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Multiple Subclass Pattern Recognition:

A Maximin Correlation Approach

Hadar 1. Avi-Itzhak, Jan A. Van Mieghem, and Leonardo Rub

Abstract—This paper addresses a correlation based nearest
neighbor pattern recognition problem where each class is given as
a collection of subclass templates. The recognition is performed in
two stages. In the first stage the class is determined. Templates
for this stage are created using the subclass templates. Assign-
ment into subclasses occurs in the second stage. This two stage
approach may be used to accelerate template matching. In par-
ticular, the second stage may be omitted when only the class needs
to be determined.

We present a method for optimal aggregation of subclass tem-
plates into class templates. For each class, the new template is
optimal in that it maximizes the worst case (i.e, minimum) corre-
lation with its subclass templates. An algorithm which solves this
maximin optimization problem is presented and its correctness is
proved. In addition, test results are provided, indicating that the
algorithm’s execution time is polynomial in the number of sub-
class templates.

We show tight bounds on the maximin correlation. The bounds
are functions only of the number of original subclass templates
and the minimum element in their correlation matrix.

The algorithm is demonstrated on a multifont optical character
recognition problem.

Index Items—Pattern recognition, nearest neighbor, template
matching, correlation, maximin, minimax, clustering, multifont
optical character recognition.

I. INTRODUCTION

P ATTERN recognition often involves the assignment of a
pattern, represented by a vector of measured features, to
one of N classes using a library of pre-classified vectors which
are known as template vectors. In optical character recogni-
tion, for example, a class could correspond to one letter of the
alphabet. A commonly used approach, known as nearest-
neighbor recognition [2], [S], [6] assigns the input vector to
the class whose template vector is most “similar” to it. Differ-
ent functions are described in the literature to measure similar-
ity [5], [6], [10], [25], [26]. In particular, the correlation opera-
tor (normalized scalar product) is used in many image analysis
applications [1], [11], [15], [20], [23] where invariance to in-
tensity scaling is desirable. With this measure, the input and
the template having the largest correlation are nearest neigh-
bors. The value of this correlation may be used to indicate a
confidence level in the classification decision.
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With multiple-subclass pattern recognition some or all of
the classes are represented by more than one template, each
representing a different subclass. The major discrepancies
between the different templates of a class are not due to ran-
dom effects such as noise but, rather, each template represents
a different subclass. To continue the example of optical char-
acter recognition, the class representing a letter could be com-
posed of several subclasses, each corresponding to a different
style or font. Font variations due to different printer makes can
also be interpreted as different subclasses.

Directly implementing the nearest neighbor algorithm based
on all of the original templates becomes computationally in-
tensive as the number of subclasses increases. It is therefore
advantageous to approach the problem in two stages (8], [16],
[21], [24), [27]. The class is determined first, subsequently
allowing a more efficient recognition of the subclass. The first
stage is performed without using the subclass information.
Therefore, for each class, we are interested in aggregating the
templates of its subclasses into a single template representative
of the class.! This paper addresses the problem of the con-
struction of the optimal aggregate template, using correlation
as a similarity measure.

Our approach is based on the following premise: the afore-
mentioned aggregation results in a loss of information which
translates into a risk of increased probability of error, i.e., in-
correct classification. The incurred risk may vary from sub-
class to subclass. For each class we would like to choose a
representative template which insures a minimal worst case
risk over all of its subclasses. In other words, we wish to find
the template which minimizes the maximum risk. Depending
on the particular probability distributions, the probability of
error is assumed to be monotonically decreasing with the cor-
relation with the nearest-neighbor template. For example, for
additive Gaussian noise this relationship is exponential. There-
fore, the desired representative template vector maximizes the
minimum correlation with the templates it replaces.

An optical character recognition example is used to illus-
trate this concept. Fig. 1 depicts 11 sentences, each printed in
one of 11 common English fonts. The printout was scanned at
400 dots per inch to create a 3000 by 3000 matrix of gray
scale values in the range of O to 255, which was then seg-
mented into 339 isolated character matrices. Each character
matrix was scaled to have a second moment of 10, and trans-
lated to have its center of mass at the center of a 50 by 50

! A class may be represented by more than one template. In this case, the
class is partitioned into clusters of subclass templates, which are separately
aggregated.
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This Sentence is in Helvetica Font

This Sentence is in Helvetica Narrow Font

This Sentence is in Lucida Bright Font
This Sentence is in Lucida Fax Font
This Sentence is in Lucida Sans Font
This Sentence 1is 1in Lucida Sans
Typewriter Font

This Sentence is in Modern Font

This Sentence is in New Century Schoolbook
Font

This Sentence is in Palatino Font

This Sentence is in Roman Font

This Sentence is in Times Font

Fig. 1. Printout used for 11 to one example.

matrix. The columns of each resultant matrix were concate-
nated to form a 2500 element vector which represents the
normalized optical measurements of its respective printed
character.

In addition, a complete set of the English alphabet was
printed 11 times, each time using a different one of the 11
fonts, and the same segmentation and normalization procedure
was used to generate a set of 11 templates for each character.
Next, for each character, the maximin template was computed
from its 11 template vectors. These maximin templates were
then used for correlation based nearest neighbor recognition of
the characters of Fig. 1. All 339 characters were recognized
correctly. For comparison, the recognition was repeated, this
time with each maximin template vector being replaced by the
arithmetic mean of the 11 template vectors which were used to
compute it. This time, only 329 out of the 339 characters were
recognized correctly.

In the next section, we state the formulation of the maximin
aggregation problem. In Section III, we present a fast algo-
rithm that computes the solution of the maximin problem.
Section IV establishes a series of properties of the solution
which enable us to show the correctness of the algorithm.
Also, upper and lower bounds on the maximin correlation are
derived. In Section V, we show the equivalence of the maxi-
min correlation problem to a quadratic program. We discuss
the computational performance of the algorithm in Section V1.
Tests show that the algorithm is polynomial in the number of
templates. As a demonstration, the algorithm is applied to
multifont optical character recognition in Section VII. Finally,
we conclude in Section VIIL

II. PROBLEM FORMULATION

Since the nearest neighbor is determined based on the corre-
lation operator, without loss of generality all template and in-
put vectors may be scaled to unit norm. Now the correlation is
reduced to an inner product, and the domain of vectors is re-
stricted to the surface of the unit hypersphere. To gain further

insight we can also use the fact that the correlations are mono-
tonically decreasing with distances or angles. Then, by visual-
izing the surface of the unit hypersphere as a plane (Fig. 2), the
problem becomes more intuitive. Fig. 3 uses this visualization
to illustrate a three-class multiple subclass example where 15
templates are aggregated into three representative templates.
Note that all the points in the figure are in reality on the sur-
face of the hypersphere.

Following normalization, we can formulate the problem for
a single class containing m subclasses as follows:

Given a set S = {t;, &, 13, -+, Iy} of m template column
vectors in R" (all vectors are assumed to be column vectors
in R" unless noted otherwise), we will make use of the fol-
lowing assumptions:

e Al. The vectors in S are linearly independent.
¢ A2 Forallt, e S we have |t ]| = 1.
e A3.Forallt,,t,e Swehavet, 1,20.

In practical settings n is large such that the probability of hav-
ing two linearly dependent vectors is negligible which is as-
sumed in Al. Assumption A2 represents the scaling of the
templates due to normalization. Because ¢, , , represent sub-

class templates of the same class, one can reasonably expect
them to have a non-negative correlation as in A3.

We wish to find a vector ), € R" which solves the follow-
ing optimization problem

ty = maxymin?-f, . 1
m = GERA {t,c!S ‘} M
We will denote the optimal objective value by p, and the
objective function being maximized by
F(¢) = mint-t,.

1e8

@

We note that the unit hypersphere is a compact set on which
F(f) is bounded. Therefore, )y and p,, exist, and the problem
is well posed. Furthermore, we will show that the solution #, is
unique.

It will be convenient to introduce the following quantities:
T, the nxm matrix with template ¢ as i* column vector;
C =TT, the mxm symmetric correlation matrix ; and e, a
column vector of all ones (“summer vector”). Transposes are
denoted by primes. The minimum (maximum) element of a
vector or matrix A will be denoted by min A (max A). Given
sets A and B, the set {x : x € A and x ¢ B} will be denoted by
A-B.

III. SOLUTION OF THE MAXIMIN CORRELATION PROBLEM

In this section, we state the main result of the paper, the so-
lution to the maximin correlation problem. The mathematical
infrastructure developed in sections IV.A and IV.B will lead to
the proof of the main result in section IV.C.
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Fig. 2. Looking at the hypersphere’s surface as a plane.

S
* >

° >
e

O~>

»>

Fig. 3. Conceptual illustration of multiple subclass maximin correlation.

Theorem 1(Main Result): The following algorithm com-
putes tyand p,, in a finite number of iterations.

Step 1: Let ¢t = TTTfll" where e is the m-dimensional summer
vector. Let £ = argmint-¢,.
teS

~1
Step2: a) Let E*(X) = % where T, is the n X k matrix
e'Csle

whose columns are the template vectors contained in

the set X, C; = TyTy, and e is the k-dimensional
summer vector. If 1 = E *(X), go to step 4.

t{t,—t .
b) Let A, = —(’J_tﬂ()"(r_E),(x)) , where 7, is any template
inX,andt, e S—X.
If any A, satisfies 0 < A, < 1, then let

Amin = min A, otherwiselet A ; = 1.
0<h <1



AVI-ITZHAK, VAN MIEGHEM, AND RUB: MULTIPLE SUBCLASS PATTERN RECOGNITION: A MAXIMIN CORRELATION APPROACH 421

A inEX(E)H1-A i )t

min

[ in EA(E) (1

min)

Lett =

H

min)
c)Let £ = argmint-t .
1,€8

If Ay, =1 (ie. if £ =E*(X)) then go to step 3,
otherwise go to 2a.

Step 3: If w*>0, where w * = Cgle, go to step 4.
Otherwise, let i be any index that satisfies
w: =minw *, let X=X — {#}, and go to step 2.

Step 4: The solution is tyy =t and p,, = minT"t),. Terminate

the algorithm.

IV. PROPERTIES OF THE SOLUTION
A. Equicorrelated Points Set E(X)
We will show that there exist at least two template vectors ¢;
and ¢ such that #y, - ; = ty - t;,. We say that 1y, is equicorrelated

to #; and #;. In order to facilitate the exposition we introduce the
following definitions.

Definition: Given a subset £ < S of k > 1 template vectors,
the set E(Z) of their equicorrelated points is
EE)={reR": vt t eZwithizj=tt =t} ()

If k=1, then E(Z) = R".

Let T, be the nxk matrix whose columns are the template
vectors in . For any r € E(Z) there exists a scalar p such that

Tit = pe. @)

Because T, has rank k (assumption Al) and ¢t = 0 is in E(Z), it
follows that E(Z) is a linear subspace of dimension n — k + 1.
Hence, t can be expressed as ¢ = #,+¢, where ¢, is in the span

of X and ¢, is in its null space. In other words, there exists a
k-element vector w such that #, = Tyw, and Tyt, = 0. From (4)
it follows that

E(Z) = {telR“:t = pTyCye+t, where peR and Tjt, = 0}

®)
where Cy = T{Ty. Note that the parameter p is the scalar
product of ¢ with the template vectors in Z.

Definition: Given a subset £ C S of k template vectors, its
optimally equicorrelated point E *(Z) is defined as

E*(X)=arg max

o {t-t,foranyt, €X}. (6)

Because the feasible set {t € R": z € E(T), |f| =1} is non-
empty (since n — k + 1 > 0) and compact, and ¢-t,; is bounded

on this set, a maximum exists. The following lemma shows
that this maximum is unique.

Lemma 1: The optimally equicorrelated point of L is

EX(Z) = piTrCye, 0]

where pf\::(e’C{'e)_m.
Proof: Using (5), (6) is equivalent to

ps =arg max p subject to pze'C)Ele+||tJ_||2 =1. (8
pe

Clearly the maximum is obtained when ¢, =0, from which

Lemma 1 follows. 0

Fig. 4(a) shows the equicorrelated points set and the opti-
mally equicorrelated point for a simple case of two template
vectors. Fig. 4(b) is the planar visualization of Fig. 4(a).

B. Necessary and Sufficient Conditions

The following two lemmas are needed to derive the neces-
sary and sufficient conditions for the solution of the maximin
problem.

Lemma 2: (Extension of Minimum to Neighborhood)
Given a vector t; € R and a subset of template vectors
T = {t;e S: F(ty) = ty - t;} where F(1) is defined in (2), there
exists an € >0 such that

VteR":“t-tO”<€:>F(t)=g1g:1t-ta. )

Note that by definition F(r) = l;nely t-1, so the claim of the

lemma is that in an € -neighborhood of £y the minimization
need only be carried out over the subset X. In other words, at a
small enough distance from f,, the template vectors with the
smallest correlation are still in the subset of template vectors
with the smallest correlation to #,.

Proof: If T = S, the lemma is trivial. Therefore, we will
consider only proper subsets in which case we let
A= min {z, ‘1,}- F(to), where S-E={t,eSandt, e¢X}.

From the assumptions of the lemma, it is clear that A > 0. Set-
ting € = A/3, we have that

VieR"t-to| <e=t-t; —to t;] :|(t-t0)-ti|sl|t-t0u<£ =A/f3,

for any #; € §, which implies that
Iy - t,'—A/3<t' <1y ti+A/3.

If #; € X, the right inequality implies that ¢ - #; < F(t) + A/3.
Otherwise, the left inequality yields ¢-¢; > trgsigz{to -ts}—A/3

= F(ty)+2A/3.  Therefore, ~we must have that
F(t)=?1ig{t-t‘,}. 0

We will now show that the vector #,; which solves the maxi-
min problem (1) must belong to the equicorrelated point set of at
least two of the template vectors and that the remaining (if any)
template vectors will have a higher correlation with zy.

Lemma 3: (Weak Version of Necessary Conditions) If t)
is a solution of the maximin problem (1), then there exists a
subset . C S of at least two template vectors such that:
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E‘z{tptz})

Fig. 4. Equicorrelated points (left) with planar visualization (right).
v € EX), (10

and the correlation of the remaining (if any) template vectors

with ty is strictly greater than p,,:
VyeS—Zand Vg eXipy =ty 1y <tyt;.. (11)

Proof (by contradiction): Assume there is a unique index i*
such that p,, = F(t)s) = 1y 1. According to Lemma 2, there

exists an € -neighborhood of # in which for all 7, F(r) = 1.
Let t5 = a(tM +5ti.), where o = (1+62 +28t), -ri.)'l/z. For a
small § >0, the vector ts will be in this € -neighborhood, so
F(ta) =5t = a(tM L +5). Unless in the trivial case where
S=2={r.}, we have that 0<py =1,,-1. <1, in which
case it is easy to show that F(ta) > py- Together with the fact

that "15” = 1, this contradicts the optimality of #,; which proves
Lemma 3. O

We are now in the position to prove a stronger and more
useful version of Lemma 3 which states that the vector
which solves the maximin problem (1) must be the optimally
equicorrelated point of a subset . c §.

Theorem 2: (Necessary Conditions) If t,, is a solution of
the maximin problem (1), then there exists a subset L c S of at
least two template vectors such that:

ty = EX(Z), (12)

and the correlation of the remaining (if any) template vectors
with ty is strictly greater than p,,.

Proof (by contradiction): Assume that there is no subset X

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 17, NO. 4, APRIL 1995

E({t,,t,})

E({t,,t,})

such that #), = E*(X). We know from Lemma 3 that there

exists a subset £ such that f; € E(Z) and we know from
Lemma 1 that E*(X) exists. Analogous to the proof of
Lemma 3, let 15=afry,+8E*(Z)],

[1+52 +281), -E*(Z)]ﬁl/ 2. Using Lemma 2, we have that for

where o=

small >0, F(ts)=t5-t, = oty 1, +8p%), where 1, €
and p} is defined in Lemma 1. Because ty € EZ),
ty # E*(Z), and t; € I, the definition of E *(Z) implies that
ty te <E*(Z)-tg, also  1),-E*(Z)<1 (because
ty # E*(X)). Using these strict inequalities, it is easy to show
that F(t5)> F(t),), which contradicts the optimality of ;. [

and

In the example shown in Fig. 5, the necessary conditions are
fulfilled with £ = (¢, #,}. In this planar visualization, 5 is in-
side the circle, illustrating the fact E*({t,1,})-f <

E*({t,1,})-1; and EX({t,5,})-1, < E*({t;, 1,}) 1.
Corollary: The maximin solution ty is unique.

Proof: Since F(f) is concave, and ||| <1 is a convex set, the
solution of the maximin problem is a convex set in R". There-
fore, the solution set has either a single or an uncountable num-
ber of points. From Theorem 2 we know that p,, can be
achieved by at most 2” — m — 1 vectors. Thus ¢, must be unique.

0

Lemma 4: Given Fy(t) = mint'T, and a unit vector x €
span(Z), then, for any unit-length y in the € -neighborhood of
x, we can find a unit-length 7 € span(Z), also in the neighbor-
hood, such that F(z) > F(y).
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¢ E({t;,t,})
Ze o o 1

Fig. 5. Necessary conditions.

Proof: y can be written as y = “%gu, and & can be repre-

sented as & = §,+0, where 8, x = 0. Given such a y, we

consider z= "iig::“_
”Z—x"z =2-2z-x = 2_2_—]-t§ﬂ__
2o Bl
B P 2. 5N MNP
2o o

Thus, the vector z which we selected is in the € -neighborhood

of x. Forany t, € Z,
to-x+50y tgx+ig-0)

Is:2= 2 =1,
N e N

Thus, F;(z) 2 F(). i

The above lemma implies that in order to optimize F(¢) in
the € -neighborhood of x € Z, it is sufficient to optimize in
span(X).

Theorem 3: (Necessary and sufficient conditions) Given
t * = E *(X), which satisfies the necessary conditions of Theo-
rem 2, then t * = t), if and only iny:le >0.

Proof: Since F(z) is concave, in order to show that ¢ * = t,,,
it is sufficient to show that given an € -neighborhood of ¢ *,
we cannot find a ¢ in this neighborhood such that F(r) > F(r %).

Using Lemma 2, we can choose an € such that for any ¢, if
lt—¢ 4 < &, then F(?) = F(t) = minf'T,.

From Lemma 4 we know that in order to find a ¢ in the
€ -neighborhood of ¢ * such that F(r)> F(t *), we only have to
consider ¢ € span(Z). Therefore, there exists a unique w such
that £ = T,w, and a unique w * such that 1 * = Tyw *. Since
llell =1, it follows that :

wCsw = 1. (13)

We will now examine the changes in F(f) as a function of w.
Let §,, = w—w*, where ||5w|| can be chosen small enough to
insure that |t — ¥ < €. For each t, € £ we define a function
f» = t.Tyw. When w changes by 8,,, f,, changes by ¢, 10,
Noting that 1Ty is the oth row of C,, the changes in all f;s
can be represented as Cyd,,. In order for F(¢) to increase as a
result of the change 6,, we must have :

b>0 where b = C56,,, (14)

because when w = w *, all f are equal and must all increase
in order for min f; to increase.

The vector §,, cannot be completely arbitrary. Any w must
satisfy (13). Substituting w=w*+34, in (13) we get
28,,Csw*=—-8,,Cs6,,. Since C, is positive definite, we ob-
tain

6,,Csw*<0.
Substituting §,, = Cs'b yields

b'w*<0. (15)

Using (14) and (15), we can prove the two implications
stated in the theorem:

From (14), we must have b > 0 to have an increase in F(¢).
If in addition w*2>0, then (15) does not hold, and we must
have t * = t,,.

On the other hand, suppose that ¢ * =¢,,, and at least one

component of w * is negative. Then it is possible to find a vector
b > 0 such that (15) holds. We can then determine the corre-

sponding 6, = Cglb , since C, is non singular. Thus, we get the
contradictory statement ¢* # ¢),, and we must have w¥20.  [J

3e

*
t E({t13t29t3})
Ze © o

E({t,,t,})

o
t1

Fig. 6. Sufficient conditions.

In Fig.6, both E*({t,;})and E*({t,1,,1,}}satisfy the
necessary conditions. In the planar visualization shown in the
figure, E *({tl’tB}) appears inside the convex hull of 7 and 1.
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This represents the fact that in reality it is inside their convex
cone, thus satisfying the sufficient conditions. E *({t,,tz, t3}),
however, appears outside the convex hull of #,, #,, and t3 in this
two dimensional representation, and is therefore outside their
convex cone in higher dimensions, thus violating the sufficient
conditions. Since the other two candidates, E*({1,,1,}) and

E *({tz, t }) (not shown in Fig. 6) do not satisty the necessary
conditions, we must have ¢,, = E *({tl, t3}).

We are now in a position to show that the Algorithm of
Section III is correct.

C. Explanation and Proof of the Algorithm

The algorithm is based on the following approach. The initial
value of ¢ is used to find an improved ¢ which is guaranteed to
satisfy the weak necessary conditions (Lemma 3), ie.,
te EX), and t-t; <t-t, fort,€X, and t, € S — Z. The re-
peated iterations of step 2 are attempts to strengthen the condi-
tions to those of Theorem 2. A “line” search (actually a great arc
on the unit hypersphere) is performed between ¢ and E *(Z), the
optimally equicorrelated point of X. Ascent of F(z) is guaranteed
as long as the vector satisfies the conditions of Lemma 3 (see
Lemma 5 below). These conditions are satisfied up to

i EH(Z) 1=y, )t
[ inE(E (12 )]

(see Lemma 6 below).

If this point is reached, then  becomes equicorrelated to a
larger subset of S, for which the conditions of the Lemma are
satisfied. The iteration can then be repeated with a line search
to the optimally equicorrelated point of this new subset of S.

Since there are m vectors in S and, at each iteration, at least
one vector is added to Z, then there can be no more than m
iterations before reaching step 3, and achieving the necessary
conditions of Theorem 2. If the sufficient conditions of Theo-
rem 3 are also satisfied, we have the optimal . Otherwise, a
new set X such that ¢ still satisfies the conditions of Lemma 3
is obtained by removing the appropriate template from X (see
Lemma 7). Each time step 3 is reached, the subset X is differ-
ent from any previous subsets because of the strict ascent in
F(¢) during steps 2 and 3. The number of different subsets of S
is 2™ Thus, the algorithm must terminate in less than m2™ it-
erations. Extensive tests have shown empirically that the actual
number of iterations is approximately linear in m, as docu-
mented in Section VI.

AEX(Z)+{1-A), o
=)+ (1-2)0
t(l) satisfies the conditions of Lemma 3, then F( t(/l) ) strictly

increases with A in the subinterval of 0 < A < 1, where the
conditions are satisfied.

Lemma 5: Let 1) € E(Z), and t(A)=

Proof: From (5), we can represent ¢ as :
1) = p(A)T5C5'e-+1, (A) where p(A)’e’Cle+[r, () =1.

Note that p(/’L) is the correlation of A4) with the template
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vectors in Z. Since E *(Z) has no orthogonal component, ”t i (/1)”
is a strictly decreasing function of A. Thus p(/l) is a strictly in-
creasing function of A. As long as the conditions of Lemma 3
hold, F(#(4)) = p(4), so that F(#) is strictly increasingin A.  [J

The following lemma mentions A, which is defined in
step 2b as A, = Og}.iril}{s. For each 1, A, determines the

point in the line search where ¢, is considered for inclusion in
Z. Thus, A, is obtained by solving #(4,)-, = t(A,)-1,, where
ts is any template in .

Lemma 6: Consider ty and t(A ) of Lemma 5. Then, the condi-
tions of Lemma 3 are satisfied in the interval 0S A < A ;.

Proof: Suppose that for A, where 0 < 4; < A, the
conditions of Lemma 3 are not satisfied. Then, there is a
t;e S—Xandat, € Zsuchthat #(A,) - £, < #4,) - t;. Since
H0) - t;, > #0) - t,, then, by the intermediate value theorem?
there must be a A, such that 0 < Ay < A, and #4,) - f
=1#(4o) - t;. Thus, we have A, = Ay < A.,., contradicting the
definition of 4,;, . Therefore, the conditions of Lemma 3 must
be satisfied in the interval 0S A < A, . ]

Lemma 7: Consider the set of templates T at the beginning
of step 3, and the template t; defined in step 3. If

(1) = 2ETE D)+ (- e )
ez~ ) +a-nE=E)]’

then

H(A)-1;, > 1(2)t
where 0 < A <1, i#j andt; e X.
E*(Z)e E(Z-{1}), E*(Z)
# E* (Z-{}), then from the proof of Lemma 5 all #(4) - t,

for j # i, increase equally with A . Thus, for j # i we have b=
o, where b; represents the change in #(1) - fiand o > 0. Ac-
cording to (15) we must have b'w*<0, leading to :

bw; +a2w} <0.

J#Ei

j’

Proof:  Since and

Noting that w} <0 from its definition in step 3 in the algorithm :

ay wi
e (16)

"
wi

b >—

Since C;' is positive definite we have €'C;'e>0. Thus,
e’'w*>0 and
*
2w

LS an

.
Wi

Substituting (17) into (16) yields b; > o, completing the proof
of the lemma. u

24A)- 15 and (1) - 1, are continuous functions of A .
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D. Bounds to the Maximin Solution

Theorem 4: The maximin solution has the following upper

bound
1+ minC
Pm 5\’7’

where minC is the smallest element in C.

(13)

Proof: If £ S, then for any r:
min#’T <mint'Ty.
Therefore,

Py < max{mint'Ty}.

=t

Letting X = {tp, tq}, we get from Theorem 2

1+¢,-¢
max{mint'Ty } = p3 = ,[—2—~.
=1 2

So for any t,t, € S, we have

f1+t -t
Py < %.

Choosing 7, and £, so that 7, -7, = minC, we get the tightest
version of the above bound:

1+ minC
Pm S\f"T‘

Definition (Pairwise Equicorrelated Template Set): A set
of vectors Il is a pairwise equicorrelated template set if there
existsa p (0<p<1) suchthatforall ;,7; € I1

p
4t ={1

In other words, a pairwise-equicorrelated template set is a
set of vectors on the unit hypersphere such that the correlations
of all of the pairs of vectors are equal. The following lemma
will introduce pairwise-equicorrelated template sets for the
determination of a lower bound to the maximin solution.

i#j
i=j

Lemma 8 (Lower Bound to p}) Consider any set £ of k

template vectors with minimum pairwise correlation
p =minCs. Let Cpy be the k Xk correlation matrix with off-
diagonal elements equal to p, and let I1 be any pairwise

equicorrelated template set that generates Cp. If py is the
maximin solution of X, then
1 1
—+|1-=1p.
k ( k)p

Proof: Because Cp; = (1— p)I+ pee’, it has the following ei-
genvalues: 4, =--- =1, =1-p,and 1, =1-p+kp. Hence,
Cpy is a positive definite, C;' exists and has a similar structure:

* * *
Px 2 pii, where ppy =

425

ol + Pee’. We can solve %} = ¢ and le = a+kB toyield
- 1 1( 1 1 , 1 1 1 1 ,
Cn1 = /'1._11+—k—[1:—1_1]ee = E“—-k—[m_l—“;]ee .
19
Since Cpy is a symmetric positive definite matrix, we can al-
ways find a square root matrix Tj; such that Ty = Cpy. The
columns of 7;; make up a pairwise equicorrelated template set.

Therefore, given p, we can always find a pairwise equicorre-
lated template set that generates Cy.

Define x = Cgle and y = Cﬁle. Since p3 is the maximin
solution to X, then from Theorem 3 we have x>0. Let
Ac = Cs —Cq (A >0 from the definition of Cyy) and con-
sider the equations

Cex =(Cp+Ac)x=e, (20
Chy=e. 21
Subtracting (21) from (20) and pre-multiplying by e’ yields

[1 +(k~ l)p](e’x —e’y)+e'Acx = 0.
Since x>0 and A >0, we must have ¢’A-x >0, as well as
1

\/e'Cgle - \/e'Cﬁle .

ex<ely=eCile<e’ Cile=

Thus, p3 2 pg.
We can now use (19) to obtain pi;:

1 4, ( 1]
oh =7=J— = /—+ 1-=lp. 22)
‘/e'Cﬁle k k k
0

We are now in a position to state a tight lower bound to the
maximin correlation for an arbitrary template set S.

Theorem 5 (Lower Bound to the Maximin Solution)
Given any set S with m templates, its maximin solution has the
following lower bound

(23)

Pu L+(1—ijinc.

m m

Proof: From Theorem 2 we know that p,, = p%, where
X c S has k templates, 2<k <m. Denoting p = minCy, we
have from Lemma 8:

1 1 1 1
> =+l1-=p 2 |—+[1-—]p.
(- = (12

Since p = minC,

Py 1 + (1 - l—)minC .
m m

Corollary: The above lower bound is tight.
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Proof: We will show that for the set IT of m pairwise equi-
correlated templates, p,, = pf;. In other words, we will show
that IT achieves the lower bound.

Suppose that p,, = p}, where £cII (for convenience,
relabel the # such that X ={1,1,,...,1,}). E*(Z)=Tyw,
where w can be obtained using (19):

here A, = 1-p+kp.
J__ "

We can now compare E *(X)-1,, with p};:

p X
E*(Z)1, = ZW,.t,ntm = ﬁz‘q 1,

- =i <l <en
where we have made use of the fact that %> p. Thus, we

have a contradiction with the optimality assumption on
E*(Z). Hence, the optimum is achieved by E™*(II)and II
achieves the lower bound. ]

V. TRANSFORMATION INTO A QUADRATIC
PROGRAMMING FORMULATION

In this section we will show the equivalence of the maximin
correlation problem to a quadratic programming problem with
linear constraints. We call a function f{f) positive homogene-
ous if for any t € R" and any scalar k > 0, we have flkz) = kf(?).

Lemma 9 (Homogeneous Duality) Given positive scalars
«@ and B and positive homogeneous functions g(t) and h(t). If

g(t) > 0 for any t # 0, and if arg max h(t) and arg min g(t)
slr)=a h(1)=p

exist, then

1) (rg)a’fx h(t))( m)m g(t)]

2) arg max h(t) = karg min g(t) for some scalar k.
g(f)=cx h(t)=p

Proof: For any scalars &, k, > 0, we have that

hik
max A(t) = o m h(t) max ) = M,
g(r)=a el g() * sthiykee glir) | veo (v)
(24)

and similarly,
kot
min g(¢) = B min 8 _ B min 8(ky1) = ﬁmm&
h(1)=p hO=B h(r)  hkat)=kB hlkyt) * veo h(v)
(25)
-1

This, together with max—= hv) minw proves the

v20 g(v) | v#0 A(v)
lemma. 0

Theorem 6: The Maximin Correlation Problem is equiva-
lent to a Quadratic Programming Problem:
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-1
max{ min f-f;p= min_ | (26)
=1 |i€{1.2,m} 4,21 for1<i<m

and the vector which optimizes the left hand side is a normal-
ized version of the vector which optimizes the right hand side.

Proof: Let A(r) = mm

ie{l,2,,m}

functions satisfy the assumptions of Lemma 9. Since

Ir.{ur5_l"t|| = rr112r11||t”, the theorem is directly implied by the
)= 1

min{#-,

t-t;and g(t) = |lf|. Clearly, these

lemma. 0

As a result of Theorem 6, the maximin correlation problem
can also be attacked by solving the quadratic programming
problem:

min v'v

Subject to: T'v2e. @27

The solution to the maximin correlation problem is given by
scaling the solution to its “dual” quadratic programming
problem:

and p,, = (28)

1
Vo |

The quadratic programming problem can be solved using a
simplex-type method [3], [4], an active set method [7], [17], or
an interior-point method [14]. In particular, each of the steps
in an active set method can be viewed as a counterpart to each
of the steps of the algorithm described in Theorem 1. How-
ever, contrary to the proposed maximin correlation algorithm
(Theorem 1), a general quadratic programming algorithm does
not exploit the specific structure of the problem and will,
therefore, not be as efficient.

In general, the first phase of a linear program is used to
compute a feasible point for initialization of the active set
method. We can use our geometrical insight to efficiently de-
termine an initial condition for the quadratic program. If we

= e
min

m
denote v, = Y 1;, then
i=1
— 29)
min v, -f;
ie{1,2,--m}
will satisfy the constraints and will always exist because of
assumptions Al and A3.

Vo:

VI. COMPUTATIONAL PERFORMANCE OF THE ALGORITHM

A. Preliminary Analysis

In Section IV, we showed that the algorithm generates f,; in
a finite number of iterations. In this section, we will describe
an efficient implementation of each iteration and evaluate the
overall performance of the algorithm.

There are two parameters that can be considered in order to
determine problem size. The first one is the dimension of the
vectors, n, and the second one is the number of template vec-
tors, m. Since n only affects the number of computations re-
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quired by the inner products, we will focus on the behavior of
the algorithm as a function of m.

There are two computationally intensive tasks in each itera-
tion. The first one is the computation of E *(X), which re-
quires the generation of Cs'e. Thus, if Z has k templates, the
above computation in general requires O(k*) operations. The
second computationally intensive task involves the “line”
searches needed to update ¢ in step 2b. These searches are per-
formed in O(n(m — k)) operations. For a fixed ratio Z, the
above translates to O(m(m — k)) operations. Therefore, out of
the two tasks, the computation of E *(X) determines the order
of the algorithm. Fortunately, the structure of the algorithm can
be exploited to compute Cg !in O(k?) operations.

B. Efficient Computation of E *(X)

With every iteration of the algorithm, the set X is altered by
either adding or removing one template vector.> Assume that
after the p™ iteration, a template vector ¢ is included in Z. In
this case :

G, Tyt
T =Z,U{5} and G = [thzp H
P

If we define u = C{i(T{pti), then we can use the Frobenius-
Schur inversion formula [9] to compute
_ 1|ACE +uw’ -
G o= w
mA —u’ 1
where A =1-u'Cy u. Since Cg; is known, the computation
of C{}lm requires only O(k?) operations.

Similarly, assume that after the p" iteration, a template
vector is removed from X. Without loss of generality, we can
assume that this vector is represented by the last row and col-
umn of Czp. Again, we can compute C){‘I,+I efficiently using

CE}M = Cj,, — %, where A is a scalar, and C,,, as well as u are

defined by the following block matrix representation of C{; :

C u
—1 — ny
CZ,, - [ ul A]

C. Performance Evaluation

In order to evaluate the performance of the algorithm, ma-
trices T with uniformly distributed elements between O and 1
were generated, the columns were scaled to unit norm, and the
resulting matrices were processed by the algorithm. The num-
ber of floating point operations (FLOPS) were determined in a
manner identical to MATLAB [18]. For each value of m

3 In the exceptionally rare case that more than one template is added to X in
one iteration, the update procedure to be described is repeated until Cgl is

obtained.

1
0.8 -
0.6 -
o

o ‘\ "Weight Space" Implementation Region
0.2 b "Template Space" Implementation Region

0 e 1 I

1 5 10 15 20
R

Fig. 7. Ovs. R curves for m = 10, 20, and 30 (solid lines). Implementation
trade-off curve (dashed line).

(number of templates), 10,000 cases were generated using a
number of dimensions n, which we arbitrarily set at n = 1.5m.
Varying m from 10 to 500, the number of iterations can be
approximated as 1.2m%7, and the number of FLOPS can be
approximated as 3.3m>®. The exponent of m in the FLOPS is
reasonable given that we have a sublinear number of iterations,
and each iteration requires approximately O(m®) FLOPS.

The algorithm described in Theorem 1 performs the optimi-
zation in the template space. Since any template can have the
representation ¢ = Tw, the optimization can be performed in the
weight space in terms of w. Instead of computing inner prod-
ucts t - £, in step 2b, the weight space implementation requires
the computation of w'Cw,, where ¢ = Tw, and ¢, = Tw;. Thus,
the weight space implementation has the advantage that each
iteration of step 2b is performed in about 4m(m — k) opera-
tions, rather than 4n(m — k), where n > m (assumption Al). On
the other hand, the weight space implementation requires the
computation of all the elements of C, while the template space
implementation only requires the elements of C needed to
compute E *(Z) in step 2a. The nature of this trade-off can be
further understood with the following analysis.

Test runs indicate that step 3 is rarely performed. Thus, at the
¥ iteration there are approximately k elements in Z. Let p de-
note the total number of iterations executed. The total number
of operations in step 2b with the template space approach is :

P
3 4n(m—k) = 4nmp—2np*.
k=1
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Arial Avantgarde

Lucida Sans Typewriter

Modern

Fig. 8(a). Templates of original subclasses. Fig. 8(b). Templates of original subclasses.

The computation of the elements of C needed to find E *(X)
requires np® operations. Thus, the combined number of opera-
tions for the template space implementation is

Maximin Solution

50

4nmp — npz. (30) o}

Similarly, an approximate expression for the combined number
of operations for the weight space implementation is

30+

am*p — 2mp® + nm’. (31) *r

Using (30), (31), and the representation p = am, and n = Rm, o}
we get the following “break-even” curve

2(R_1)_Jm ) R ¢ 2 5 10 15 20 25 30 as 40 45 50
a={" k2 ° 32)
1 : R=2

Centroid

50

Thus, for any R, the corresponding & must exceed ¢, in order
for the weight space implementation to be more efficient than
the template space implementation. The decision on a specific
implementation must be based on an expectation of the value
of @ as a function of R. The solid lines in Fig. 7 illustrate the
behavior of the mean value & as a function of R for m = 10,
20, and 30 uniformly distributed templates (10,000 template
sets were processed for each value of R and m). The dashed ,o|
line plots (32). The break-even R increases monotonically with
m, and reaches R =~ 2 when m = 30. Therefore, the weight
space implementation will likely be the efficient choice for
small values of m, while the opposite will be true for larger
values of m.

20+

Fig. 9. Aggregate Templates.
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Centroid

Arial
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Bookman
Courier [

Courier New
Helvetica |
Lucida Bright |-

Helvetica Narrow

Fig. 10. Correlations of aggregate templates with subclass templates.

VII. OCR EXAMPLE
A. Multifont Aggregation

In Fig. 8, contour maps of the letter “A™ as printed in each of
17 fonts are shown. The data was preprocessed as explained in
Section I. The maximin and centroid templates are depicted in
Fig. 9. Fig. 10 illustrates the levels of correlations of each of
the 17 original templates with the “A” template for both
maximin and centroid aggregation. Note that the “Modern”
and “Roman” fonts, which, in some ways, might be considered
as “outliers” for this collection of fonts, achieve very poor
performance with the centroid template, while the maximin
aggregate template results in satisfactory correlations with all
17 fonts. In a system designed to recognize these 17 fonts with
centroid aggregation, the letter “A” would require two tem-
plates to achieve an accuracy equal to or better than a system
with one “A” template using maximin aggregation. Alter-
nately, for the same number of aggregate templates, the
maximin system would out-perform the centroid system.

B. Recognition Demonstration

Multifont optical character recognition was used to demon-
strate maximin correlation template aggregation in the follow-

Modern [
Palatino |-
Roman
Times |

Lucida Fax
Lucida Sans}-

Lucida Sans Typewriter
Times New Roman

New Century Schoolbook

ing experiment. For the demonstration, 12 out of the 17 avail-
able fonts were used to create maximin aggregate templates.
For characters where one aggregate template resulted in mis-
classification, the original templates were split into separate
clusters and each was aggregated separately, resulting in mul-
tiple aggregate templates per character. In this fashion, a total
of 1128 (94 classes x 12 subclasses) templates were replaced
by 192 aggregate templates, resulting in an average of ap-
proximately two aggregate templates per character. Next, the
aggregate templates were used to recognize approximately
300 000 isolated characters having point sizes of 10, 12, and
14 and a uniform mixture of the 12 commonly used fonts. The
data was generated on one QMS-810 PostScript laser printer.
No errors were incurred. The same test using OmniPage. Pro-
fessional Version 2.0, a popular OCR software package sup-
plied by Caere Corp., resuited in a recognition (i.e., excluding
segmentation errors) accuracy of 99.44%. For comparison, a
benchmark test of OCR performance with current proprietary
commercial algorithms was reported by Jenkins et al [12], and
the best recognition accuracies that were obtained with compa-
rable data (i.e., high quality) of three point sizes (10, 12, and
14) and three fonts (Courier, Helvetica, and Times-Roman)
ranges from 99.21% to 99.95%. Published literature reports
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accuracies in the order of 99% to 99.9% for single-font rec-
ognition and worse for multi-font [13], [19], [22].

VIII. CONCLUSION

In this paper we have presented an algorithm which gener-
ates templates for the first stage of a two-stage correlation
based nearest neighbor pattern recognition implementation.
This implementation can be used to accelerate the recognition
process or to provide a recognition scheme when each class is
defined as a collection of subclass templates. In an optical
character recognition example, each letter (class) was defined
in terms of a set of templates, each one corresponding to a
different font (subclass). Aggregate templates were con-
structed for each letter, which enabled classification almost six
times faster than direct template matching.

We formulated a maximin criterion for optimal template
aggregation. In order to minimize the maximum risk of incor-
rect recognition in the first stage, an aggregate template must
maximize the worst case correlation with the original tem-
plates. Theoretical foundations were presented, which lead to
the main result, the algorithm which solves the maximin opti-
mization problem.

Additionally, the following tight bounds on the maximin
correlation p,, were derived:

i+(]—i)minc <Py S\,H—_m%’
m m 2

where C is the correlation matrix of the subclass templates,
and m is the number of original templates. The performance of
the algorithm was discussed and the number of iterations and
FLOPS were experimentally determined to be of order O(m"”)
and O(m*%), respectively, where m represents the number of
original templates. It was also shown how the maximin prob-
lem can be formulated as a quadratic program. It is known that
quadratic programs can be solved in polynomial time which
corroborates our experimental performance results.

Finally, the algorithm was demonstrated on a multifont op-
tical character recognition problem and its performance was
shown to compare favorably with other algorithms published
in the literature.
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