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Abstract

We present an integrated approach to pricing and scheduling for services that are differentiated
in terms of throughput, delay and loss specifications. The key building block to the model are
quality value curves that specify a user’s value of higher quality levels. From the analysis emerges
a pricing rule that charges based on rate and quality grade, and a dynamic scheduling rule, called
the Gep rule. The analysis also derives the economically-optimal probabilistic QoS guarantee
parameters.

We compare our model to the deterministic approach of QoS guarantees using burstiness con-
straints and fair scheduling rules. The scheduling that arises from such deterministic approach
is the well-known Generalized Processor Sharing (GPS). A comparative analysis inspires the fair
Gcp-PS rule as the scheduling rule that combines the unique strengths of GPS and Gep. This
Gcp-PS rule is proposed as a tailored scheduling solution for both the Expedited Forwarding class
and the four Assured Forwarding classes in the IETF’s Differentiated Services.

1 Introduction

Overview A few years ago, the Internet community standardized “Integrated Services” [40, 33] as
a modified ATM implementation of the notion of QoS guarantee. In ATM, the network attempts to
satisfy specific lower levels for given service metrics, typically called service guarantees. Recognizing
the stochastic nature of the network flows and its resulting performance, such service guarantees are
expressed as probabilistic constraints. For example, service guarantees that cell transfer delay d and
cell loss ratio clr will not exceed an upper bound D and g;, respectively, may be expressed as:

Pr[d > D] < g4 and cr < gy, (1)

where ¢4 is a (typically small) probability. Since guaranteeing QoS for each flow assumes that state
information for each flow is maintained, the lack of scalability in offering QoS for the huge amount
of Internet flows has lead to “Differentiated Services,” where, apart from expedited forwarding, some
relative QoS for aggregate flows is introduced [1, 3]. Aside from this scalability problem, there are other
difficulties with such “guaranteed service approach.” First, it is difficult to specify QoS parameters like
D, ¢4 and ¢; before services are well developed [11]. Second, any guarantee is only legally meaningful
when accompanied by a penalty agreement, which would specify the contingency penalty to be paid by
the service provider if the guarantees are not met (similar to a “warranty” package for other goods).
Third and related, this approach assumes that user applications require rather hard constraints (if the
user sets the parameters D and e4); or that a cost-benefit analysis has been carried out in-advance to
specify economically the best guarantee parameters by weighing them to the penalties (if the network
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sets the parameters); or a combination of these two (if the parameters result from a negotiations
between users and network). In summary, meaningful use of a guaranteed service approach—if it is
to be used at all—requires a larger encompassing model to derive the QoS guarantee parameters.

Therefore, we present a more general approach to incorporating QoS considerations that does
not assume exogenously determined QoS guarantees. Rather, anticipated QoS levels are coupled to
the willingness of users to pay for such level of QoS. This reflects our position that QoS, like most
other product or service attributes in life, is a relative concept whose consumption level depends
on the price and the user’s needs and financial willingness to pay for that QoS level. Rather than
seeking QoS guarantees by imposing scheduling control bounds to the network (without considering
financial implications), our model lets self-interested users and the network choose an economically-
optimal level of QoS by trading off money for QoS. Our model thus replaces the hard constraints from
QoS guarantees by a QoS-dependent payment structure. Pricing must be related to valuation, and
therefore, we introduce service value curves as our model building blocks that specify how valuable
a service level is for each application. Recognizing the continuous nature of most applications, these
service value curves are typically continuous in contrast to the hard QoS guarantees. For example,
the service value curve Cjq(d), or delay cost curve in this case, would describe the monetary cost
that user ¢ incurs when his application a message is delayed by d time units. By modeling the value
of quality of service in addition to the usual value or utility of quantity (rate) of service, it becomes
meaningful and feasible to address the following questions: what are the network optimal quality of
service levels? How should these service levels be priced to induce an individually acting user to choose
these network optimal service levels? How should the network be scheduled to provide these optimal
service levels? In this paper we will provide an answer to each of these three questions. During our
analysis we will derive the optimal service specifications that a network should offer. In other words,
our economic-queuing model can be used to determine the optimal set of service guarantee parameters
(such as the D and gg).

The scheduling rule that emerges from this analysis is a dynamic extension of the well-known static
priority cprule that was called appropriately the Generalized cu rule (Gep) in [36]. To appreciate the
features of the Gep rule, we will relate it to the Generalized Processor Sharing (GPS) [27], which is
a basic scheduling rule for a large class of rate-based schedulers for packet networks (such as Internet
and ATM). While the Gep rule derives from a stochastic analysis, the GPS rule is most easily derived
from a deterministic analysis. We briefly review the deterministic approach to guaranteeing quality of
service (QoS) and also relate price-setting in the stochastic system to price-setting in the deterministic
approximation. From this comparative analysis we propose Gep-PS, a scheduling rule that combines
the unique strengths of GPS and Gep.

Objective The prime objective of this paper is to present a framework that integrates technology
and economics to derive mutually consistent pricing and scheduling decisions for differentiated services.
While many papers present pricing results or propose scheduling rules, our integrated framework
appears novel in that both scheduling and pricing emerge endogenously and are tailored to the specific
service value curves. The focus of this paper, therefore, is on modeling rather than algorithm design
or performance simulation. Our second objective is to compare the optimal Gep scheduling rule to the
well-known GPS, which derives its success due to inherent robustness and fairness. We propose Gep-
PS, a scheduling rule that combines the unique strengths of GPS (inherent robustness and fairness)
with those of Gep (optimality, incentive-compatible pricing, and flexible quality sensitivity modeling).

Outline We start in section 2 with the general model. Section 3 presents system optimal service
levels and discusses how to price these levels in a decentralized system. Section 4 presents the Gep
scheduling rule. Section 5 briefly revisits the deterministic approach to guaranteeing QoS and relates
it to the GPS scheduling rule. Section 6 compares Gep to GPS and discusses implications for im-
plementation of scheduling and pricing. Section 7 concludes. A short note on our notation: we will
not distinguish between scalars and vectors. The number of subscripts should make that clear. For
example: if ); is the vector rate of customer 4, the ); ; will denote his scalar rate to grade s.



Literature review Pricing of queuing systems has a long history in the economics and operations
research community. This history is summarized in [37]. Over the last decade, network researchers
from the electrical engineering and computer science community have adopted pricing mechanisms
and applied them to settings where technology is more richly modeled, as reviewed in [7]. Kelly and
co-authors describe charging and rate control of elastic traffic [11, 16]. Kelly’s ideas have recently
inspired several other articles (see e.g. [29, 19]). As in our model, congestion feedback gives customers
information on how to set their rates to maximize their quantity-based utility (minus price). Our ap-
proach differs in that we also model quality value, in addition to quantity-based utility, and present an
integrated framework to set prices and scheduling that are not only rate-, but also quality-dependent.
A broader overview of scheduling is found in Keshav’s book [17, chap. 9] and in the recent review
by Guérin and Peris [13]. Recently, Sariowan et al. [32] have proposed flexible service specifications
via a “service curve” to guarantee a spectrum of QoS rather than a single measure (such as minimum
bandwidth or maximum delay). Stoica et al. [35] have added two dimensions, hierarchy and fairness,
to Cruz’s "service curve” concept. The book of Le Boudec and Thiran [20]contains the current state of
the deterministic theory of queueing that integrates arrival and service curves using min-plus algebra
coherently.

While these service curves and our service walue curves both allow for a flexible QoS model,
both differ substantially in approach and intent. Sariowan et al.’s service curve specifies the minimal
service effort that a server should allocate dynamically to an input flow (i.e., it is a lower bound on
the scheduling allocation control process). As such, it allows for a continuous generalization of single-
numbered user-application-specific hard bounds on delay and backlog, while the goal remains to find
a scheduling rule that guarantees that service curve. In contrast, our service value curve denotes
the monetary value of a given service level to a user, similar to a typical rate-based utility curve in
economics that denotes the value of a given rate. It allows for an integrated model to set and price
quality levels in an economic manner and to derive a supporting scheduling rule. Finally, the present
framework can be applied to the IETF Differentiated Services. Recently, Ren and Park [31] have
proposed a different model for Diffserv that is also game-theoretic yet specifically tuned for Diffserv
aggregation and implementation. This short literature review is supplemented by additional literature
referenced in the text below at appropriate places.

2 Modeling Differentiated Quality of Service

A basic element of a differentiated QoS formulation is a model of the heterogeneity of customer
behavior and of service offerings. For this purpose, each user is classified as one of several types,
indicated by ¢ € I. Similarly, each service offering by the network is classified as one of several QoS
grades, indicated by s € S.

QoS Modeling Multimedia communication consists of information transfer from different appli-
cations (e.g. voice, video and data files) that each may require several different dimensions of “service
quality” QoS, such as delay, jitter, packet loss, etc. In this section, we confine ourselves to one QoS
measures: delay (or waiting time before a customer receives service). In section 5 we will also consider
packet loss. QoS considerations are incorporated through quality value curves, which couple experi-
enced QoS levels to the willingness of users to pay for such level of QoS. QoS value curves specify the
degradation in value that a user experiences due to a lower QoS level. The QoS metric, delay, is thus
modeled by a delay cost function C;(d) that specifies the degradation in value that a user of type 1
experiences when his job experiences a delay d. We assume that the quality value functions C;(-) are
convex (and thus continuous and differentiable almost everywhere) increasing, reflecting the fact that
often more waiting is increasingly more costly. By valuing QoS, the delay cost functions C; will allow
us to price different levels of delay.

A prominent example in Internet today is the deployment of Voice over IP (VoIP) where stringent



end-to-end delays applies. For example, a tolerable one-way mouth-to-ear delay for a voice commu-
nication [38] is about 150 ms, while the packetization delay depending on the codec varies from 20
ms to 80 ms, leaving a remaining network end-to-end delay budget ranging from 70 ms to 130 ms.
Our recent measurements (accurate to within 10us) on the Internet [15], [5] clearly indicate that the
current best effort Internet architecture cannot provide toll-quality telephony since for a large amount
of paths, the end-to-end delay broadly exceeds 100 ms. These observations imply that scheduling is
necessary for VoIP. Possible delay cost functions for VoIP (curve Cj) and for non-real-time services
(e.g. email) are shown in Figure 1.
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Figure 1: Example of delay cost functions for real-time services (such as VoIP where D is about 100
ms) and non-real-time services.

User Decision Model Market segment or type ¢ consists of many small users who each decide
individually whether or not to use the network. Type ¢ customers share the same delay cost function
C;, which may reflect the sensitivity of a given application (text, video, voice...), but are heterogeneous
in that they derive different value from a given rate of processing. These settings well corresponds
with the IETF Diffserv approach where, besides service differentiation, aggregation of flows is key to
provide a scalable network solution.

Similar to traditional demand curves in economics, type i customers can be ordered in decreasing
value and it is convenient to endow them with a “label”: the customer with label x; receives value
vi(x;)Az; from service at rate Az;. Each user may choose a service grade s at a price ps per unit
rate. ‘Higher’ QoS grade may provide more timely service, thereby reducing delay costs, but at a
higher price. When making his decision as to whether to send rate Ax; , to grade s, each user seeks to
maximize his expected profit, which equals value v;(z;) Az; s minus cost, which has two components:
the charge psAx; s and his expected delay cost. The user learns about his anticipated delay experience
ds when submitting to grade s through either past experience or network feedback signals. Thus, when
sending a rate Az; s to grade s, the user anticipates a delay cost rate Az; sE} C;(ds), where E\ denotes
the expectation operator under equilibrium conditions when the network load is A and scheduling rule
is 7 (to be defined in next paragraph). The expected profit rate of the user with label z; when sending
rate Axz; s to grade s is denoted by b; s(z;)Ax; 5, where:

bis(2i) = vi(w;) — ER Ci(dy) — ps. (2)

Let \; s denote the label of the “marginal type 7 customer” who is indifferent between sending to
grade s or not: b; s(\; s) = 0. By construction v;(x;) decreases in x;, so that all customers with labels



x; < Ais have b; s(x;) > 0 and submit to grade s. Therefore, the aggregate rate from type i users
choosing grade s is Zzl <. Azis. Adopting standard assumptions in economics as Mendelson and
Whang [24], Lederer and Li [21], and many others, we assume that customers are atomistic and their

rates infinitesimal. The summation ) Ax; ; is thus approximated by the integral jb’\i’s dz; s, so
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that \; ; represents the aggregate rate from type ¢ users choosing grade s, where b; s(\is) = 0. The
latter condition represents the familiar “demand curve” for grade 7 service from market segment i:
when charged a price ps, the aggregate demand rate will be A; 5, where ); ; is on the demand curve:

bi s(Ni,s) = 0. Similarly, the aggregate value rate and delay cost rate to all type i users choosing grade
s are denoted by Vi(Ais) = [;° vi(w;)dx; s and DCY, = i sERCi(ts).

Network Model: The service provider designs its service offering through two strategic control
levers: pricing and scheduling. The service provider can partially control external subscription rates
by setting the price vector p = (ps)scs, defined earlier. Indeed, this more tailored control is exactly the
motive behind offering differentiated services. In addition, the service provider has dynamic internal
control in that it can decide at each point in time how to serve customers through the network. The
internal scheduling rule used to manage the network is denoted by r. We consider dynamic scheduling
rules that may depend on the current internal state of the queuing process and the total rate vector
A, where A, = ), A\i s, which is the aggregate rate into each grade. Then, regardless of the queuing
system’s complexity, QoS metrics can be summarized by a technology function, which specifies how
the control rule r transforms a total rate vector A into QoS. With our focus on delay as the QoS
metric, this technology function would represent the delay time distribution functions F7 (- |A) that a
user would experience when submitting to grade s while the network uses scheduling rule » and the
total load is A:

Fi(xz|A) =Prlds < z|r,A], Yz > 0. (3)

Thus, user 7’s expected delay cost when submitting one job or packet to grade s is:

B} [Ci(dy)] = / Ci(t)dFT (t|A), (4)

where EY} represents the expectation operator when rule r is used and the server total arrival vector is
A (and the distinction between delay ds and differential operator d should be clear). In equilibrium,
using price rate schedules and internal control rule r the service provider will earn profit rate g :

s = ZpsAs = Zps ZAz’,s- (5)

seS seS icl

The service provider sets prices and scheduling to maximize system profits II, where

M=> (Vilhis) = D) (6)

Notice that (4) shows that customer i’s delay cost of grade s depends on the total subscription vector
A. Reversing the argument, by sending a job to grade s, customer ¢ may impact the delay cost of other
customers. As we will see later, these externality effects will impact the pricing decisions. Finally, we
define an equilibrium of this non-cooperative decision model as any triplet (P, \,r) of price schedules,
customer subscription vectors and control rule that satisfies the users’ and the network’s decision
problems, and that is such that no agent has an incentive to unilaterally deviate from the equilibrium
triplet (which thus is a Nash equilibrium).

Determining QoS guarantees As discussed in the introduction, a meaningful use of QoS guar-
antees requires a broader encompassing model to specify how the (delay) QoS guarantee parameters
Dy and €4 satisfying

Pr[ds; > D;] < ;. (7)



are determined. The model presented here can be used for that purpose. Indeed, once the network
has determined the optimal load vector A and scheduling rule r (which depend on the users’ value
and quality value curves), the delay distribution function (3) can be determined. This then specifies
a family of equivalent QoS guarantee parameters Dy and €4, because they should satisfy:

Pr[ds > Ds] =1 —F;(Ds|A) < ;. (8)

Summarizing, the model presented here incorporates QoS considerations through quality value
curves. Pricing and scheduling become the solution of optimization problems that incorporate users
value and quality sensitivity. Using the optimal scheduling rule, a family of equivalent QoS guar-
antee parameters are specified in terms of the optimal delay distributions. Hence, the model gives
a consistent approach to determine a family of optimal guarantee parameters. Any couple (Ds,e5)
satisfying (8) are equivalent because users are indifferent between them (by construction). Interpreted
differently, (8) specifies the optimal trade-off between upper bound D, and stringency es that the
network should provide.

3 Determining Rates and Pricing

Centralized Solutions A first step in analyzing the multi-person decision model presented above, is
to analyze the relaxed centralized model where one omnipotent central manager makes all decisions
and knows all the model data. Because the central manager directly controls all rates A; s, indirect
control through offering service grades and pricing is superfluous. The only decisions that are left for
the central manager is to determine the optimal rates A} ; and the optimal scheduling rule r*. In the
centralized system: the central planner aggregates all users of type ¢ directly to queuing class ¢, which
is equivalent to grade s = i, as that offers the finest information set on which can be scheduled. (Such
allocation clearly dominates any “mixing” of user flows of different types into one class, as the finer
allocation can always replicate the coarser.) Thus, optimal scheduling will route the aggregate flow of
users of type ¢ into a dedicated queueing class (buffer). While service grades are superfluous in the
centralized model, they will coincide with queueing classes in the decentralized system and we will use
both terms “service grade” and “queuing class” interchangeably®. Therefore, henceforth, we will have
a one-to-one correspondence between aggregate flows of a type ¢ and the service grade s and queuing
class k designed for that type.
The central-optimal scheduling rule r* is a rule that minimizes total delay costs

DCy= Y N.Ej[Ci(ds)], (9)

i€l,seS

where we assume for now that r* is known (more on that later in the next section). We know that
Ais = 0if 7 # s; thus, let A* = ()‘Zz’)iel denote the optimal aggregate rate vector. The the central-
optimal rate vector A* satisfies the first-order conditions of (6):

vi(AY) < B} [C +ZA]8A“ C;(dy)], (10)

Jj€el

where equality holds if and only if A¥ > 0. The necessary first-order conditions (10) have a familiar
economic interpretation: the optimal rate A} equates the value of marginal type 7 user with its total
marginal cost. The latter is born by different parties: the “self-regulating” term ER** C;(d;) accrues to

1 This will lead to no confusion in our model. In general, the number of queuing classes is less or equal to the number
of service grades. In optimal scheduling, one keeps service differentiated and thus has grades coincide with classes.
(Notice, however, that a suboptimal scheduling rule could, for example, serve all service grades indiscrimenantly and put
all grades into one FIFO buffer.)



the marginal type ¢ user himself, but the “externality term” 3. ;A7 6? E} [C}(dy)] is inflicted onto
all the other users. Finally, a zero rate A} = 0 obtains if its marginal value does not outweigh its
marginal cost.

Decentralized System: In the true decentralized system, there is no central omnipotent single
planner and all users make their own decisions. As explained earlier, users of type i make their own
individual decisions, resulting in an aggregate rate \; s to grade s, where )\; ; satisfies bi,s()\i,s) = 0.
(In general, any user could choose any grade. Below, however, we will see that the pricing scheme will
induce all users of type ¢ to submit only to grade i.) Comparing these individual optimality equations
(2) with the centralized optimality equations (10), we directly see that the optimal price p} for grade

7 must satisfy:

pr =Y AL En (0(d,)), (1)

which is exactly the externality effect. This directly explains the optimal pricing approach: To induce
users to incorporate the externality effect they should be charged for the externality cost they inflict
onto others.

There is, however, a second set of conditions that the prices must satisfy for the rates A}, = A} to
be optimal in the decentralized system. These conditions, called incentive-compatibility conditions,
stipulate that a type 7 user should find it in his best interest to submit to only grade s = . That is,
the expected benefit for a type i user with label x; of choosing grade j # 7 must be less than when
choosing grade @: b; ji(x;) < b;i(x;). These incentive-compatibility conditions guarantee that type
i users will all choose only grade i, while the choice (11) of prices and the use of the scheduling rule
r* guarantee that total type ¢ rates in the decentralized system equal the rates A}, = Aj. We can
show that this is indeed the case for single-server systems (notice that the previous analysis is also
valid for networks), which extends the results of Lederer and Li [21] and Mendelson and Whang [24]
to arbitrary delay cost functions:

Proposition 1 The rates A*, prices p* and scheduling rule r* are optimal and incentive-compatible
if service time distributions are homogeneous (i.e., type-independent).

Proof: Suppose the mechanism were not incentive-compatible. Then, there would exist an atom-
istic type ¢ customer with label z; < )\;, that has incentive to submit to a grade j # ¢ so that

b; j(;) > b; i(;). Since the term v; (wz) in (2) cancels, substituting (11) into (2) yields:

+ZA Cji(dj) < E} C, ZA"aA“ e Cyr (dyr). (12)

j'el i'el

With equal service time distributions, type ¢ jobs and type j jobs are indistinguishable from
a scheduling perspective. Thus, adding an infinitesimal rate dv of either type ¢ jobs or type j
jobs to grade (=class) j impacts delay distributions, and thus expected delay costs, identically:
a,\LMEy\*Cj’ (dj)dv = %ER*C]-: (dj)dv. Hence, (12) simplifies to %DCIT\* - %DC}C < 0, which
means that total delay costs DCR* would decrease by reallocating an infinitesimal rate dv of type @
from queue class i to queue class j # i. This would contradict the optimality of r* for any flow vector
A. Hence, there exist no x,i or j # ¢ that satisfies b; j() > b; ;(x). Thus, the mechanism is incentive
compatible and, by construction of the prices p* so that b;;(A}) = 0, the mechanism is also optimal.ll

Given that the service time of a packet is typically independent? of its type, the proposition solves
the problem of pricing and scheduling. To implement this solution, however, we must know the
optimal rates A* and the optimal scheduling rule 7*. The determination of A* (needed for the prices
p*) requires knowledge of each type’s value function, which is rather unlikely. However, the price

2Pricing for heterogeneous service times is discussed in [37] for a model of flow-by-flow scheduling, which is equivalent
to a type consisting of a single, non-atomistic customer.



expressions can also be evaluated at the actual rates A(t) observed at time ¢, instead of at A*. That
leads to dynamic pricing, obviating the need of knowledge of value functions. (Under mild regularity
conditions, dynamic pricing leads to A* in equilibrium as shown by Masuda and Whang [23].) Thus,
only marginal quality value curves and the scheduling rule r* are necessary knowledge to set prices.
The next section 4 presents the Gep rule as a proxy for the exact optimal scheduling rule r*; using
the Gep rule, all prices and the optimal service levels can be implemented.

In [37], we consider a flow-per-flow model where each type corresponds to one user. In that case, a
“two-part tariff” that charges a fixed subscription fee in addition to a variable price is shown optimal.
The fixed subscription fee for type ¢ equals the expected profit that “the” type ¢ user makes. In this
paper, we consider an aggregate flow model, where each type consists of many atomistic users that
each send an infinitesimal rate. Therefore, each atomistic user makes infinitesimal profits so that in
an aggregate flow model the fixed subscription fee is infinitesimal and a variable price only is optimal.
While the aggregate model is in a sense simpler and more realistic, the framework presented here is
directly applicable to flow-per-flow models as shown in [37]. The scheduling rule that emerges is the
Generalized cp rule (explained in the next section) in both models, the only difference being that a
queuing class holds an aggregate flow® here instead of a unique user flow in [37].

4 Determining Scheduling and Service Levels: The Gcu Rule

The previous section 3 highlighted the role of the optimal scheduling rule r*: it minimizes total
expected delay costs, denoted by DC};* for any given load vector A and stores aggregate flow of user
type 7 in queue class 7. In addition, we need its delay distributions F to quantify the expected delay
cost via (4) and its gradients to compute the optimal prices p*.

Scheduling control y,(t) A scheduling rule specifies how the service capacity is allocated to the
different jobs in the queues at any point in time ¢. With convex-increasing delay costs, it is optimal
to serve each class in FIFO order [36, Prop. 1]. Hence, to define a scheduling rule it only remains to
specify how capacity is allocated to queues. We will denote the actual service rate allocated to class i
at time ¢ by ,;(t). As usual, we will denote the maximal service rate of the server by p, which yields
the capacity constraint on the scheduling control:

0<> p(t) < . (13)
el

We will restrict attention to work-conserving scheduling policies, which are policies where the processor
serves at full capacity whenever any jobs are in the system. Hence, denoting by N;(t) the number of
class ¢ jobs in the system at time ¢, we have

D ON(t) > 0= p(t) = p (14)
i i
Also, long-term stability requires that long run utilization (or traffic intensity)

pZZ“T=Zp¢SL (15)

where the class ¢ utilization is p;, = % Notice that long-term stability is guaranteed through the
use of optimal prices p*: because at least one type’s delay distribution in a queueing system grows
unbounded as p — 1, the externality term and thus the prices would also grow unbounded as p — 1,
preventing users to load the system to p = 1.

3The Gep rule described below even applies when multiple aggregate flows are routed into a queueing class. However,
we don not consider that situation here because it is suboptimal.



If the delay sensitivity functions C; are linear, then it is well-known [18, pp. 125] that * is a static-
priority rule that gives static priority to classes ¢ in the order of their index c; i, where ¢; = %CZ- (t) and
is called the marginal delay cost. For many applications, however, the delay sensitivity is non-linear
(more delay is increasingly worse), in which case the exact optimal scheduling rule is unknown. In
[36], however, we show that the optimization problem is asymptotically tractable for a single server
queuing system. To state that result, we first need some additional notation. In [36], it is shown
that the scheduling optimization problem is asymptotically tractable in “heavy traffic” (i.e., if traffic
intensity approaches capacity p — 1) and present the Generalized cp (Gep) rule, which is shown
to be asymptotically optimal as p — 1. Here we show how to specify the Gep rule and its delay
distributions in our setting in concrete, executable terms and we provide some intuition behind the
rule. To stress the approximate mode of analysis, we will use ~ to denote approximate relationships
that are asymptotically exact if p — 1.

Intuition The Gep rule is founded on three facts from queuing theory that are best described in
terms of the total workload process W, which measures the total amount of work (in time units for
the server) that is waiting: E[W (t)] = >, Ni(t)/p. First, the total workload is invariant for work-
conserving scheduling rules. Indeed, new arrivals contribute to an increase in E[WW ()] at (average) rate
> Ai/p = p, while serving drains E[W (t)] at rate 1 by definition® regardless of which class is served.
This yields a net decrease of E[W] at rate p — 1, as long as there is work present. The scheduling
rule, however, does impact how this total workload W is distributed over the different classes: when
serving class i, its average class-workload E[W;] decreases at rate p; — 1, while arrivals increase the
average workload E[Wj] of any other class j at rate p;. The two other facts follow from heavy traffic
approximations: class workloads ‘live on a faster time scale’ than the total workload process. Indeed,
as p — 1, the total workload hardly changes, while class workloads keep changing at a finite rate. At
the time-scale of the total workload, it is as if one can almost instantaneously shift workload away
from one class to the other classes by serving that class for an infinitesimal amount of time while the
total workload is unchanged. Third, in well-behaved heavy traffic limit systems, the class-workload
process “converges”: W; /W approaches a W-dependent constant. In effect, scheduling switches among
classes precisely so as to keep the class workload vector (Wy, Wa, ..., W) close to the point g(WW) on a
switching curve g(+), which we will define shortly. Aside from fast, but small disturbances around the
switching curve, the W; thus follow the W movement and change very slowly. Meanwhile many class
i jobs flow through the system at rate A; while the class workload vector remains relatively constant
and close to g(W). “It is as if a job takes a snapshot of the network when it enters and all queues
remain at that same value during the job’s sojourn throughout the network. (Reimann [30, p. 413])”.
In [36], we apply Little’s law to yield the state-dependent delay:

distribution Nz distribution VVZ
d; ~ — ~ — (16)
A Pi

Thus, the instantaneous delay cost rate can be expressed in terms of class workloads as ), A;C; Wl(t)

The intuition behind the Gep rule then is to “distribute” the total workload W(t) = >, Wi(t ) over
the different classes such that this delay cost rate is minimized at each point in time. This greedy
cost-minimizing allocation of total workload W to class workloads is found by solving the following
linearly-constrained convex optimization problem parametrically for W > 0:

g(W) = ar {W.gl(l)r;el}ZAC< > (17)

subject to : ZVVZ =W (18)

el

4By definition, W is the amount of work in time units for the server. Thus, under a work-conserving policy, when the
server is “on” it serves one unit of work per unit of time.
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Figure 2: The switching curve g(-) defines the dynamic Gep scheduling rule.

This optimization problem defines a mapping ¢(-) from R, to “class-space” Rfr that represents
the lowest-cost workload configuration as W; = g¢;(W). As a positive sum of convex functions,

> NG (%) is convex so that the sufficient first order conditions of the optimization problem are:

Let (W) denote unique optimal Lagrange multiplier of (18). Then: any positive W; and W; solve the

sufficient first order conditions:
Wi Wz>
Gl—)=¢g|— ) =¢W), 19
(5)=a(5r) =< )

and Wy = 0 if ¢ (0) > ((W). As we will illustrate by an example, the solution to (19) defines the
mapping g, which can be interpreted as the switching curve of the Gep rule parameterized by scalar
w.

Example: Assume a two-class queuing system where C1(t) = 3¢5 and C5(t) = 4t>. The optimal
workload allocation for a given W is given by (19):

<m>2 _
P1 /)27

which yields the quadratic switching curve shown in Figure 2.1

Gcp Index and Implementations In the heavy-traffic limit (and under appropriate scaling),
it is possible to control the system such that the class workload vector that corresponds to a total
workload W always lies on the optimal point g(W) on the switching curve. In moderate traffic,
however, discrete job arrivals will make the workload vector fluctuate around the switching curve. For
a given total workload W (t) at time ¢, the Gep rule therefore will schedule so as to keep the workload
vector as close as possible to its optimal point g(W(t)) on the switching curve. Recognizing that
Wi/ p; =~ N;i/A;, define the dynamic Gep index for each class i:

1) = (S ) o (20)

and denote by the class with highest index at time ¢ by:

i*(t) = argmax I;(t). (21)

i€l
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This directly inspires an easy implementation of the Gep rule: at each point in time ¢, serve class
i*(t) at full capacity. This gives the highest instantaneous reduction in marginal cost and makes Gep
a myopic rule. While reducing I;»(¢) the index of the other classes i # i*(¢) will increase. Thus, by
serving the highest index class i*(t), this rule attempts to satisfy the asymptotic optimality condition
(19) in a stable manner.

Gcp Distributions Finally, using (16), we have that the delay distribution FZ-Gc“ (x) = Prld; <
x] =~ Pr[gi(W) < p;x] = Fw (g, (p;z)), where the total workload distribution Fyy(+) is typically known
or a good approximation exists. For example, for general multiclass GI/G/1 queuing systems one can
take Fyy(z|A) ~ 1 — pe 7®, where 1= u’lTﬁ'—p% and C? and C? denote the aggregate
squared coeflicient of variation of the service and interarrival times, respectively. Thus, this allows the
calculation of the delay distributions that can be used to set the QoS guarantees (8).

On the optimality of Gep The rule is exactly optimal under linear delay cost (it then coincides
with the familiar c¢u rule). The interesting question arises whether the Gep-rule is also globally
optimal, i.e. for all values of the traffic intensity p and not just near the heavy traffic limit p — 1,
as was proved in [36]. Today, the question is still open. There is considerable evidence that control
rules that are optimal in heavy traffic also perform very well in moderate traffic. The comprehensive
benchmarking study in [37] shows that the approximation is excellent for moderate traffic. Moreover,
the rule is prima facie reasonable, intuitively sound and its simplicity is appealing for implementation.
In addition, Bertsimas [2] recently showed that the Gep rule is exactly optimal for a two-class M/G/1
system with holding costs that are quadratic in the queue count vector N. This is very encouraging
and suggests that the Gep rule may be optimal for a quadratic cost criterion expressed in terms of
delay d.

Nevertheless, proving exact optimality of delay costs criterions (instead of queue count) is much
harder as the state-space explodes: any dynamic programming formulation must keep track of the
arrival time of each job in the queue to compute delays. In the heavy traffic delay the analysis simplifies
because delays are proportional to queue count via (16). The same holds for a fluid approximation;
Haji and Newell [14] showed that a Gep rule is optimal in a two-class fluid model. Hence, it is
not unreasonable to conjecture that Gep will be exactly optimal for some class of systems, but it
remains a conjecture up to this point. It also is likely that there will be systems where the rule is
not exactly optimal. For example, consider the case where all service time distributions have two
mass points at ¢ = ¢; and t3. Once the server has been serving a job longer than #;, the service
time becomes deterministic and there may be combinatorial arguments that can improve on the Gep
rule. Thus, when special structure in the arrival or service processes reveals more information, there
exists a possibility that Gep may be suboptimal. Since most of data-traffic (in Internet and Ethernet
LAN’s) is demonstrated to be long-range dependent (see for references [39]), an investigation into the
performance of Gep for such systems may be useful.

5 Using GPS to guarantee QoS in a deterministic fluid model

To relate the Gep rule to the well-known GPS [27], we briefly revisit the deterministic approach to
QoS guarantees pioneered by Cruz [8]. Basically, this approach hinges on three assumptions:

1. each customer’s arrival process satisfies a certain burstiness constraint, which puts an upper
limit on the number of arrivals during any time interval,

2. the service time of each packet or bit is assumed to be deterministic,

3. and a scheduling is used that guarantees each non-empty class ¢ a minimal service rate p;.

Such scheduling rule is called “fair” because no class can prevent another class from getting served.
Formally:

11



Definition 1 Let B(t) = {i: N;(t) > 0} be the set of backlogged classes at time t. A fair scheduling
policy guarantees each backlogged class a minimal service rate p; :

pi(t) > g, if i € B(t)
=0 otherwise. (22)

Notice that any fair policy in a single server node requires processor sharing. As we will show, the
result of these three assumptions is that the amount of work in the system at any point in time is
bounded. Thus, also all delays and backlogs have a deterministic upper bound.

5.1 The Burstiness Constraint

Recall that A; denotes the average arrival rate of class ¢ in bits/sec. The “burstiness constraint”
will impose restrictions on the stochasticity of the arrival process as follows. Let A;(¢) denote the
instantaneous arrival rate® of class i [in bits/s] at time ¢. Then, for u < t, L;(u,t) = jlf Ai(T) dr
represents the amount of data in bits that arrives during any time interval [u,t]. Let &; and A; be

positive scalars. The flow A;(t) is said [8] to satisfy the burstiness constraint (&;,A;) if, for all u < ¢,
Li(u,t) < 7; + A (t —u). (23)

Relation (23) means that there is an upper bound to the amount of traffic contained in any interval
that is equal to a constant &; plus a quantity proportional to the length of the interval. The constant of
proportionality A; can be bounded in two straightforward ways. First, since L;(u,t) = jqf Ai(1) dr <
max; A;(t)(t—u), we have from (23) that A; is upper bounded by the peak rate max; A;(¢) in which case
7; = 0. Second, dividing (23) by (* — u) and taking the limit ¢t — oo, shows that A; is lower bounded
by the long term average rate of A;(t) which, for finite u, equals A; > limy oo ﬁ fi Ai(T) dr. In
the latter case, where lim;_, o ti—lu = 0, a maximum (finite) value for ; is possible. In between these
extremes, the rate A; can be traded-off for the burstiness &;. Given the profile A;(t) for all u < ¢,
Naudts [25] presents efficient algorithms to extract couples (&;, A;). He also shows that the rate A;
versus burstiness &; curve is convex. A generalized version of (23) is L;(u,t) < f(t —u) for some
nondecreasing nonnegative function f(.) as used by Sariowan et al. [32]. The conformance of a i-job
to the burstiness constraint (&;, A;) can be checked by a token bucket, where the tokens are generated
at rate Ai.

Given a burstiness constraint, the arriving work during a compact time interval is bounded. If, in
addition, the service times are deterministic and we use a fair scheduling policy, the queue count is
bounded. Indeed, assuming the system starts initially empty, elementary queuing theory yields that
the queue count is the difference between cumulative inflow and outflow:

N;(t) = max [Li(u,t) — M;(u,t) : u < ¢ (24)

where M;(u,t) = jqj 1;(T) dr. As we are interested in bounding the number of jobs in the queue, let
us consider a busy class ¢ period so that N; > 0 for all w and ¢ during that period. The burstiness
constraints gives the upper bound (23) on L;. At the same time, a fair scheduling policy gives a lower
bound to M; by serving class ¢ at minimal rate y; whenever N;(t) > 0 so that M;(u,t) > p.(t —u).
Hence,

—_ if p,>A;
Ni(t) <max |0; + N (t—w)—p. (t—uw):u<t| < ay (25)
< I

4

which shows that NV; is bounded provided i > A;.

SFollowing [8], we adopt a continuous time fluid description.

12



5.2 Upper bounds on delay and packet loss

Let us investigate a single queue (or multiplexer) processing all QoS classes ¢, which is the simplest
representation of an actual switch or router. The previous bound on N; directly shows:

Lemma 2 If each class has deterministic service times and satisfies a burstiness constraint (&;, A;)
and if a fair scheduling policy is used with p; > A;, then a zero packet loss is guaranteed if the total
buffer size G > ) ;0 and delays d; < D; are guaranteed if D; > 3*.

Indeed, given (25) we know that the sum of all queue lengths is bounded by .., ;. And, with
deterministic service times and a fair policy with i > A;, we have that the actual delay d; of job i is

upper bounded by
T oming(p (1) o T A

1

Hence, under the conditions of the Lemma, both a zero loss and an upper bound of the delay
for that i-job can be expressed in function of &; and A; only. This underlines the interest in this
deterministic approach for packet networks such as the Internet and ATM; it shows that they are able
to guarantee loss and delay constraints.

This result on guarantees must be qualified, however. First, zero packet loss is guaranteed provided
the burstiness constraint is satisfied. This is typically ensured by use of a token bucket, which is a
form of admission control. Thus, if a user’s flow does not satisfy the burstiness constraint, some of
its packets may be denied admission (and are lost), while zero packet loss is guaranteed to admitted
packets. Second, the delay guarantees are deterministic because all stochasticity is either assumed
to be bounded or be deterministic. Indeed, only under those assumptions are the probabilistic QoS
guarantee constraints (7) of our general model satisfied with probability one (or ¢; = 0). An extension
of (23) to a probabilistic setting in order to incorporate e;-requirements as in (7),

Pr[Li(u,t) < (n(ei) + J_\Z(EZ) (t — u)] <€, (27)

where the burstiness constraint parameters become function of the stringency ¢;, introduces the need
for large deviation theory and the concept of equivalent bandwidths. In fact, A;(€;) can be defined as
the equivalent bandwidth of class i-job corresponding to a €;-stringency on QoS requirements. Such
analysis rapidly becomes complex and even intractable. The deterministic analysis buys tractability at
the expense of a more restricted and approximate model. Finally, the Lemma requires a fair scheduling
rule that guarantees a minimal service rate p; > A;. That requirement directly relates to the capacity

constraint (13):
ZAz’ < Zl_\z' < Zgi < e

In a certain sense, input shaping corresponding to the burstiness constraints (7;,A;) allow us to
replace the difficult probabilistic constraints specified via (D;,e;) with this simple, linear capacity
constraint. Unfortunately, there is no simple way to express the burstiness parameters in terms of
our general stochastic model. Moreover, for many (especially real-time) applications, the burstiness
constraint parameters (7;, A;) can only be estimated roughly, as mentioned earlier. The fact that these
burstiness parameters are not easily analyzed and determined somewhat undermines the attractiveness
of the deterministic approach as a sound theoretical model, although the associated token bucket is
widely popular. In particular, besides ATM’s Usage Parameter Control (or policing function) also the
IETF’s Integrated Services, both the guaranteed service [33] and the controlled-load service [40] are

expressed in terms of token bucket parameters (7;, A;).
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5.3 Generalized Processor Sharing (GPS)

Fair policies not only differ in the minimal service rates p;, but also in how they allocate the excess

capacity, denoted by
Ap(t) =p— > A (28)
1€B(t)
The well-known Generalized Processor Sharing [28, 26) is a fair scheduling rule as defined in the Lemma

that guarantees a minimal service rate p; > A;, and that allocates this excess capacity proportional
to the minimal service rates. We review the definition:

Definition 2 Generalized Processor Sharing with weight vector ¢ > 0, denoted GPS(¢), serves class
1 at rate:

b, .

(T B(t

i(t) ~ Tienw Tienw bl ifi e B(). (29)
=0 otherwise.

Since B(t) C I, GPS guarantees each class a minimal service rate of

T = =
) Zje[ ¢j

regardless of the presence of other backlogged classes. Thus GPS is “fair” (Parekh and Gallager [27]
present additional attractive properties of GPS). To offer the minimal service rate j; > A; the weight
vector should satisfy:

¢ 1z

Z]EI (b] K
Thus, a simple choice is ¢ = %I_X > p, where A; is specified via (23) implying that all jobs are

(31)

constraint by a leaky-bucket®, for which the previous deterministic analysis shows that both loss and
delay can be guaranteed. (If, as mentioned earlier, the parameters (7;,A;) are not known and flows
are not regulated, there is no simple or apparent choice for the weight vector ¢, which diminishes the
attractiveness of GPS in such setting.)

Like Gep, GPS is a work-conserving scheduling discipline. As any processor sharing rule, however,
GPS is “ideal” in the sense that it assumes that arbitrary small amounts of data from each of the I
different jobs can be served in cyclic order. In reality, a packet-based version called “Weighted Fair
Queuing” [9] or PGPS [27] is implemented”. The actual service rate y;(t) is constant during intervals
where the set B(t) of backlogged jobs is constant. Thus, during such intervals, GPS is a static rule
and the allocation of excess capacity Ap(t) is independent of the actual queucount vector N(t). The
word “generalized” refers to arbitrary weights ¢, as opposed to the specific choice of ¢; = ¢, in
traditional uniform processor sharing, and to the dynamic update of that “constant” rate due to the
externality effect, the interference with others jobs which alters over time. Let, for any £ € (¢1,t2),

8Subjecting flows to a bustiness constraints (&;,A;) is, however, not a prerequisite for the operation of GPS. If
each flow’s traffic intensity p; is smaller than ¢; for all flows ¢ served under the GPS discipline, Borst et al. [4] have
demonstrated that the tail behavior of the buffer content of an individual flow with long-tailed traffic characteristics is
equivalent to the tail behavior of that flow when served in isolation at constant rate (the link rate minus the aggregate
rate of all other sources). The condition p, < ¢, essentially ensures that each flow is served at minimum rate u; which
is necessary for stability because it avoids significant queue build-up. Hence, also their analysis shows that some kind of
input control (e.g. via a token bucket) is necessary.

"Due to the desirable properties of GPS for integrated services networks, many implementable algorithms that ap-
proximate GPS have been proposed. The class of these packet-approximation algorithms for the GPS discipline has been
recently [22, 6, 34] called packet fair queueing (PFQ) algorithms, while, in 1995, Goyal et al. [12] have proposed the
name Guaranteed Rate Scheduling Algorithms for a subclass of PFQ. PFQs do not make the fluid flow assumption of
infinitesimally small packet sizes. The first presented and best-known PFQ is Weighted Fair Queueing, which is identical
to Packet-by-packet Generalized Processor Sharing (PGPS) proposed by Parekh and Gallager [27]
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M;(t1,t2) = jttf s (1) d1 = p1;(§)(t2 — t1) denote the amount of work served for a i-job in the interval
(t1,t2) during which the set of backlogged jobs B(t) does not change and, on (29), p,;(t) = p;(§). Via
integration of (29), it follows that GPS ensures that for any two flows k and [ back-logged during
(tl,tg) holds

Mk(tl,tz) _ Ml(tl,tg) _ 2 dr
by, P " . >_jeB(r) P
or,

= = cte =
P P >je B(e) Pj

Thus, GPS provides inherent fairness, where fairness is measured relative to the amount of resources

that are reserved for each job as indicated by the weight vector ¢.

6 On the relationship between Gcu and GPS

We showed that Gep is the scheduling rule that provides optimal quality levels by minimizing the
total expected delay costs DC' =) . AjE [C;(d;)], where the delay cost functions Cj(-) are the basic
building block to model QoS (section 2). We showed that Gep is a dynamic priority policy that gives
full bandwidth to class ¢*(t):
PR =p =),
=0 otherwise.

GPS, on the other hand, is a fair scheduling rule that can guarantee deterministic delay bounds
in a burstiness constrained, deterministic fluid model. GPS is an attractive scheduling rule not only
because it is fair and allows worst-case delay guarantees, but also because of its simplicity, flexibility
from changing the weight vector, and analyzability [27]. In this section we consider the following

questions: are Gep and GPS related and how can their unique strengths be combined?

By comparing (32) and (19), it is tempting to conclude that ¢; (%) = d)i or that the delay cost

function used in GPS should be linear C;(t) = (pi We know, however, that with linear delay costs,
the Gep rule becomes a static priority rule (thé cp-rule) where only the class with largest index
i*(t) (20, 21) is served, while GPS shares capacity among all backlogged classes B(t) proportional
to ¢, of each class . Thus, GPS and Gcp as defined above are different as they are the result to
different optimization problems. Gcp was designed to minimize delays and processor sharing is strictly
suboptimal with regards to minimizing delays®:

Proposition 3 Priority service yields smaller delays and delay costs than processor sharing

Proof: Consider the following interchange argument: consider two jobs A and B of class 1 and 2
with service times (packet lengths) I; and l5. Assume first that both jobs arrived at an empty system
at the same time t = 0. Assuming strict priority service, say to class 1, we have that

lp L+l
0

Under “real” sharing over the two jobs, that is GPS with weight vector (¢, ¢y = 1—¢;) and 0 < ¢; < 1,
where we assume (otherwise just switch labels A and B) that & < £ (from which follows that

$1 — P
51 Lt lo
S g, Th k< —¢2), we have that

- , ,
dsjatzc = = and dséatzc — dsAtatzc +

ey 1 Iz

8We are grateful to Professor Tsitsiklis, who inspired this result through an example.

static ll GPS ll GPS GPS l2 B z_ill ll + l2 static
A" == <di " = Sdp C =di v+ = = dp™™, (33)
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so that priority service strictly improves class delays, and hence total delay costs. The same argument
applies to any two jobs currently in service: switching from GPS to static priority strictly decreases
the delay of the priority job (and of all jobs arriving during the busy cycle of that priority class),
without increasing the delay of the non-priority job (and of all jobs arriving during the busy cycle).
Hence, delays and delay costs can be decreased by switching to priority service for two such jobs;
therefore, priority service dominates processor sharing in general.ll

Thus, when it comes to end-to-end delay minimization, strict dynamic priority service dominates
processor sharing and Gep dominates GPS to minimize total delay costs. GPS, on the other hand,
was designed to enforce fairness among classes; fairness in the sense that each class receives a minimal
bandwidth at all times that the class is non-empty. Serving all classes in one FIFO queue is not
fair because one bursty arrival from a given class makes all subsequent other class arrival wait. (In
our proof, the waiting times for A and B are zero under GPS, where (obviously) one job has strictly
positive waiting time under priority service.)

While Gep and GPS are different, an alternative implementation of Gep that satisfies the fairness
criterion makes GPS as subclass of Geye:

Definition 3 The processor-shared Gep rule, denoted Geu-PS, allocates capacity as

Vie B(t) : p,(t) = { ﬁ: + Ap(t) Zi i 2:87 (3

By construction, Geu-PS is fair, but different from generalized processor sharing with weights
¢; = A;. While both rules allocate a minimal service rate p; = A; to each non-empty class 7, the
difference stems from the allocation of the excess® capacity Zu(t). Under GPS this excess capacity is
distributed over all non-empty classes in fixed proportion, regardless of the queue count. Under Gep-
PS, however, class i*(t) gets all excess capacity, exactly in an attempt to minimize total delay costs.
It should be clear from our discussion above that Gep will yield lower total delay costs than Gep-PS
because the latter gives up some cost performance to satisfy an additional fairness requirement. It
also is clear that Gep-PS is a delay cost minimizing fair rule; as a dynamic processor sharing rule, it
outperforms GPS with respects to cost minimization. Geu-PS can also be interpreted as a dynamic
GPS rule: it is attractive because it automatically adjusts its processor sharing fractions depending
on the state of the system to provide optimal service levels (in the context of our model). As such,
Gep-PS combines the unique strengths of GPS and Gep. As a fair rule, it can guarantee delay
bounds in a deterministic setting with burstiness constraints as we showed in section 5. As a rule
that implements optimal QoS levels, it automatically adjusts processor sharing fractions. This may
be important in stochastic environments where it is hard to come up with the burstiness constraints
parameters (7;, A;) and a good choice of the GPS weight vector ¢, which would incorporate effective
bandwidth allocations. Gep-PS automatically implements optimal quality levels in our model without
needing complex effective bandwidths. Finally, the fact that Gep and Gep-PS apply to non-stationary
and finite horizon settings makes it appealing to current multimedia environments.

Within the framework of the IETF’s Diffserv, Geu-PS appears to be a promising scheduling rule
for both Expedited Forwarding (EF) and Assured Forwarding (AF). The virtual leased line class, EF,
needs admission control and benefits from a minimum service rate while the AF classes are more
appropriately scheduled in the line of the economic optimization criterion that lead to Gep. Hence,
the minimum service rates A; in (34) for EF-class jobs can be determined via admission control (e.g.
based on a token bucket). The remaining server capacity Apu(t) can be devoted to the four AF classes
that are differentiated via suitably chosen delay cost functions Cj(.).

9The idea of redistributing excess capacity in GPS has been proposed earlier by Duffield et al. [10]. The trigger
in [10] was to question the need of queueing systems to emulate GPS closely. The resulting schedulers are different
modifications of GPS. Our rule Gep-PS, on the other hand, combines two different optimization criteria: minimization
of total expected delay cost and fairness with minimal service rate guarantees.
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7 Conclusion

We have presented an integrated approach to pricing and scheduling for services that are differentiated
in terms of throughput, delay and loss specifications. The key building block to the model are quality
value curves that specify the user value of higher quality levels. From the analysis emerges a pricing
rule that charges based on rate and quality grade, and a dynamic scheduling rule, called the Gep rule.
The analysis also derives the economically-optimal probabilistic QoS guarantee parameters.

We have reviewed the deterministic approach of burstiness constraints and fair scheduling rules to
deterministic QoS guarantees. The scheduling that arises from this analysis is the well-known GPS.
A comparative analysis inspires the fair Gep-PS rule as the scheduling rule that combines the unique
strengths of GPS and Gep. We propose the Gep-PS rule as a tailored scheduling solution for both
the EF-class and the AF-classes in Diffserv.

Our analysis begs for further study along several dimensions. It would be interesting to further
investigate the relationship between the delay-cost minimization approach imbedded in the Geprule
to the concepts of effective bandwidths. Also, an algorithmic, packet-based implementation of the
Gep-PS rule may be designed and its performance may be compared to the ideal version presented
here. Finally, our analysis of Gcu at the node level should be extended to the network case. By
focusing on the fair Gep-PS, it is expected that such network analysis may be analytically tractable
under burstiness-constraints.
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