure-
strategy Nash equilibrium, but it may not always
be feasible. Coordination necessitates sequencing the
agents and taking appointments. In addition, the
agents must know the total number of customers
attempting to use the system. Consequently, a mixed-
strategy Nash equilibrium may be a more plausible
outcome. Here agents randomize over their possible
actions, i.e., which bin to select, so an agent’s
strategy is a probability distribution over the set
of bins. We now have �m = �"1

m� � � � �"T
m	 for "t

m ≥ 0
and

∑T
t=1"

t
m = 1. Note that the pure strategies

considered above are subsumed in this formulation
by considering degenerate distributions (i.e., by
allowing �m to be a unit vector). The set of mixed-
strategy Nash equilibria is thus at least as large as the
set of pure-strategy Nash equilibria.
The number of arrivals to bin t� �t��	, is now a ran-

dom variable that depends on the strategy profile �.
Let �t��−m	 denote the number of arrivals to t exclud-
ing agent m. �t��	 takes values from zero to M while
�t��−m	 takes values from zero to M − 1. If agent m’s
realized bin choice is t, her expected delay costs are
Ɛ�Wm��t��−m	 + 1	�. We can therefore define �m��	,
m’s expected delay cost when all agents follow mixed
strategies �, as

�m��	=
T∑

t=1
"t

mƐ�Wm��t��−m	+ 1	��

Alternatively, a central coordinator can control the appointment
book. Now only the coordinator would need to know the total
number of agents, but each agent must be told which bins are still
open when she chooses.
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We say that a random variable X is stochastically
larger than a random variable Y if Pr�X ≤ $	≤ Pr�Y ≤
$	 for all $.4 X is stochastically larger than Y if and
only if Ɛ�%�X	�≥ Ɛ�%�Y 	� for all weakly increasing %

such that the expectation is defined. If X is stochas-
tically larger than Y and Ɛ�%�X	� = Ɛ�%�Y 	� for some
strictly increasing %, then X and Y have the same dis-
tribution (Shaked and Shanthikumar 1994). The fol-
lowing lemma is then an immediate consequence of
Wm being strictly increasing.

Lemma 1. Suppose �t��−m	 is stochastically larger
than �s��−m	. Then, agent m weakly prefers arriving in
bin s. If agent m is indifferent between bins s and t,
�t��−m	 and �s��−m	 have the same distribution.

For �∗ to be a mixed-strategy Nash equilibrium, we
must have for m= 1� � � � �M ,

Vm −�m��∗	≥ Vm − Ɛ�Wm��t��
∗
−m	+ 1	�
for t = 1� � � � � T (6)

(see Fudenberg and Tirole 1996). This definition re-
quires that an agent must weakly prefer randomizing
over a set of actions to going to any one bin with
certainty. Thus, she must be indifferent among any
actions on which she puts positive probability.5

We now present an example that illustrates the
nature of a mixed-strategy Nash equilibrium. It
demonstrates that unlike a pure-strategy Nash equi-
librium, a mixed-strategy Nash equilibrium may
depend on the specific functions that characterize the
agents’ delay costs.
Example 1. Suppose T > 2, and �= �≥ 2. (The lat-

ter implies that � is an integer so � = 0.) Four agents
are selected to randomize, placing equal weight on
bins 1 and 2. For each bin t > 2, � agents are selected
and deterministically report to bin t. If agents remain,
�−2 agents deterministically report to bin 1 and �−2
report to bin 2. Note that Ɛ��t��	� = � for all t. We
claim this forms a mixed-strategy Nash equilibrium
if all agents have expected congestion costs as given
in (4) with �m = �, i.e., W��	= �− �/�.

4 Note that we define the ordering in a weak sense.
5 To see this classical result, multiply both sides of (6) by "t

m and
sum over t.

To establish this we need to verify that three types
of agents are willing to follow the proposed equilib-
rium. Type 1 agents report deterministically to bins 1
or 2. Type 2 agents randomize between 1 and 2.
Type 3 agents report deterministically to some bin
t > 2. Let mi denote a representative agent of each
type for i = 1�2�3. First, consider a type 1 agent
reporting deterministically to bin j = 1 or 2. Such
an agent has no interest in moving to bin 3 − j by
Lemma 1. Next, because �t��−m1

	 is stochastically
smaller than �t��−m2

	 for all t, a type 2 agent has
weakly higher delay costs from following the pro-
posed equilibrium than a type 1 agent. Hence, if
type 2 agents follow the equilibrium, so will type 1
agents.
For type 2 agents, Ɛ��t��−m2

	�= �−1/2 for t = 1�2.
The agent prefers the proposed equilibrium to hav-
ing �t��−m2

	= �−1/2 deterministically (because W is
concave). Thus, she prefers participating in the equi-
librium to deviating to t > 2 for which �t��−m2

	= �.
Finally, a type 3 agent’s cost from following

the strategy is W��	 with certainty. Additionally,
�t��−m3

	 − �� − 2	 has a binomial distribution with
parameters �4�1/2	. Therefore, if she deviates to bin 1
or 2, her costs increase by

W��− 1	+ 4W��	+ 6W��+ 1	+ 4W��+ 2	+W��+ 3	
16

−W��	

= ��−9− 2�+ 6�2+ 2�3	/2��− 1	���+ 1	��+ 2	��+ 3	�

which is positive because �≥ 2. Hence, type 3 agents
also follow the equilibrium.
While all pure-strategy Nash equilibria are inde-

pendent of the assumed delay cost functions, this
mixed-strategy Nash equilibrium depends on them in
a crucial way. Agents are assumed to have a concave
cost function and so behave in a risk-seeking fashion.
Suppose, on the other hand, that a type 2 agent has a
cost function as given in (3) with � = 10, i.e., Wm2

��	=
�10� − 1	/�9�	− 1. It is possible to show that such an
agent always prefers to deviate to bin t ≥ 3 for any
� > 2. Thus, the feasibility of an equilibrium depends
critically on the delay cost function. In this case, the
equilibrium can collapse if agents have convex costs
and so act in a risk-averse manner. Given this obser-
vation, it is useful to consider whether any mixed-
strategy Nash equilibrium can be independent of the
agents’ delay costs.
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Theorem 4. A Nash equilibrium �∗ is independent of
all agents’ particular delay cost functions if and only if for
m= 1� � � � �M :

(1) �s��
∗
−m	 is stochastically larger than �t��

∗
−m	 for

all s� t ∈  1� � � � � T ! such that "t
m > 0 and "s

m = 0.
(2) For all t�u ∈  1� � � � � T ! such that "t

m > 0 and
"u

m > 0,

Pr��t��
∗
−m	= $	= Pr��u��

∗
−m	= $	 (7)

for $= 0� � � � �M − 1.
Proof. See the Appendix. �

The first condition of the theorem asserts that for
a mixed-strategy Nash equilibrium to be independent
of delay costs, an agent must randomize over what
she perceives as less-crowded bins. However, the bins
cannot be too different. One can show that if �∗ is a
mixed-strategy Nash equilibrium for anyW� we must
have Ɛ��t��

∗	� − Ɛ��s��
∗	� ≤ 1 for all s� t = 1� � � � � T .

Thus, a condition similar to that of Theorem 1 must
hold in expectation. The second condition asserts that
agents must view bins over which they randomize as
identical. The following alters the previous example
to be independent of delay cost functions.
Example 2. Modify Example 1 so that only two

agents randomize between bins 1 and 2 while � − 1
agents report to those bins deterministically. Define
types 1, 2, and 3 as before. From the perspective of a
type 1 or 2, the distributions of �1��∗

−m	 and �2��
∗
−m	

are identical, and the maximum value �t��
∗
−m	 takes

for t = 1�2 is � while �s��
∗
−m	= � for all s > 2. For a

type 3 agent reporting to bin t > 2, �t��
∗
−m	 = �− 1,

which is the smallest possible value of �s��
∗
−m	 for

s = 1�2. Hence, this is an equilibrium for any W .
The above example shows that even if a mixed-

strategy Nash equilibrium is independent of delay
cost functions, it is not necessarily easier to imple-
ment than a pure-strategy Nash equilibrium. In this
case, we must divide the agents into three groups,
and within groups 1 and 3 we must assign individual
agents to particular bins. It would be much simpler
to have a symmetric Nash equilibrium that is inde-
pendent of the agents’ congestion cost function. In a
symmetric Nash equilibrium, �∗

m = �∗ for all m, so
�∗ = ��∗� � � � ��∗	.

Lemma 2. In a symmetric Nash equilibrium �∗, all ele-
ments of �∗ must be strictly positive.

Proof. If "t∗ = 0 for some t, any agent could devi-
ate to t and have no delay. �

We now define �U = �1/T � � � � �1/T 	 and

�U = ��U � � � � ��U 	�

It is straightforward to show that �U is a mixed-
strategy Nash equilibrium.

Theorem 5. �U is the only symmetric Nash equilib-
rium. It is independent of the agents’ delay cost functions.

Proof. Suppose there is a symmetric Nash equilib-
rium �∗ distinct from �U . It must have "t∗ > "s∗ for
some bins t and s. Note that �t��

∗
−m	��s��

∗
−m	� has

a binomial distribution with parameters M − 1 and
"t∗ �"s∗ �. �t��

∗
−m	 is then stochastically larger than

�s��
∗
−m	 for all m. However, because �∗ is a mixed-

strategy Nash equilibrium and "s∗ > 0 (by Lemma 2),
all agents must be indifferent between s and t. Hence,
�t��

∗
−m	 and �s��

∗
−m	 must have the same distri-

bution by Lemma 1, contradicting "t∗ > "s∗ . It is
easy to verify that �U satisfies the requirements of
Theorem 4. �

The equilibrium �U is an attractive alternative to
other Nash equilibria because it requires minimal
coordination. It is symmetric, independent of delay
cost functions, and even independent of the number
of agents. Thus, instead of full information, one needs
to only assume that each agent knows just the num-
ber of bins (i.e., her possible actions).
In some sense, �U is an obvious outcome. If

an agent is completely uninformed—unsure of how
many others will seek service or of their delay costs—
how could she do better than uniformly picking
among the bins? It is important to recognize that
such reasoning depends on strategically anticipating
how others act. Uniformly randomizing only makes
sense if others do so as well. If one conjectures that
other agents are “early birds” or are prone to pro-
crastination, uniformly picking an arrival time is no
longer optimal. Thus, the arrival pattern generated
by �U depends on the strategic interaction between
the agents.
It is worth considering how societal costs under �U

differ from costs under an arbitrary pure-strategy
Nash equilibrium. If all agents have linear delay cost
functions, they would be indifferent between imple-
menting �U and some pure-strategy Nash equilib-
rium. There would be no reason to incur the cost
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of running an appointment system (assuming the
operating costs of the service facility are independent
of variation in the arrival rate). On the other hand, if
all agents have convex delay cost functions, random-
ization makes them worse off. Now an appointment
system may be worthwhile if it is sufficiently cheap.
This is especially true if facility operating costs are
increasing in the variation of arrivals.
We now turn to our primary interest: How do

arrivals under �U relate to arrival processes com-
monly assumed in the literature? We need the follow-
ing definition.
Definition. The discrete-time arrival process

 A�t	 ' t ∈  1�2� � � � � T !!, where A�t	 = ∑t
i=1�i, is a

discrete-time Poisson process with rate � if and only
if its per-period arrivals �i are independent and
identically Poisson distributed random variables with
mean �.
Clearly, as the sum of independent and identically

distributed Poisson random variables, the cumulative
number of arrivals A�t	 for any t is a Poisson
random variable with parameter �t: for any integer
k, Pr�A�t	= k	= ��t	ke−�t/k!. An obvious way of cre-
ating a discrete-time Poisson process is to observe
a standard continuous-time Poisson process at fixed
intervals and map arrivals between observations to
the start of the arrival interval. What is less obvious is
how to create a continuous-time Poisson process from
a discrete version.

Lemma 3. Let  A�t	 ' t ∈  1�2� � � � � T !! be a discrete-
time Poisson process with rate �. Construct a continuous-
time process  �A�t	 ' t ∈ �1�T + 1�! by assigning the kth
arrival to bin t an arrival time of t+utk� where the random
variables utk are independent and uniformly distributed on
�0�1	.  �A�t	 ' t ∈ �1�T + 1�! is a continuous-time Poisson
process with rate �.

Proof. See the Appendix. �

Under �U , arrivals to bin t have a binomial distri-
bution with mean �, and the resulting arrival pattern
has some similarity to a Poisson process. Its incre-
ments are stationary. If one is told that over a subset
of bins there have been k arrivals, then those arrivals
are uniformly distributed across the bins. Where the
similarity fails is independence. The joint distribution
of arrivals is multinomial, and arrivals to distinct bins
are not independent. However, we can relax this as
the number of agents and time periods gets large.

Theorem 6. Consider a sequence of systems �Mn�Tn	

indexed by n such that for all n, Mn and Tn are integers,
Mn/Tn = �, Mn+1 > Mn, and Mn →�. Let �U

n denote the
Nash equilibrium in system n in which all Mn agents play
 1/Tn� � � � �1/Tn!.

(1) The associated cumulative arrival process
 An�t	 ' t ∈  1�2� � � � � Tn!! in system n converges in
distribution to a discrete-time Poisson process as n→�.

(2) Suppose that for all n≥ n̂ one observes that An�t̂	=�A < Mn̂ − 1 for some t̂ < Tn̂. Let *n be the number of
periods until the next arrival, i.e., �n

t̂+j
��U

n 	= 0 for j = 1,
� � � � *n − 1 and �n

t̂+*n
��U

n 	 > 0. Then, limn→� P�*n ≤ k �
An�t̂	= �A	= 1− e−k� for k= 1�2� � � � �

Proof. See the Appendix. �

Thus, agents under Nash equilibrium �U generate
an arrival pattern that approaches a discrete-time
Poisson process, i.e., arrivals in disjoint intervals
are independent and identically distributed Poisson
random variables. Further, the time between bins with
positive arrivals goes to a discrete version of the expo-
nential distribution. Hence, insights on managing
service facilities generated from models assuming
renewal interarrivals remain valid even if customers
strategically choose when to seek service. If the num-
ber of customers and arrival bins is large, the arrival
pattern that results from the most plausible Nash
equilibrium is well approximated by a discrete-time
Poisson process.6

We emphasize two points. First, Theorem 6 does
not depend on the ample capacity assumption. As
long as �U

n is a Nash equilibrium for all systems
in the sequence, arrivals will converge to a discrete-
time Poisson process. We exploit this below. Second,
the theorem does depend on the strategic interactions
between customers. A given agent chooses an arrival
point in such a way that total arrivals form a Poisson
process because of how the other agents play. Not
all mixed-strategy Nash equilibria lead to Poisson
arrivals. Consider Example 2. If one scales up that
example, the equilibrium continues to hold but does

6 Theorem 6 can be seen as extending the well-known result on
the convergence of a binomial to a Poisson random variable to a
multinomial random variable and a Poisson process. Feller (1957)
presents a problem on approximating a multinomial distribution
by independent Poisson random variables, but he does not relate
this to an arrival process.
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not lead to Poisson arrivals. Our result also goes
beyond the usual interpretation that a Poisson process
arises from having a large number of agents acting
independently. Yes, �U assumes that each agent picks
an arrival bin independently of all others, but the
same is true for any mixed-strategy Nash equilibrium
and not all mixed-strategy Nash equilibria lead to
Poisson arrivals. Not only does Nash equilibrium �U

lead to Poisson arrivals, but it also has a number of
other appealing properties. It is the only symmetric
equilibrium and is independent of the delay cost func-
tions and the number of agents. Hence, it requires
very little coordination to implement.
Theorem 6 is a limiting result, so we now consider

how quickly Pr��t��
U
n 	 = k	 converges to a Poisson

distribution for two arrival rates (� = 2 and � = 0�6).
We begin with T1 = 25 and then increase the number
of bins and agents holding � constant. Table 2 reports
the maximum absolute deviation in the probability
mass function (PMF) and the cumulative distribution
function (CDF) for each iteration. The lower arrival
rate converges more slowly but is well approximated
by a Poisson distribution; with 50 bins and 30 agents,
the maximum deviation is less than half a percent.
Table 3 examines how quickly the dependence

between bins diminishes. We assumeM = 400 and T =
200 (so �= 2) and examine the distribution of �t+1��U 	

conditional on observing bins 1 through t for t = 50,
100, and 150. As the conditional distribution depends
only on the cumulative number of arrivals, we con-
sider having arrivals run 10 and 20 agents above or
below their expected value. We report the maximum
absolute deviation between the PMF and the CDF of
�t+1��U 	 given A�t	 and a Poisson distribution with

Table 2 Unconditional Covergence to a
Poisson Distribution

Maximum Deviation

�M� T � PMF CDF

(50, 25) 0.00556 0.00552
(100, 50) 0.00274 0.00273
(200, 100) 0.00136 0.00136
(400, 200) 0.00068 0.00068

(15, 25) 0.00952 0.00673
(30, 50) 0.00468 0.00333
(60, 100) 0.00232 0.00165
(120, 200) 0.00116 0.00083

Table 3 Conditional Convergence to a Poisson Distribution

Maximum DeviationObserved Deviation from
Number of Bins Mean Arrivals PMF CDF

50 −20 0.01811 0.03616
50 −10 0.00960 0.01868
50 10 0.00908 0.01810
50 20 0.01834 0.03645

100 −20 0.02715 0.05423
100 −10 0.01417 0.02781
100 10 0.01365 0.02718
100 20 0.02847 0.05563

150 −20 0.05384 0.10802
150 −10 0.02741 0.05450
150 10 0.02745 0.05450
150 20 0.06331 0.11697

� = 2. Thus, if one observes 100 bins and sees total
arrivals of 210, we compare a Poisson distribution
with � = 2 to a binomial with parameters �400− 210	
and 1/�200− 100	. As one would expect, the fit is not
as close as for the unconditional distribution, but it
remains a reasonable approximation as long as one
does not know “too much.” When one has observed
150 bins (75% of the horizon) and the arrivals devi-
ate significantly from the average, the Poisson is not
a close fit (the maximum deviation is over 5%), but
when observing fewer bins and having smaller devia-
tions from the mean, the fit is much tighter.
To formalize the comparison between �t��

U
n 	 and a

Poisson random variable, we simulated 1,000 draws
of �t��

U
n 	 and tested whether one could reject the null

hypothesis that the resulting output was in fact gen-
erated by a Poisson random variable with the appro-
priate mean using a chi-square goodness of fit test
(Larsen and Marx 1986). For both examples in Table 2,
we could not reject this null hypothesis at a 95% confi-
dence level even for T1 = 25. Similar tests for the exam-
ples in Table 3 show that one cannot reject the Poisson
distribution (with � = 2) as generating arrivals even
when one has observed 20 arrivals above or below the
mean over 50 bins and 10 arrivals above or below the
mean over 100 bins. However, when one has observed
150 bins or when one has observed 20 arrivals above
or below the mean over 100 bins, one can reject the
hypothesis that arrivals are in fact Poisson.

3.3. Extensions
We briefly consider some extensions for which �U

continues to be an equilibrium.
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3.3.1. A Finite Waiting Room. We have thus far
assumed all agents arriving to bin t can enter and
be served. We now suppose that the system can only
hold K customers. Customers are randomly sequenced
upon arrival. The first K are admitted and served
according to the established sequence. Remaining cus-
tomers are denied service. If agent m is admitted, she
incurs a cost Cm�k	 if she is the kth person processed.
Assume Vm ≥ Cm�K	 so she values service if admit-
ted. If she is denied admission, she incurs a cost -m ≥
0 and does not receive Vm. Her expected net benefit
given �t arrivals is then

Um��t	=




�1/�t	
∑K

k=1�Vm −Cm�k	� if �t ≤K�

�K/�t	
(
�1/K	

∑K
k=1�Vm −Cm�k	�

)
− ���t −K	/�t	-m if �t > K�

This net benefit function models a system with a
finite waiting room and first in first out (FIFO) ser-
vice.7 An agent denied entry receives no net benefit
from service and may incur a loss. One could spec-
ify a similar cost function for the batch model of (4).
As Um��t	 decreases in �t , our analysis is unchanged,
and �U is still an equilibrium.

3.3.2. Exogenous Arrivals. Suppose that in each
bin there is a stochastic shock in addition to the arrival
of the agents. Let X = �X1� � � � �XT 	 denote the vector
of shocks. Such a shock could be additional customers
arriving from some other source. Agents choose their
bins before the shocks are observed. If the realized
number of agents is �t , then agent m’s congestion
costs are Wm��t + xt	, where xt is the realized value
of Xt . If the marginal distribution of the shocks is the
same for all bins, our analysis goes through. When
considering pure strategies, agents spread themselves
out as much as possible. For mixed strategies, �U is
again viable. Note that we require the marginal dis-
tributions to be the same but do not require indepen-
dence. Thus, we could have the arrivals in bins being
positively or negatively correlated.

7 Alternatively, assume that Vm ≥ Cm�K	 but Vm < Cm�K + 1	 for
all m and allow agents to balk after observing where they will be
sequenced among the �t arrivals. The system will then function as
if it had a finite waiting room. See Naor (1969).

3.3.3. Priorities. Suppose there are two classes of
agents. There are M1 type 1 agents and M2 type 2
agents. Let �i

t be the number of type i agents arriving
to bin t. Suppose m1 is a type 1 agent with congestion
costs Wm1

��1t ��
2
t 	. We assume that

.Wm1
��1t ��

2
t 	

.�1t
>

.Wm1
��1t ��

2
t 	

.�2t
= 0�

Let m2 be a type 2 agent with congestion costs
Wm2

��1t ��
2
t 	. We assume that

.Wm2
��1t ��

2
t 	

.�1t
≥ .Wm2

��1t ��
2
t 	

.�2t
> 0�

These cost functions are consistent with a priority
scheme that serves type 1 arrivals before type 2
arrivals. A type 1’s net utility is unaffected by the
arrival of a type 2 customer, but type 1 arrivals always
lower the utility of a type 2 customer.
First, consider type 1 agents. Because their waits are

independent of the actions of the second type, they
face the problem analyzed above. Suppose all type
1 agents play �U , and consider type 2 customers.
If type 2 agents also play �U , agent m2’s expected
costs from reporting to any bin t are Ɛ�Wm��1t ��

U
−m2

	,
�2t ��

U
−m2

	 + 1	�. Because her expected costs are the
same for all t, agent m2 is also willing to follow �U .

3.3.4. Multiple Servers. The waiting cost formu-
lation (1) implicitly assumes a single server. Suppose
instead that there are N ≥ 1 servers. For all m,
Cm�k	= 0 for all k ≤ N but Cm�k	 > 0 for k > N .
Wm is no longer strictly increasing so one can have
a pure-strategy Nash equilibrium �∗ with �t��

∗	−
�s��

∗	 > 1 (if N > � + 1). However, �U remains a
Nash equilibrium (although it is not the only sym-
metric equilibrium if N ≥M). Each agent perceives all
�t��

U
−m	 as being identically distributed and, hence, is

willing to randomize among them.

4. Time-Varying Preferences
We now allow the value of service to depend on the
period in which service is received. Divide the hori-
zon into two sets, H and L. Agents are symmetric
and value receiving service in a bin falling in H

at VH . Receiving service in L is valued at VL with
VH > VL. We impose no restrictions on the location of
the “sweet spot” of the horizon. The high-value bins
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may be at the start of the horizon (e.g., getting to the
gym before work), at the end of horizon (e.g., running
weekend errands after sleeping in), or in the middle
of the horizon (e.g., going to lunch neither too early
nor too late). Let TH = �H� denote the number of bins
in set H and TL = �L� = T − TH denote the number of
bins in set L. Let 2 = TH/T . Agents have an identical
linear cost function as given in (2), with �m = � for
all m.8 Hence,

Wm��	=W��	= 1
�

�∑
i=1

��k− 1	= �
�− 1
2

�

We consider symmetric Nash equilibria. Suppose
each agent puts probability on 1/TH on selecting a
bin in H while putting zero probability on any bin
in L. Let �H denote the resulting strategy profile.
Agent m’s expected pay off from reporting to bin
h ∈H is

VH − Ɛ�W��h��
H
−m	+ 1	� = VH − �

2
M − 1

TH

= VH − �

22

(
�− 1

T

)
�

If she deviates to bin l ∈ L, she receives VL with no
delay cost. �H is an equilibrium if

22
�

�VH −VL	+
1
T

≥ M

T
= �� (8)

Thus, Lemma 2 does not necessarily hold. However,
if a symmetric Nash equilibrium puts positive weight
on any bin in a set, it must put positive weight on all
bins in that set. Given the assumed cost function, bins
in the same set must all have the same expected num-
ber of arrivals. Consequently, in a symmetric Nash
equilibrium all agents must put weight "H on each
bin in H and "L on each bin in L. Additionally, "L > 0
if (8) fails, and

TH"H + TL"L = 1� (9)

Let �o denote the resulting strategy profile. For �o

to be a Nash equilibrium, agent m must be indifferent
between bins h ∈H and l ∈ L:

VH − Ɛ�W��h��
o
−m	+ 1	�= VL − Ɛ�W��l��

o
−m	+ 1	��

8 Having � vary over the horizon yields results similar to those
presented below.

Because Ɛ��h��
o
−m	� = "H�M − 1	 and Ɛ��l��

o
−m	� =

"L�M − 1	, we have

"H −"L =
2�VH −VL	

��M − 1	 �

Because VH > VL, a representative high value bin
will have a higher equilibrium arrival rate than a
representative low value bin, and the difference in
arrival rates is sufficiently high to dissipate any gains
from receiving service in bin H . Agents do not antic-
ipate a higher net utility in set H because those bins
are so congested. Using (9), we then have

"H�M�T 	= 1
T
+ 2�1−2	

��M − 1	 �VH −VL	�

"L�M�T 	= 1
T
− 22

��M − 1	 �VH −VL	�

For both "H and "L, the second term represents
the deviation from the uniform Nash equilibrium �U .
This deviation increases as the gain from being in the
sweet spot of the horizon (VH −VL) increases. It falls
if either crowding is likely (M is large) or waiting
is very costly (� is high). "H and "L both decrease
as 2 increases. High-value bins are inherently less
crowded as more bins are added to H ; low-value bins
must also become less crowded (despite there being
relatively fewer of them) to continue to attract agents.
These comparative statics have some managerial

implications. Suppose management responds to time-
varying arrivals by taking actions to increase VH (e.g.,
live piano music during busy hours) or lower conges-
tion costs in the favorable part of the horizon (e.g.,
adding capacity). These results suggest that difference
between arrival rates to the sets will increase, i.e.,
attempts to deal with time-varying arrivals may exac-
erbate the swings in arrivals.
The symmetric Nash equilibrium �o for the time-

dependent rewards case differs from the symmetric
Nash equilibrium �U for the stationary values case
in significant ways. �U is independent of any agent’s
cost function and the total number of agents. �o

depends on both. However, one can still examine the
limiting case as the number of bins gets large.

Theorem 7. Consider a sequence of system �Mn�Tn	

such that for all n, Mn and Tn are integers, Mn/Tn = �,
Mn+1 > Mn, and limn→� Mn = �. For each n, agents
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receive reward VH in set Hn and reward VL in set Ln, where
�Hn� = 2Tn and �Ln� = �1− 2	Tn. Assume (8) does not
hold for n = 1. Let �o

n denote the equilibrium in which
all Mn agents put probability "n

H = "H�Mn�Tn	 on each
bin in Hn and probability "n

L = "L�Mn�Tn	 on each bin
in Ln.

(1) For h ∈ Hn, limn→� Pr��h��
o
n	 = k	 = e−�H �k

H/k!,
where �H = �+ �2/�	�1−2	�VH −VL	.

(2) For l ∈ Ln, limn→� Pr��l��
o
n	 = k	 = e−�L�k

L/k!,
where �L = �− �2/�	2�VH −VL	.

(3) limn→� Pr��t��
o
n	 = j��s��

o
n	 = k	 = �e−�t�

j
t/j!	·

�e−�s�k
s /k!	, where �t equals �H if t ∈Hn and �L otherwise

and �s is defined similarly.

Proof. Substituting Tn =Mn/�, one has

"n
H = 1

Mn

(
�+ 2

��1− 1/Mn	
�1−2	�VH −VL	

)
�

"n
L = 1

Mn

(
�− 2

��1− 1/Mn	
2�VH −VL	

)
�

The rest of the proof is then similar to Theorem 6. �

Competing customers with nonstationary prefer-
ences generate a nonstationary discrete-time Poisson
process. Arrivals are higher in the high-value bins,
and competition eliminates any benefit from select-
ing a high-value bin; the sweet spot of the horizon
is sufficiently crowded that all agents are indifferent
between reporting to any bin in H and any bin in L.
To extend this approach to R > 2 levels of rewards,

assume that all agents put positive probability on R

sets of bins. The agents must then be indifferent
between the highest-value set and the next R − 1
highest-value sets. Together with the appropriate ana-
log of (9), this leads to a set of R linear equations in R

unknowns. Within each set, arrivals to a given bin will
have a binomial distribution, and higher-value bins
will have higher arrival rates.

5. Equilibria with Limited Capacity
We now return to the case of time-invariant prefer-
ences but suppose the system can only serve a lim-
ited number of customers in each period. Customers
unserved in period t carry over to period t + 1. Our
intention is to develop conditions such that �U is
again a Nash equilibrium so Theorem 6 continues to
hold and a discrete-time Poisson process is still a valid

approximation for the arrival process generated by
strategic customers.
Let It denote the inventory of customers in the sys-

tem at the start of period t prior to any new arrivals.
Let st denote the maximum number of customers that
can be served in period t. In each period, It agents
are carried over from period t − 1, �t new customers
arrive, st is realized, and min It + �t� st! customers
exit the system. The number of customers carried into
period t+ 1 is therefore

It+1 = �It +�t − st�
+�

where �x�+ =max x�0!. We assume st is a nonnegative
random variable that takes only integer values. The
draw in each period is identically and independently
distributed (IID). Ɛ�st�=8 > � and Pr�st < M	 > 0. The
latter implies limited capacity; there is some chance
that the system cannot process all arrivals. Restricting
st to be integer valued simplifies the state space. It is
always integer valued, and we only need to track the
number of agents in the system as opposed to the
work in the system. Possible examples of st include a
Poisson random variable with mean 8 or a Bernoulli
random variable with probability of success equal to
8. Note that if we take It as the state of the system, it
is not a Markov chain because the distribution of �t

depends on the entire history of the process.9

We assume a FIFO discipline. Arrivals in period t

must wait for the It customers already in the system.
If �t ≥ 2, these new arrivals are randomly ordered
and served in that sequence. Delay costs thus follow
a modified form of (1):

Wm��t� It	=
1
�t

�t∑
k=1

Cm�k+ It	�

Let I1 denote the initial population of customers.
I1 is a random variable such that Pr�I1 = k	= f1�k	 for
k = 0�1� � � � � The agents know the distribution of I1
but do not see its realized value until after they have
selected their arrival bin. Let IT+1 denote the num-
ber of customers who remain unserved at the end of
the horizon. We assume the system continues to oper-
ate until all customers have been served. Additional

9 The distribution of �t given the process history depends on how
many bins (T + 1 − t) and agents (M − A�t − 1	) remain. Hence,
�t�A�t− 1	� It	 is a Markov chain.
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service draws sT+1� sT+2� � � � are taken until all IT+1 cus-
tomers have exited the system where draw sT+k has
the same distribution as st for t = 1� � � � � T . For exam-
ple, if st = 1 with certainty, an additional IT+1 periods
of operation are required. Assuming continued oper-
ations assures the system will eventually clear and
removes the end of horizon effect. Together with the
FIFO service discipline, it assures that Wm��T � IT 	 =
Wm��t� It	 for t < T as long as ��T � IT 	= ��t� It	.
Agent m’s objective is again to maximize her net

benefit Um��t� It	 or equivalently to minimize her
expected delay cost Wm��t� It	. Agents still choose
their arrival bins simultaneously. The novel aspect
of imposing limited capacity is that an agent’s cost
now depends on both the number of agents that
arrive with her as well as the existing inventory of
agents. Because of the FIFO discipline, agent m’s costs
depend only on the number of agents that arrive
before her and with her, not on the number that come
after her.
Let �∗ be a candidate Nash equilibrium. �t��

∗
−m	

and It��
∗
−m	 respectively denote the number of

arrivals to bin t and the number of agents already
present in bin t under �∗ holding agent m out.
Because I1��

∗
−m	 = I1, �∗ also depends on the distri-

bution of I1. We suppress this dependence to simplify
the notation. For �∗ to be a Nash equilibrium, we
require for m= 1� � � � �M ,

Vm −�m��∗	 ≥ Vm − Ɛ�Wm��t��
∗
−m	+ 1� It��∗

−m		�

for t = 1� � � � � T � (10)

where

�m��∗	=
T∑

t=1
�t

mƐ�Wm��t��
∗
−m	+ 1� It��∗

−m		��

Lemma 4. Given M , T , and the distributions of st
and I1, a Nash equilibrium �∗ exists.

Proof. Every finite strategic form game has a
mixed-strategy Nash equilibrium. See Theorem 1.1 of
Fudenberg and Tirole (1996). �

The lemma does not guarantee that �U is a Nash
equilibrium. Indeed, it may not be. Suppose I1 ≡ 0
and that all agents follow �U . If agent m reports to
bin 1, she expects arrivals of �t��

U
−m	 but no inven-

tory of existing customers. In bin 2, she again expects

arrivals of �t��
U
−m	 but now Pr�I2 > 0	 > 0 (because

Pr�st < M	 > 0). She consequently strictly prefers the
first bin, and �U cannot be a Nash equilibrium. See
Glazer and Hassin (1983).
For�U to be an equilibrium, we need an alternative

initialization. Consider the following:

Ît+1 = �Ît + ��t − st�
+�

where st is as defined above and ��t has a binomial
distribution with parameters M − 1 and 1/T . Draws
of st and ��t are independent across periods. While
the inventory process for our system It does not form
a Markov chain, Ît does. Let �Pij = Pr�Ît+1 = j � Ît =
i	. We assume that Ît is ergodic and denote its sta-
tionary distribution by �= �:0�:1� � � �	.10 That is, :j =∑�

i=0 :i
�Pij . (See Ross 1983.) It turns out that : is the

initialization we need.

Theorem 8. If the distribution of I1 is such that
f1�k	= :k for k= 0�1� � � � , then �U is a Nash equilibrium
for any set of agent delay cost functions.

Proof. Given that others play �U , agent m per-
ceives the distribution of �t��

U
−m	 as independent of t.

If m deviates from �U , it must be because of the evo-
lution of the inventory process It��

U
−m	. Suppose the

realized value of I1 equals i. We have

I2��
U
−m	= �i+�1��

U
−m	− st�

+�

Because �1��
U
−m	 has a binomial distribution with pa-

rameters M − 1 and 1/T , we have that Pr�I2��U
−m	 =

j � I1 = i	 = �Pij and Pr�I2��U
−m	 = j	 = ∑�

i=0 :i
�Pij = :j .

I1 and I2 then have the same distribution. An induction
extends the result to any t. �U is thus a Nash equilib-
rium because Ɛ�Wm��t��

U
−m	+ 1� It��U

−m		� is indepen-
dent of t for anyWm. �

It is tempting to interpret Theorem 8 as saying
that if the system starts in steady state, the agents
play �U � but this is not quite correct. First, It is
not a Markov chain. Second, even if one considers a
Markov version of It in which arrivals are indepen-
dent across periods, its transition probabilities would
not be �Pij because its arrivals would have a different
distribution than ��t . That said, as M and T get large,

10 Note that Ît+1 is a discrete-time queue that is ergodic because we
have assumed 8 > �.
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the distribution of ��t converges to that of �t��
U 	,

and � converges to the steady-state distribution of It .
Thus, looking at a limiting system as in Theorem 6,
we have that Poisson arrivals see time averages of the
state of the system.
A steady-state initialization may seem a limita-

tion, but it is sufficient for our purposes. We are
interested in whether previous work was limited by
assuming renewal arrivals while ignoring that cus-
tomers may pick arrival times strategically. Most
existing academic research (e.g., Mendelson 1985) and
managerial literature (e.g., Cleveland and Mayben
1997) also assume that arrivals experience steady-
state waits. Thus, if one believes that it is sufficient
to look at long-run average waits, our results sug-
gest that strategic customers will plausibly produce
an arrival pattern that approaches a discrete-time
Poisson process.
Additionally, strategic customers will, in a sense,

take the system to steady state. Specifically, they will
equalize delay costs over the horizon. This is inherent
in the definition of a Nash equilibrium given in (10). If
agent m puts a positive probability on multiple bins,
she must expect the same waiting costs in those bins.
Suppose all agents have linear delay cost as in (2) and
that for some initialization of It (not necessarily :)
there exists a Nash equilibrium �′ such that some
agent m puts positive probability on bins s and t. It
must be

Ɛ
[
�t��

′
−m	−�s��

′
−m	

]= 2(Ɛ�Is��′
−m	− It��

′
−m	�

)
�

Differences in arrival rates compensate for differences
in inventory levels, and equilibrium workload levels
across bins must be constant. If a bin is expected to
have a low inventory (as with I1 ≡ 0), it must have
a higher arrival rate and vice versa. In general, any
Nash equilibrium will require that agents expect a
(nearly) constant delay cost across the horizon, so
equilibrium play will result in arrival rates that elim-
inate differences across bins.
This last point relies on time-invariant preferences.

Combining time-varying preferences with limited
capacity requires multiple initializations. For exam-
ple, if the low-value bins occur at the start of the hori-
zon, one would need to inject additional inventory in
the system at the start of the high-value period.

6. Conclusion
We have presented a simple timing game. A set of
customers seek service over some horizon. All find
congestion costly and so try to arrive when the facility
is underutilized. Working in discrete time, we char-
acterize pure-strategy Nash equilibria for the case of
ample capacity. Agents try to spread out as much as
possible. Symmetric agents with well-behaved delay
cost functions choose a socially efficient outcome that
minimizes total waiting costs.
While potentially efficient, pure-strategy equilibria

are difficult to implement in this setting. We conse-
quently identify a unique symmetric Nash equilib-
rium. This equilibrium is independent of both the
delay cost functions and the number of agents. Fur-
ther, as the number of agents and time periods get
large, the number of arrivals in any period goes to a
Poisson distribution and the number of arrivals across
bins becomes independent. Thus, a large population
of strategic customers seeking to avoid congestion
generates an arrival pattern well approximated by a
discrete-time Poisson process. Our results extend to
the case of limited capacity given an appropriate ini-
tialization of the system. If customer valuations of ser-
vice vary over the horizon, one has a nonstationary
discrete-time Poisson process.
Our model lends support to the traditional litera-

ture on the management of service systems. This work
has generally assumed that customer arrival times are
governed by a renewal process while ignoring the
possibility that customers strategically try to avoid
congestion. We show that assuming renewal inter-
arrival times is acceptable given a large population
and long horizon. In addition, our model offers some
insights on when a reservation system may be worth-
while and how customers react to time-dependent
service values.
While discrete time is a reasonable approximation

of human behavior, traditional queuing models are in
continuous time. Lemma 3 suggests a possible way
to convert our discrete-time process to a continuous-
time Poisson process. Suppose agents must choose
from the discrete set  1� � � � � T ! but their actual arrival
times are subject to independent shocks; when agent
m targets arriving at time t, her actual arrival time
is uniformly distributed on �t� t + 1	. (Ostrovsky and
Schwarz 2003 employ a similar approach.) If others
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play �U , agent m perceives all bins as identical so she
too will be willing to follow the equilibrium.
More challenging is to assume that agents choose

arrival times from a continuous set. Consider the
case of ample capacity and suppose each agent picks
an arbitrary strictly continuous distribution on �0�T �.
The chance of having simultaneous arrivals is zero, so
any set of strictly continuous distributions is a Nash
equilibrium. Thus, the ample capacity case is only
interesting in discrete time. To work in continuous
time, one must immediately worry about the ser-
vice dynamics of the system as in Glazer and Hassin
(1983).
We note that the discrete-time ample-capacity case

is open to multiple interpretations. Rather than pick-
ing discrete arrival bins, agents could be determin-
ing which of many simultaneous markets or stores to
visit. Faced with a large number of identical choices
(e.g., an infinite number of Starbucks coffee shops),
agents plausibly implement a Nash equilibrium that
results in each store seeing arrivals closely resembling
independent Poisson draws. We feel that this is a
promising framework for examining interesting phe-
nomena in services because it captures the most rele-
vant aspect of services (e.g., degradation of the service
experience due to congestion) while suppressing the
complications of queuing dynamics.

Appendix
Proof of Corollary 1. We use an induction on T . Fix

T = 2 and select a bin to have � agents.
(
M

�

)
= M !

�!�T−�	��+ 1	!�
gives the number of equilibria given � agents are assigned
to the selected bin.

(
T
�

)
then accounts for the number of ways

to select � bins to have � + 1 agents. Suppose the result
holds for T − 1 bins and consider the case of T bins. Fix
the � bins assigned �+ 1 agents. There must be a bin with
only � agents. Assign � agents to the earliest such bin. The
number of equilibria vectors satisfying these criteria are

(
M

�

)
�M −�	!

�!�T−1−�	��+ 1	!� = M !
�!�T−�	��+ 1	!� �

The term
(
M
�

)
accounts for the � agents assigned to the ear-

liest time period with only � arrivals. The next term relies
on the inductive hypothesis. The result follows. �

Proof of Theorem 4. Suppose both conditions hold. By
Lemma 1, agent m weakly prefers t to s for all Wm. By (7),
she is indifferent among bins over which she randomizes for

all Wm. �∗ is a Nash equilibrium for all Wm. Now suppose
�∗ is a Nash equilibrium for all Wm and that (7) fails for
some agent m and some bins t and u. There must exist $ <
$′ such that

Pr��t��
∗
−m	= $	 > Pr��u��

∗
−m	= $	�

Pr��t��
∗
−m	= $′	 < Pr��u��

∗
−m	= $′	�

Because m randomizes over t and u, they must result in the
same expected congestion cost

Ɛ�Wm��t��
∗
−m	+ 1	�= Ɛ�Wm��u��

∗
−m	+ 1	��

Pick a Wm such that this equality holds. Because Wm is
strictly increasing, we can create a new cost function �Wm

such that �Wm�$+ 1	 = Wm�$+ 1	+ ;, �Wm�$′ + 1	 = Wm�$′ +
1	 − ;, and �Wm = Wm otherwise. We must then have
Ɛ� �Wm��t��

∗
−m	 + 1	� > Ɛ� �Wm��u��

∗
−m	 + 1	�, so the equilib-

rium is not independent of the cost function.
Now suppose condition 1 fails. There must exist an

integer �$ and agent m such that Pr��s��
∗
−m	 ≤ �$ − 1	 >

Pr��t��
∗
−m	 ≤ �$ − 1	. Equivalently, Pr��s��

∗
−m	 ≥ �$	 <

Pr��t��
∗
−m	≥ �$	. Suppose

Wm��	=



�;� for �≤ �$�

K + �;��− � �$+ 1		 for � > �$�

where �; > 0 and K > �; �$. While Wm��	 is strictly increas-
ing, picking �; sufficiently small allows us to approximate
the step function K × 1�≥ �$+1, where 1�≥ �$+1 is an indicator
function that arrivals equal or exceed �$+ 1. Thus, if agent
m goes to some bin q, we have that Ɛ�Wm��q��−m	+ 1	� ≈
K×Pr��q��

∗
−m	≥ �$	. For sufficiently small �;, agent mwould

prefer s to t, contradicting that �∗ is independent of the
delay cost function. �

Proof of Lemma 3. Consider an interval completely
within bin t, i.e., �s� s + =	 ⊂ �t� t + 1	 for = > 0. Because
the bin size is fixed at one, an arrival to t is assigned to
the interval �s� s +=	 with probability =. Let a= denote the
number of arrivals in �s� s+=	. For all k

Pr�a= = k	 = Pr�a= = k � �t ≥ k	Pr��t ≥ k	

=
�∑

n=0
Pr�a= = k � �t = k+n	Pr��t = k+n	

=
�∑

n=0

(
k+n

k

)
=k�1−=	n�k+ne−�

�k+n	!

=
�∑

n=0

�=�	k��1−=	�	ne−��=+�1−=		

k!n!

= �=�	ke−�=

k!
�∑

n=0

��1−=	�	ne−��1−=	

n! = �=�	ke−�=

k! �

a= is a Poisson random variable. Because arrivals to the
bins of a discrete-time Poisson process are independent, the
result can be extended to arbitrary intervals.
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Now consider two disjoint intervals �s� s+=	 and �s′� s′ +
=′	 for =�=′ > 0 that both fall completely within bin t, i.e.,
s′ ≥ s + = and �s� s′ + =′	 ⊂ �t� t + 1	. Let a= and a=′ be the
respective arrivals in �s� s+=	 and �s′� s′ +=′	. We show that
a= and a=′ are independent:

Pr�a= = k�a=′ = j	

=
�∑

n=0
Pr�a= = k�a=′ = j � �t = k+ j +n	P��t = k+ j +n	

=
�∑

n=0

�k+ j +n	!
k!j!n! =k�=′	j �1−=−=′	n

�k+j+ne−�

�k+ j +n	!

= �=�	ke−�=

k!
�=′�	je−�=′

j!
�∑

n=0

��1−=−=′	�	ne−��1−=−=′	

n!

= �=�	ke−�=

k!
�=′�	je−�=′

j! �

Because the arrivals in distinct bins are independent,
the result easily extends to disjoint intervals of arbitrary
lengths. We have thus shown that  �A�t	 ' t ≥ 1! has inde-
pendent increments and that �A�t+=	− �A�t	 has a Poisson
distribution with parameter �=. Hence,  �A�t	 ' t ≥ 1! is a
continuous time Poisson process. �

Proof of Theorem 6. Consider the arrivals �n
t in system

n into bin t, where 1 ≤ t ≤ Tn. Given that �n
t is a binomial

random variable it is well known that it converges in dis-
tribution to a Poisson random variable with parameter �
(Ross 1983). All bin arrivals converge to identically Pois-
son distributed random variables. We now establish limit-
ing independence by showing that the joint distribution of
any finite collection of bin arrivals tends to the product of
their marginal distributions. Consider the arrivals in system
n into any two bins 1≤ s < t ≤ Tn. Their joint distribution is
multinomial:

Pr��n
s =ks��

n
t =kt	

= Mn!
ks !kt !�Mn−ks−kt	!

(
1
Tn

)ks
(
1
Tn

)kt
(
1− 2

Tn

)Mn−ks−kt

= Mn!
ks !kt !�Mn−ks−kt	!

(
�

Mn

)ks
(

�

Mn

)kt
(
1− 2�

Mn

)Mn−ks−kt

�

Using Mn/Tn = �, this is equivalent to

Pr��n
s =ks��

n
t =kt	

= Mn�Mn−1	···�Mn−�ks+kt−1		
ks !kt !

·
(

�

Mn

)ks
(

�

Mn

)kt
(
1− 2�

Mn

)Mn−ks−kt

=1
(
1− 1

Mn

)
···

(
1− ks+kt−1

Mn

)
�ks

ks !
�kt

kt !
�1−2�/Mn	

Mn

�1−2�/Mn	
ks+kt

�

Standard limit arguments show that

1
(
1− 1

Mn

)
· · ·

(
1− ks + kt − 1

Mn

)
→ 1�

(
1− 2�

Mn

)ks+kt

→ 1�

and (
1− 2�

Mn

)Mn

→ e−2��

so that

lim
n→�P��n

s = ks��
n
t = kt	=

�ks e−�

ks !
�kt e−�

kt !
�

This argument extends to any finite collection of bins. The
arrival process thus converges in distribution to a sequence
of independent Poisson random variables with rate �, or a
discrete-time Poisson process.
For the second part, consider the Mn − �A > 1 agents who

have not arrived by bin t̂. Their arrival times are indepen-
dent and uniformly distributed over the remaining Tn − t̂
bins. A representative agent arrives in next k bins with
probability k/�Tn − t̂	. Because agents act independently, we
have

Pr�*n ≤ k �An�t̂	= �A	 = 1− �1− k�/�Mn −�t̂		Mn− �A

= 1− �1− k�/Zn	
Zn �1− k�/Zn	

�t̂− �A�

where Zn =Mn −�t̂. Because Zn →�, similar limiting argu-
ments as above establish the desired result. �
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