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Consider the following due-date scheduling problem in a multiclass, acyclic, single-station service system: Any class k job arriving at time
t must be served by its due date t+Dk. Equivalently, its delay �k must not exceed a given delay or lead-time Dk. In a stochastic system, the
constraint �k � Dk must be interpreted in a probabilistic sense. Regardless of the precise probabilistic formulation, however, the associated
optimal control problem is intractable with exact analysis. This article proposes a new formulation which incorporates the constraint through
a sequence of convex-increasing delay cost functions. This formulation reduces the intractable optimal scheduling problem into one for
which the Generalized c� (Gc�) scheduling rule is known to be asymptotically optimal. The Gc� rule simplifies here to a generalized
longest queue (GLQ) or generalized largest delay (GLD) rule, which are defined as follows. Let Nk be the number of class k jobs in system,
�k their arrival rate, and ak the age of their oldest job in the system. GLQ and GLD are dynamic priority rules, parameterized by 
: GLQ(
)
serves FIFO within class and prioritizes the class with highest index 
kNk, whereas GLD(
) uses index 
k�kak.

The argument is presented first intuitively, but is followed by a limit analysis that expresses the cost objective in terms of the maximal
due-date violation probability. This proves that GLQ(
∗) and GLD(
∗), where 
∗�k = 1/�kDk, asymptotically minimize the probability
of maximal due-date violation in heavy traffic. Specifically, they minimize lim infn→� Pr�maxk sups∈�0�t�

�k�ns�

n1/2Dk
� x� for all positive t and

x, where �k�s� is the delay of the most recent class k job that arrived before time s. GLQ with appropriate parameter 
� also reduces
“total variability” because it asymptotically minimizes a weighted sum of �th delay moments. Properties of GLQ and GLD, including an
expression for their asymptotic delay distributions, are presented.
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1. INTRODUCTION AND INTUITION

Completing services or manufacturing products by
preestablished “due dates” has been—and continues to
be—a major concern in many practical settings. This
traditional scheduling problem has received much atten-
tion in a static or deterministic setting. When services
or products are processed over time in a more realistic
environment where their processing times, or the times
when their requests are received, exhibit some uncertainty,
this “simple” scheduling problem becomes intractable
with exact analysis. This article solves this important
stochastic scheduling problem in the asymptotic regime
where scheduling has its highest impact: when the pro-
cessing system is heavily loaded.

Consider a multiclass, single-station service system
without feedback routing. The objective is to schedule the
servicing of jobs in this system such that each class k’s
delay (also called sojourn, throughput, or flow time) �k
does not exceed a given deterministic delay or “lead-time”
Dk. This means that a class k job arriving at time t must
be served by its due date t +Dk. Henceforth, we will
refer to this loosely as the due-date scheduling problem.
In a stochastic system the delay �k is a random variable.
Hence, the due-date scheduling objective must be inter-
preted in a probabilistic sense that specifies the meaning of
the constraint violation �k >Dk in a stochastic setting. Such

probabilistic interpretations may include enforcing upper
bounds on the violation probabilities Pr��k > Dk� or frac-
tion of late jobs, or minimizing some cost functional on
∪k��k > Dk�. For example, minimize a weighted sum of
the violation probabilities or a weighted sum of average
“tardiness” ��k−Dk�

+, etc. Regardless of the precise prob-
abilistic formulation, however, the associated optimal con-
trol problem is intractable with exact analysis.

This article proposes a new formulation that incorporates
the constraint �k � Dk through a sequence of convex-
increasing delay cost functions and that relates to
minimizing the maximal violation probability. This formu-
lation reduces the intractable optimal scheduling problem
into one for which the Generalized c� (Gc�) scheduling
rule introduced by Van Mieghem (1995) is known to be
asymptotically optimal. The Gc� rule for this formulation
turns out to be a generalized longest queue (GLQ) or gen-
eralized largest delay (GLD) scheduling rule, which are
defined as follows. Let Nk�t� denote the number of class k
jobs in the system at time t, �k their average arrival rate,
and ak�t� the age of their oldest job in the system at time
t. GLQ and GLD are dynamic priority rules, parameter-
ized by a nonnegative vector 
. GLQ(
) serves FIFO within
class and gives priority to the class with highest index

kNk�t�, whereas GLD(
) uses the dynamic priority index

k�kak�t�. The formulation results in a short proof that,
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among all work-conserving scheduling rules, GLQ(
∗) and
GLD(
∗) with parameter


∗� k =
1

�kDk

(1)

asymptotically minimize the maximal violation probability.
Note that GLD(
∗) serves the class with earliest relative
deadline ak�t�/Dk.

1.1. Intuition

The intuition behind the approach is rather simple and can
be summarized as follow. Consider a new formulation of
the due-date problem in terms of a sequence of relaxations
that replace the hard constraint �k �Dk by a minimization
of convex-increasing delay cost functions C��k indexed by
� ∈ �1���:

C��k��k�= �k

(
�k
Dk

)�

� (2)

where � is a positive weight vector. Each convex cost relax-
ation approximates the due-date problem with accuracy
increasing in �, in a sense to be made precise later. The
limiting functions lim�→�C��k = C∗�k represent the “ideal
cost formulation” of the due-date problem: The ith class
k job with flow time �k�i incurs cost C∗�k��k�i� equal to 0
if �k�i < Dk; �k if �k�i = Dk; and � elsewhere. For finite
�, the formulation is well posed and it is then natural to
determine a scheduling policy that minimizes the cumula-
tive delay cost J��t� over an arbitrary time interval �0� t�,
in expectation or in distribution, which is the stronger cri-
terion used here. Let Ak�t� denote the number of class k
arrivals during �0� t�. Then

J��t�=
∑

class k

Ak�t�∑
job i=1

C��k��k�i� (3)

and J��t� is asymptotically minimized in distribution at
every point in time t by a Generalized c� scheduling rule
as shown in Van Mieghem (1995). (The precise asymp-
totic statements will be given later.) Let 1/�k denote the
average service time of a class k job and c��k = Ċ��k the
marginal delay cost function. The Gc� rule is a dynamic
priority rule that serves FIFO within class and serves the
class with highest index �kc��k�ak�t��. This is precisely
the familiar c� rule, except that “c” now depends on
the system state through the marginal delay cost function.
The index is easily calculated as �k��k

Dk
� ak�t�

Dk
��−1 and is

equivalent to using the index � �k�k
Dk

�1/��−1� ak�t�
Dk

. Hence, the
asymptotically optimal rule for the �-relaxation of the due-
date problem is GLD with parameter


��k =
(
�k�k

Dk

)1/��−1�


∗� k� (4)

In the asymptotic regime, Little’s law suggests that the ages
ak and scaled queue count Nk/�k have the same distri-
bution (as will be shown rigorously) so that GLQ(
�) is
also asymptotically optimal. The intuitive argument ends
by noting that both policies are well behaved in � and
lim�→� 
� = 
∗.

1.2. Motivation

The prime motivation behind this article is to demonstrate
the ease and power of the intuitive use of Gc� rules to
optimize nonlinear criteria specified in terms of delays �
and/or queue count N . Gc� provides a simple and effective
tool that yields realistic policies in settings where classical
queuing theory is of little help. While Gc� methodology
is grounded in heavy-traffic theory, its greatest strength is
that near-optimal rules and performance estimates can be
obtained without knowledge of the underlying sophisticated
theory. An earlier example was given in Van Mieghem
(2000), which embeds Gc� scheduling in an economic
setting to derive optimal quality-of-service offerings and
incentive-compatible pricing. Other Gc�-based scheduling
rules are derived in Ayhan and Olsen (2000), which also
reviews the few papers on scheduling with an objective dif-
ferent from minimizing average holding or delay costs. The
lack of such research is surprising, given that service spec-
ifications in terms of 95th or 99th percentiles on delay are
much more relevant in practice than minimizing the tradi-
tional average “holding costs” that are devoid of meaning
in a service setting.

While an intuitive argument suffices to advocate the use
of GLQ and GLD in practical due-date scheduling settings,
a rigorous treatment of the limiting argument for �→ �
is necessary for a precise characterization of the optimality
results. The secondary motivation of this article, then, is to
show how Gc� methodology can deal with various tech-
nical complications. Our interest lies in a double limiting
regime: a heavy traffic limit and the �-limit. To be robust
and meaningful, the results must be valid regardless of the
order in which these limits are taken. While establishing
such interchange of limits is usually extremely difficult
technically, a careful insertion of the �-limit in the main
proof of Van Mieghem (1995) suffices. Finally, the lim-
iting argument yields a simpler equivalent characterization
of the cost optimality criterion directly in terms of viola-
tion probabilities. By showing the asymptotic equivalence
of lim� J� and the maximal violation probability, it proves
that GLQ(
∗) and GLD(
∗) asymptotically minimize the
maximal violation probability in the due-date scheduling
problem.

The next section in this article details and supports the
earlier arguments. In addition, the complete tractability of
the asymptotic system allows explicit calculation of all
quantities of interest, including asymptotic delay distribu-
tions and thus violation probabilities under GLQ and GLD.
The third and last section discusses implications and limi-
tations of this approach and reviews related literature.

2. RIGOROUS STATEMENTS AND PROOFS

2.1. Preliminaries on Notation

Notation of Queuing System Primitives. For ease of
reference, adopt the notation of Van Mieghem (1995) for a
wide class of single-station service systems with d classes
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that includes the multiclass G/G/1 queuing system. As
usual, we are given a d-dimensional arrival process A and
an independent d-dimensional service process S. Ak�t� rep-
resents the number of class k jobs that have arrived during
�0� t� and Sk�t� is the number of class k jobs that are served
during the first t time units that the server devotes to class
k. Construct d sequences of interarrival times �uk�i " i ∈ ��
for k = 1� � � � � d and a corresponding partial sums process
U such that

Uk�j�=

j�∑
i=1

uk� i with Uk�0�= 0�

Ak�t�= max�j ∈ � " Uk�j�� t��

Uk�j� is the arrival time of the jth class k job. Similarly,
one can construct d sequences of service times �vk�i " i ∈��
for k = 1� � � � � d and a corresponding cumulative service
process V , where Vk�j� is the total service requirement of
the first j class k jobs. As usual, �k denotes the average
arrival rate of class k and 1/�k denotes the average service
time of a class k job so that 'k = �k/�k and ' = ∑

k 'k

denote the traffic intensity of class k and the system.
A scheduling rule r can be expressed as a vector alloca-

tion process T , where Tk�t� represents the total amount of
time during �0� t� that the server allocates to class k. Let
Nk�t� denote the total number of class k jobs present in the
system at time t, and define the vector headcount process N
in the obvious way. We have the fundamental flow identity

Nk�t�= Ak�t�−Sk�Tk�t���

The total amount of work (expressed in units of time)
requested by the class k jobs that are in the system at time
t is called the class k workload Wk�t� and is defined as

Wk�t�= Vk�Ak�t��−Tk�t�� (5)

A work-conserving policy is a scheduling rule that pro-
vides service whenever the system is not empty. It follows
directly that the total workload W+ = ∑

k Wk is indepen-
dent of the work-conserving scheduling policies. To empha-
size the dependence of a quantity on the scheduling rule
r , we may add a superscript r . Using that notation, the
fact that

∑
k W

r
k =W+ for any work-conserving policy r is

called workload conservation. For any delay minimization
problem that allows preemptive scheduling, it is natural to
restrict attention to work-conserving rules because volun-
tary insertion of idleness increases delays. (In addition, our
mode of asymptotic analysis is too crude to differentiate
between preemptive and nonpreemptive rules.)

Finally, let �rk�i denote the delay (or flow time or
throughput time) of the ith class k job when using
scheduling control rule r . The continuous-time process
�rk �t� denotes the delay of the most recent class k job that
arrived before time t under control r : �rk �t�= �rk�Ak�t�

. Under
convex-increasing delay costs, it is optimal to serve FIFO
within each class (Van Mieghem 1995, Proposition 1). In
that case, the delay process is defined as

Wr
k �t�= T r

k �t+ �rk �t��−T r
k �t��

Notation of Heavy Traffic. Consider a sequence of
queuing systems, parameterized by n, under a policy r .
Queuing primitives indexed by superscript n denote quan-
tities in the nth system so that, for example, �n and 'n

denote the delays and the utilization in system n. The usual
“heavy-traffic condition” requires that limn→� n1/2�1−'n�
is finite (so that 'n →n 1). Given that delays �n grow
unbounded as 'n → 1, heavy traffic requires scaling. In
addition, to keep cumulative cost finite as �→�, denote
the scaled cost

Jn� r
� �t�=

[
1
n

∑
k

An
k�nt�∑
i=1

C��k

(
�nk�i
n1/2

)]1/�

=
[

1
n

∑
k

∫ nt

0
C��k

(
�nk �s�

n1/2

)
dAn

k�s�

]1/�

� (6)

where the cost functions C��k are defined by Equation (2).
As usual, Xn ⇒ X denotes weak convergence of Xn to X
in the space � of simply discontinuous functions under
the Skorohod topology. Given that all our limiting pro-
cesses will be continuous, convergence under the Sko-
rohod metric is equivalent to convergence under the uni-
form norm xt = sups∈�0�t� x�s�. We will also use the
�-norm, denoted by xt�� = �

∫ t

0 x�s��ds�1/�. Let Xn �
Y n stand for �Xn�Y n� ⇒ �X�X�. A sequencing rule r∗

is said to be asymptotically optimal for the �-relaxation
of the due-date scheduling problem if its asymptotic cost
over an arbitrary time horizon t is stochastically smaller
than the cost under any other work-conserving rule r .
Thus, r∗ minimizes lim infn→� Pr�J n�r

� �t� � x� for all
x� t � 0. (This is a strong notion of asymptotic opti-
mality that relates to the notion of “pathwise optimality” in
heavy traffic.) Its associated cost Jn�r∗

� �t� ⇒ J ∗
��t�, where

J ∗
� is the finite, tight lower bound on cumulative cost

given in Van Mieghem (1995, Proposition 6), so that
limn→� Pr�J n�r∗

� �t� > x�= Pr�J ∗
��t� > x�. Finally, the hall-

mark heavy-traffic result is that the scaled total work-
load process converges n−1/2Wn

+ ⇒ W̃ ∗
+. Here, W̃ ∗

+ is a
reflected Brownian motion that is independent of the work-
conserving sequencing rule and whose stationary distribu-
tion is exponential and denoted by

FW�x�= lim
t→�Pr�W̃ ∗

+�t�� x�= 1− exp�−.x��

For example, Van Mieghem (2000, Proposition 3) gives an
expression for .. In addition, in that paper it is argued that
the mixed distribution 1−' exp�−.x�, which is equivalent
to FW�x� in heavy traffic, may be a better approximation
for the total workload process of a multiclass GI/G/1 queue
in moderate traffic.

2.2. Preliminary Properties of GLQ
and GLD Policies

Using the Gc� methodology, we first derive some general
performance properties of GLQ and GLD policies that will
be useful later for the optimal control problem.
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Proposition 1. Under GLQ(
) and GLD(
), the class
count process “hugs the curve” 
iNi = 
jNj: ∀ i� j "

sup
s∈�0� t�

n−1/2
iN n
i �ns�−
jN

n
j �ns� �⇒ 0�

In addition, under GLD(
) ages and delays are asymptot-
ically equivalent: n−1/2�n�GLD

i � n−1/2an�GLD
i �

The proof is relegated to the Appendix.
Intuitively, Proposition 1 results from the fact that

class counts and class workloads “live on a faster time
scale” than total workload. Roughly speaking, if class
i is being served at time s, its workload changes
at rate n−1/2Ẇ n

i �ns� � n−1/2�−1
i Ṅ n

i �ns� � −n1/2�1 − 'n
i �

while other workloads change at rate n−1/2Ẇ n
k �=i � n1/2'n

k .
Thus, in the heavy-traffic limit, class counts can be
changed instantaneously while the total workload change
n−1/2Ẇ n

+�ns��−n1/2 �1−'n� remains finite. This allows
scheduling rules to distribute the total workload into an
arbitrary class workload configuration.

The law of large numbers shows that Wn�r
i

n1/2 � Nn�r
i

n1/2�i
(Van

Mieghem 1995, Proposition 3) so that the proposition
can also be expressed as sups∈�0�t� n

−1/2
i�iW
n
i �ns� −


j�jW
n
j �ns� ⇒ 0. Workload conservation

∑
k n

−1/2Wn
k �

W̃ ∗
+ now directly shows that �k
kn

−1/2Wn
k � 1�
�W̃ ∗

+,
where

1�
�=
(∑

k

��k
k�
−1

)−1

� (7)

Three insights follow. First, the GLQ(
) and GLD(
)
policies are converging; i.e., each scaled-class workload
n−1/2Wn

k has a weak limit: n−1/2Wn
k ⇒ ��k
k�

−11�
�W̃ ∗
+.

For such converging policies, an application of Little’s
law shows that the scaled delay and headcount pro-
cesses are asymptotically proportional (Van Mieghem
1995, Proposition 5). Together with the earlier workload-
headcount equivalence, they satisfy Wn�r

i

n1/2'i
� �n�ri

n1/2 � Nn�r
i

n1/2�i
.

Together with the age and delay equivalence of Proposition
1, this shows that the GLQ(
) and GLD(
) are asymptoti-
cally equivalent policies in the sense that the scaled perfor-
mance measures such as W , � , N , and a, have asymptoti-
cally identical distributions under both policies.

Second, the GLQ(
) and GLD(
) policies exhibit state
space collapse, i.e., class workloads, delays, and head-
counts are a deterministic function of total workload only.
More specifically, GLQ(
) and GLD(
) strive for a propor-
tional configuration of the class workload.

Third, Proposition 5 in Van Mieghem (1995) also shows
that for converging policies

�J n
��t��

� �⇒
∫ t

0

∑
k

�kC��k

(
1

'k�k
k
1�
�W̃ ∗

+�s�
)
ds

=
∫ t

0

∑
k

�k�k

(
1

�kDk
k
1�
�W̃ ∗

+�s�
)�

ds�

Summarizing:

Corollary 1. GLQ(
) and GLD(
) are converging poli-
cies and exhibit state space collapse, meaning that, under
either policy,

n−1/2�k
kW
n
k � n−1/2
kN

n
k � n−1/2�k
k�

n
k �⇒1�
�W̃ ∗

+�

In addition, their stationary asymptotic delay distributions
are limn→� Pr�n−1/2�nk � x� = FW��k
k1

−1�
�x�, and for
any �� 1, their cost functions also converge:

Jn
��t��⇒

(∑
k

�k�k

��kDk
k�
�

)1/�

1�
�
∥∥W̃ ∗

+
∥∥
t��
� (8)

2.3. Asymptotic Optimality of GLQ���� and
GLD���� for the � -Relaxation of the
Due-Date Problem

For any � � 1, minimizing Jn�r
� �t� is equivalent to min-

imizing �J n�r
� �t���. According to Proposition 8 in Van

Mieghem (1995), the latter is accomplished asymptotically
by any policy r that satisfies the Gc� condition, ∀ i� j "

sup
s∈�0� t�

∣∣∣∣�ic��i

(
Wn�r

i �ns�

n1/2'i

)
−�jc�� j

(
Wn�r

j �ns�

n1/2'j

)∣∣∣∣�⇒ 0� (9)

Any such policy r is necessarily converging according to
Van Mieghem (1995, Proposition 7). Given that Wn

i

n1/2'i
�

an�GLD
i

n1/2 � N
n�GLQ
i

n1/2�i
, the policies which serve the class with

highest index �kc��k�
Nk

�k
� or �kc��k�ak� are not only equiv-

alent in heavy traffic, but also the natural candidates
to implement the Gc� condition (9). Proposition 1 and
its corollary show that GLQ(
�) and GLD(
�) indeed
do satisfy that condition. (Recall that the Gc� index
�kc��k�

Nk

�k
� = �k��k

Dk
� Nk

�kDk
��−1 is equivalent to using the

GLQ(
�) index � �k�k
Dk

�1/��−1� Nk

�kDk
= 
��kNk, where 
��k is

defined in Equation (4).)
Instead of using the index representation, one can also

use the equivalent workload formulation in Van Mieghem
(1995, Equation (43)) because it allows us to calculate the
optimal cost. Earlier we said that class workloads live on
a faster time scale than total workload, which converges to
reflected Brownian motion W̃ ∗

+. Thus, in the heavy-traffic
limit, sequencing can distribute the total workload into a
class workload configuration that minimizes instantaneous
cost. This optimal configuration is obtained by a Gc� rule
and is defined by the mapping g� "�→�d " W̃ ∗

+ → W̃ ∗ =
g� � W̃ ∗

+ where, for any s ∈ �0� t�:

W̃ ∗�s�= arg min
{∑

k

�kC��k

(
xk
'k

)
" x � 0

and
∑
k

xk = W̃ ∗
+�s�

}
�

Thus, W̃ ∗ is the vector of class workloads that holds W̃ ∗
+ in

minimal cost fashion at each point in time. Given that g�
is a deterministic function, a Gc� rule thus always exhibits



Van Mieghem / 117

“optimal” state space collapse. The solution to this convex
minimization problem is very simple:

W̃ ∗
k �s�=

[
g� � W̃ ∗

+
]
k
�s�= 1�
��

�k
��k
W̃ ∗

+�s�� (10)

and the associated lower bound on cost in Van Mieghem
(1995, Proposition 6) simplifies to

�J ∗
��t��

� =
∫ t

0

∑
k

�kC��k

(
'−1
k

[
g� � W̃ ∗

+
]
k
�s�

)
ds

=
∫ t

0

∑
k

�k�k

(
1

�kDk
��k
1�
��W̃

∗
+�s�

)�

ds�

which is exactly limn→� Jn�r
� �t�, where r is either GLQ(
�)

and GLD(
�). Indeed, the constant factor simplifies to the
one in Expression (8):

∑
k

�k�k

��kDk
��k�
�
=∑

k

�k�k�Dk/�k�k�
�/��−1�

=∑
k

�−1
k �kDk�Dk/�k�k�

1/��−1�

= 1/1�
���

Hence, we have two equivalent arguments for the
asymptotic optimality of GLQ(
�) and GLD(
�). First,
Proposition 1 and its corollary show that they satisfy the
sufficient Gc� condition (9) for optimality. Second, explicit
calculation of costs show that their asymptotic cost attains
the lower bound J ∗

��t�. Fix any nonnegative x and t a priori,
which we denote throughout this paper by ∀x� t � 0. Sum-
marizing then:

Theorem 1. For any � � 1, GLQ(
�) and GLD(
�)
are asymptotically optimal for the �-relaxation of the
due-date scheduling problem: ∀x� t � 0 they mini-
mize lim infn→� Pr �J n�r

� �t�� x� over all work-conserving
scheduling rules r . The associated asymptotically optimal
cost is equal in distribution to

J ∗
��t�= �1�
���

�−1
�

∥∥W̃ ∗
+
∥∥
t��
� (11)

Remark. The sequence J ∗
��t� is bounded pathwise as a

function of �� 1 for any fixed t � 0. Indeed, for any con-
tinuous function x, 0� xt�� � t1/�xt �max�1� t�xt .
In addition, 0 �1�
��� mink�

�k�k
Dk

�1/��−1�1�
∗�, so that

0 � �1�
���
�−1
� � min

k

(
1�
∗�

�k�k

Dk

)1/�

1�
∗�

� min
k

(
max�1�1�
∗�

�k�k

Dk

�

)
1�
∗�

def= Mt/max�1� t��

Hence, 0 � J ∗
��t��Mt�W̃ ∗

+�t on each path.

2.4. Asymptotic Optimality of GLQ��∗� and
GLD��∗� for the Due-Date Problem

A first indication that GLQ(
∗) and GLD(
∗) are “smart”
policies for the due-date problem stems from letting �
approach � in Theorem 1. This shows that the sequence of
policies r∗�, where r∗� is either GLQ(
�) or GLD(
�), mini-
mize lim� lim infn Pr�J n�r

� �t�� x� and for any policy r and
∀x� t � 0:

lim
�→� lim inf

n→� Pr�J n�r
� �t�� x�� lim

�→� lim
n→�Pr

{
Jn� r∗�
� �t�� x

}
= lim

�→�Pr�J ∗
��t�� x�� (12)

Given that lim�→� xt�� = xt for continuous x�·� and
that 
� → 
∗, so that

lim
�→��1�
���

�−1
� =1�
∗�= 1/

∑
k

'kDk� (13)

the dominated convergence theorem yields

lim
�→�Pr�J ∗

��t�� x�= Pr
{

lim
�→� J

∗
��t�� x

}
= Pr�J ∗

∗ �t�� x�� (14)

where we define

J ∗
∗ �t�

def= 1�
∗� sup
s∈�0� t�

W̃ ∗
+�s�� (15)

To show the asymptotic heavy-traffic optimality of
the policies r∗∗ , where r∗∗ is either GLQ(
∗) or
GLD(
∗), however, we must show that r∗∗ also minimizes
lim infn→� Pr�lim�→� Jn�r

� �t� � x�. This is equivalent to
asymptotically minimizing maximal violation probabilities
because for any rule r , for any sample path, and ∀n,

Jn� r
∗ �t�

def= lim
�→� J

n� r
� �t�

= lim
�→�

[
n−1

∑
classk

An
k�nt�∑
j=1

�k

(
�n�rk� j

n1/2Dk

)�
]1/�

= max
k

sup
1�j�An

k�nt�

(
�n�rk�j

n1/2Dk

)

= max
k

sup
s∈�0� t�

�n� rk �ns�

n1/2Dk

�

The proof follows two steps. First, a careful insertion of
the �-limit in the main proof of Van Mieghem (1995)
establishes:

Proposition 2. The asymptotic cost Jn� r
∗ is stochastically

bounded from below by J ∗
∗ : for any rule r and ∀x� t � 0 "

lim inf
n→� Pr

{
lim
�→� J

n� r
� �t�� x

}
= lim inf

n→� Pr
{
max

k
sup
s∈�0� t�

�n�rk �ns�

n1/2Dk

� x

}
� Pr�J ∗

∗ �t�� x��
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The proof is relegated to the Appendix.
Second, it is easy to show that GLQ(
∗) and

GLD(
∗) asymptotically attain the lower bound J ∗
∗ .

Indeed, the corollary shows that n−1/2�k
∗� k�
n�r∗∗
k ⇒

1�
∗�W̃ ∗
+. Given that �k
∗� k = D−1

k , the continuous
mapping theorem then directly shows that for any
class k: f n

k �t�
def�= sups∈�0� t� n

−1/2D−1
k �

n� r∗∗
k �ns� ⇒ f ∗�t�

def�=
sups∈�0� t� 1�
∗�W̃

∗
+�s�. Given that for any class k the pro-

cess f n
k �t� weakly converges (i.e., under the uniform norm

here) to the common limit f ∗�t�, the process maxk f
n
k �t�

also weakly converges to f ∗�t�:

lim
n→�Pr

{
lim
�→�J

n�r∗∗
� �t��x

}
= lim

n→�Pr
{
max

k
sup
s∈�0�t�

�
n�r∗∗
k �ns�

n1/2Dk

�x

}
=Pr�J ∗

∗ �t��x�� (16)

This shows that the two limits can be interchanged and
proves:

Theorem 2. GLQ(
∗) and GLD(
∗) are asymptotically
optimal for the due-date scheduling problem: ∀x� t� 0 they
minimize, over all work-conserving scheduling rules r ,

lim inf
n−→� Pr

{
max

k
sup
s∈�0� t�

�n�rk �ns�

n1/2Dk

� x

}
= lim inf

n−→� Pr
{

lim
�−→� J

n� r
� �t�� x

}
�

and the associated asymptotically optimal maximal due-
date violation probability during �0� t� is

Pr
{
1�
∗� sup

s∈�0� t�
W̃ ∗

+�s�� x

}
�

Remark. Consistent with a min-max criterion, GLQ(
∗)
and GLD(
∗) asymptotically minimize the maximal vio-
lation probability by equalizing them to FW�

∑
k 'kDk� in

steady state.

3. REVIEW OF RELATED LITERATURE
AND DISCUSSION

3.1. Related Literature

In various recent heavy-traffic and large-deviation analyses,
a GLQ or GLD rule, or a closely related rule, has emerged.
Stolyar and Ramanan (2001) show that GLD, also called
largest weighted delay first, is asymptotically optimal in
a large deviation sense. Their model does not explicitly
address bounds D, but shows that GLD with parameter

k = 1/�k�k asymptotically maximizes the following cost
functional for violation probabilities:

min
k

[
�k lim

n−→�
− logPr��k > n�

n

]
�

Stolyar (2000) gives an impressive generalization of this
result to a network setting.

Doytchinov et al. (2001) show that a GLD variant, called
earliest deadline first (EDF), is asymptotically optimal in
heavy traffic in a single-class system with more general
stochastic due-date structure. Specifically, each job j has an
individual deadline Dj that is drawn from a known distribu-
tion function and observed upon its arrival at time tj . EDF
gives dynamic priority to the job with earliest deadline or
smallest index tj+Dj− t, which equals Dj−aj�t� in terms
of that job’s age aj�t�. In contrast to the multiclass system
discussed in this paper, their model restricts attention to
a setting where all jobs share a common interarrival and
service distribution. Their more general due-date structure
leads to EDF, which is related, but not equivalent, to GLQ
and GLD. Indeed, EDF prioritizes the class with earliest
deadline measured in absolute units by Dk − ak, whereas
GLD prioritizes the class with earliest relative deadline
ak/Dk. In heavy traffic, EDF is equivalent to prioritizing
the class with largest index Dk�
∗� kNk−1�, which is affine,
instead of linear, in Nk. (This “shifting of switching curves”
for cyclic scheduling rules in the presence of due dates and
setup costs is identified and explained by Markowitz and
Wein 2001.)

Two recent articles consider admission control in addi-
tion to sequencing. Plambeck et al. (2001) show that
a sequencing rule, which is exactly GLQ(
∗), together
with dynamic admission control asymptotically minimizes
penalties associated with jobs that are rejected when their
delay is expected to exceed their delay bound. Specifically,
they show that asymptotic violation probabilities essentially
vanish under their control, denoted by PKH, in that for any
class k and any positive 6 and t,

lim
n→�Pr

{
sup
s∈�0� t�

n−1/2�n�PKH
k �ns� > Dk+6

}
= 0�

The analysis here shows the asymptotic min-max viola-
tion optimality of GLQ by simple Gc� reasoning without
requiring admission control. Theorem 2 is also “intuitively
consistent” with the PKH admission rule: It suggests that
violation probabilities approach zero if one denies admis-
sion to an arbitrary class whenever total workload exceeds∑

k 'kDk because that signals that a class may violate its
due date. Maglaras and Van Mieghem (2001) show asymp-
totic fluid optimality of GLQ(
∗) in the sense that the
admission region associated with GLQ (i.e., the region of
initial conditions for which GLQ will guarantee the delay
constraints in fluid scale) is maximized in heavy traffic
when 
 = 
∗.

Without attempting an exhaustive literature overview, we
mention that Cohen (1987), Sethuraman (1999), and Zipkin
(1995) derive exact results for longest-queue scheduling,
which is GLQ with parameter 
i = 1. Bertsimas et al.
(1998) show that GLQ outperforms generalized pro-
cessor sharing in a finite buffer system in the sense that
GLQ yields lower buffer overflow probabilities under a
large deviations criterion. Finally, while all this literature
assumes an exogenous due-date structure, it is important
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not to forget the big message of Wein (1991), that endoge-
nous dynamic due-date setting has a larger impact on per-
formance than due-date-based sequencing policies.

3.2. Discussion

GLQ and GLD are different scheduling rules, as is evi-
dent by their different information requirements. They will
yield different performance in moderate traffic, including
in large-deviation regimes under moderate traffic. There,
Stolyar and Ramanan (2000) have showed the necessity of
age information so that GLD remains optimal in a large
deviations sense, whereas GLQ does not. This article, how-
ever, shows that in heavy traffic both rules are in essence
equivalent. (It also is very likely that in heavy traffic GLQ
is also optimal in a large-deviations sense.) The equiva-
lence stems from the fact that in heavy-traffic class delays
�k and ages ak have the same distribution as the relative
queue lengths Nk/�k, so that age and queue-count formu-
lations are equivalent.

The fact that GLQ does not require age information is
very attractive because of its simplicity and scalability. An
additional noteworthy feature of GLQ(
∗) is parsimony: It
is independent of the service time distributions and only
depends on the first moment of the interarrival time dis-
tributions. This parsimony reflects the fact that GLQ is
optimal in an “asymptotic” or “first-order” sense that masks
fine structural details. In addition, recall that our Gc�-
based analysis showed GLQ and GLD optimality in terms
of a min-max criterion on violation probabilities. This also
shows some limitations of the approach in that it does
not apply to all optimality criteria. For example, the Gc�
approach does not apply directly to the minimization of
a weighted sum of violation probabilities, which requires
non-convex functions �k1��k>Dk�

.
Finally, it is worthy to note that the �-relaxation also

shows that GLQ(
�) reduces total variability because it
minimizes a weighted sum of �th delay moments. Related
variability-minimization issues are also discussed in Ayhan
and Olsen (2000).

APPENDIX A. SUMMARY OF KEY RESULTS
IN VAN MIEGHEM (1995) THAT WILL BE USED
IN THE PROOFS OF PROPOSITION 1 AND 2

As usual in heavy-traffic analysis, we consider a sequence
of systems, indexed by n. For this sequence, consider the
following expansions:

An�nt�= n�An�t�+n1/2Ãn�t�+o�n1/2�� (17)

Sn�nt�= n�Sn�t�+n1/2S̃n�t�+o�n1/2�� (18)

One may think of the first-and second-order terms as the
long-term trend and the variation around this trend, respec-
tively. Because An and Sn are nondecreasing, we can
always require same of their continuous first-order terms

�An and �Sn so that the inverse functions �An−1
and �Sn−1

exist.
Introduce the following functions,

Rn
k = �Sn−1

k � �An
k and Rn

+ =∑
k

Rn
k�

The function Rn
k is the first-order approximation of the work

input process V n �An, so that the nth system operates near
full capacity if Rn

+ is close to the identity function, which
we denote by e.

For a wide class of systems, which includes not only
the GI/G/1 system but also some systems with corre-
lated arrival and service processes, there exist processes
Ã∗� S̃∗� c̃∗, with a.s. continuous sample paths on �0�1�
and processes �A∗��S∗ with a.s. continuously differentiable
increasing sample paths on �0�1�, such that:(�An� Ãn��Sn� S̃n� n1/2�Rn

+− e�
)�⇒ (�A∗� Ã∗��S∗� S̃∗� c̃∗

)
�

Indeed, weak convergence of counting processes shows that
the variation limiting processes Ã∗ and S̃∗ are Brownian
motions, and the strong law shows that

�A∗�t�= �t��S∗�t�= �t�R∗�t�= 't�

Proposition 2 in Van Mieghem (1995) then shows that
for any scheduling policy,

Nn�nt�= n1/2Ñ n�t�+o�n1/2�� (19)

Tn�nt�= n�Tn�t�+n1/2T̃ n�t�+o�n1/2�� (20)

Un�nt�= n�Un�t�+n1/2Ũ n�t�+o�n1/2�� (21)

V n�nt�= n�V n�t�+n1/2Ṽ n�t�+o�n1/2�� (22)

Wn�nt�= n1/2W̃ n�t�+o�n1/2�� (23)

and for FIFO sequencing in each class,

�n�nt�= n1/2�̃n�t�+o�n1/2�� (24)

with the following convergence relationships:

�Tn −→ R∗ ∈�1� (25)

�Un −→ �U ∗ = ��A∗�
−1 ∈�1�

�V n −→ �V ∗ = ��S∗�
−1 ∈�1�

Ũ n −→ Ũ ∗ ∈��

Ṽ n −→ Ṽ ∗ ∈��

W̃ n
+ −→ W̃ ∗

+ ∈��

W̃ n converges ⇐⇒ T̃ nconverges ⇐⇒ Ñ n converges

⇐⇒ �̃nconverges�

The proof of that proposition also shows that a counting
process and its associated partial-sums process are (asymp-
totically) inverse processes:

n−1Un �An �ne −→ e� (26)

n−1V n �Sn �ne −→ e� (27)
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In addition, it shows that for any class i,

Ñ n
i �s�= Ã∗

i �s�− S̃∗
i �'is�−�iT̃

n
i �s�+on�1�� (28)

It is important to stress that the convergence of the error
terms on�1�→ 0 is uniform over s ∈ �0� t� in all expressions
in this appendix.

APPENDIX B. PROOF OF PROPOSITION 1

We give a direct proof using the original Gc� setup for
both GLQ and GLD. Proposition 1 can also be shown via
fluid analysis, using recent results by Bramson (1998) and
Williams (1998), a track pursued in Plambeck et al. (2001).

B.1. Proof for GLQ

First assume preemptive GLQ(
). Fix an arbitrary class i
and denote

:ni �s�= n−1/2
(
max

k

kN

n
k �ns�−
iN

n
i �ns�

)
= max

k

kÑ

n
k �s�−
iÑ

n
i �s�� 0�

Over time, the system fluctuates over three states: Either
the system is empty, class i is being served or another
class k is being served. During idle periods, :ni is
clearly zero. Then, class i being served means 
iN

n
i �s� =

maxk 
kN
n
k �s�, so that again :ni = 0. Now consider a

period �tn1 � t
n
2 � ⊂ �0� t� so that :ni �nt

n
1 � = :ni �nt

n
2 � = 0 and

:ni �n;� > 0∀; ∈ �tn1 � t
n
2 �. Under preemptive GLQ(
), this is

a period during which the system processes work of classes
other than i. Using a sample path analysis, we now show
that sup;∈�tn1 � tn2 � :

n
i �n;�→n 0 by investigating the dynamics

of :ni .
Let the first class that is served after tn1 be called k1 and

let tnk1
denote the end of the period that k1 is being served

uninterruptedly. Thus, ∀; ∈ �tn1 � t
n
k1
� we have that the time

allocation has Ṫ n
k1
�n;� = 1 while Ṫ n

i �n;� = 0. Given (20),
(19), and (25), we have that

T̃ n
k1
�;�− T̃ n

k1
�tn1 �= n1/2�;− tn1 �−n1/2'k1

�;− tn1 �+on�1�

= n1/2�1−'k1
��;− tn1 �+on�1��

T̃ n
i �;�− T̃ n

i �t
n
1 �=−n1/2'k�;− tn1 �+on�1��

Using (19) and denoting the continuous function

j�Ã

∗
j �s�− S̃∗

j �'js�� by Bj�s�, we have that (recall that
:ni �t

n
1 �= 0)

:ni �;�= :ni �;�−:ni �t
n
1 ��

= [
Bk1

�;�−Bk1
�tn1 �−n1/2�k1


k1
�1−'k1

��;− tn1 �
]

− [
Bi�;�−Bi�t

n
1 �+n1/2�i
i'i�;− tn1 �

]+on�1��

= [
Bk1

�;�−Bk1
�tn1 �− �Bi�;�−Bi�t

n
1 ��

]
−n1/2

[
�k1


k1
�1−'k1

�+�i
i'i

]
�;− tn1 �+on�1�

= O�;− tn1 �−n1/2
[
�k1


k1
�1−'k1

�+�i
i'i

]
· �;− tn1 �+on�1��

Class k1 being served and :ni > 0 implies 
k1
> 0. Hence,

for :ni �;� to be positive, it must be that �;− tn1 �� tnk1
− tn1 �

o�n−1/2�, so by continuity of the Bj ,

:ni �;�� O�tnk1
− tn1 �−n1/2o�n−1/2�+on�1�= on�1��

The argument can now be repeated for the mth class,
denoted by km, that is served during �tnkm−1

� tnkm�. Stitching
all m periods together with the uniform bound on�1� yields
∀; ∈ �tnkm−1

� tnkm� "

:ni �;�=
[
�Bkm

�;�−Bkm
�tnkm−1

��+∑
j<m

�Bkj
�tnkj �−Bkj

�tnkj−1
��

−�Bi�;�−Bi�t
n
1 ��

]
−n1/2

[
�km


km�1−'km
��;−tnkm−1

�+∑
j<m

�kj

kj

·�1−'kj
��tnkj −tnkj−1

�+�i
i'i�;−tn1 �

]
+on�1��

Again, for :ni �;� to be positive, it must be that �;− tn1 � �
tnkm − tn1 � o�n−1/2�. Hence, all periods �tnkj − tnkj−1

� �∑
j<m�t

n
kj
− tnkj−1

�� o�n−1/2�. The continuity of the Bj then
yields that

:ni �;�� O�tnkm − tn1 �−n1/2o�n−1/2�+on�1�= on�1��

In summary, any entire busy cycle �tn1 � t
n
2 � during which

class i is not served has length o�n−1/2�. During such a
cycle :ni is on�1� so that sup;∈�tn1 � tn2 � :

n
i �;� →n 0. Together

with the fact that :ni equals 0 during idle periods and
periods during which i is served, this shows that for any
class i " sups∈�0� t� :

n
i �ns� →n 0. Finally, recognizing that

sups∈�0� t� n
−1/2
iN n

i �ns� − 
jN
n
j �ns� � sups∈�0� t��:

n
i �s� +

:nj �s�� and invoking the Skorohod representation theorem
as in Van Mieghem (1995, Proposition 8) shows that the
convergence holds in distribution.

(It should be noted that a similar reasoning holds for non-
preemptive GLQ: While :ni can now go negative during the
last service time of a busy subcycle during which class k1

is served, the number of class i arrivals during such generic
service time vk1

is O��i�k1
�. Given the n−1/2-scaling of :ni ,

the potential increase in Nn
i �s� is negligible as n→� and

the argument above goes through.) �

B.2. Proof for GLD

First assume preemptive GLD(
). The proof follows a sim-
ilar reasoning as for GLQ; thus, we point out only the dif-
ferences. Define the scaled age ãnj �;� = n−1/2anj �n;� and
consider now

:ni �s�= n−1/2
(
max

k

k�ka

n
k�ns�−
i�ia

n
i �ns�

)
= max

k

k�kã

n
k�s�−
i�iã

n
i �s�� 0� (29)

Again, we will use a sample path analysis to show that
sup;∈�tn1 � tn2 � :

n
i �n;� →n 0 by investigating the dynamics of
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:ni . Consider the time intervals as before, but now defined
using GLD, where we first assume the nonpreemptive case.
At any time, the age of any nonempty class increases lin-
early in time except for a discontinuity at the departure time
for the age of the class that just finished service. Indeed,
at such departure time, the age drops by the interarrival
time of the new head-of-the-line job of that class. Thus,
∀; ∈ �tn1 � t

n
k1
� we have that

ãnk1
�;�= n−1/2

[
ank1

�ntn1 �+n�;− tn1 �−Un
k1
�mn

k1
�
]

= ãnk1
�tn1 �+n1/2�;− tn1 �−n−1/2Un

k1
�mn

k1
�� (30)

ãni �;�= ãni �t
n
1 �+n1/2�;− tn1 ��

where Un
k1
�mn

k1
� are the interarrival times of the mn

k1
class

k1 jobs that have departed during �ntn1 � n;�. Hence, the total
service time of these mn

k1
is n;−ntn1 (plus or minus maxi-

mally two service times) so that V n
k1
�mn

k1
�= n;−ntn1 . Given

that the partial-sum process V n and the counting process
Sn are (asymptotically) inverse processes as shown in (27),
we have that

mn
k1
= Sn

k1
�n;−ntn1 �+on�1�

= n�k1
�;− tn1 �+n1/2S̃∗

k1
�;− tn1 �+o�n1/2��

And thus, because Ũ ∗
k1

is continuous,

Un
k1
�mn

k1
�= n�U ∗

k1
��k1

�;− tn1 ��+n1/2Ũ ∗
k1
��k1

�;− tn1 ��

+o�n1/2�

= n
�k1

�k1

�;− tn1 �+O�n1/2��;− tn1 ���

Plugging into (30), we have that

:ni �;�=
(

k1

�k1
ãnk1

�tn1 �−n1/2
k1
�k1

�'−1
k1

−1��;− tn1 �

+O�;− tn1 �−
i�iã
n
i �t

n
1 �−
i�in

1/2�;− tn1 �
)
�

Given that '−1
k1

− 1 � 0, we have as before that non-
negativity of :ni �;� requires that �;− tn1 � = o�n−1/2� and
the same argument can be repeated so that under GLD,
any entire busy cycle �tn1 � t

n
2 � during which class i is not

served has length o�n−1/2�. As before, this shows that
sups∈�0�t� n

−1/2�
k�ka
n
k�ns�− 
i�ia

n
i �ns�� ⇒ 0. (As earlier,

the changes under a nonpreemptive GLD are negligible in
heavy traffic.)

Now it only remains to translate the convergence of

k�kã

n
k − 
i�iã

n
i into a headcount convergence. This is

accomplished in two steps:
First, translate convergence of age differences into

convergence of flow time differences: During any of
the intervals �tn1 � t

n
2 �, the flow time of the head-of-the-

line class i job equals its age ai�nt
n
1 � plus the length

of the entire busy cycle plus its service time. Thus,
n−1/2��i�nt− ai�nt��− ai�nt�� � n−1/2o�n1/2�, or, �̃ni �t�−
ãni �t� + on�1� � on�1�, which formally proves that the

scaled difference between flow times and age of head-
of-the-line job is negligible: �̃ni �t� − ãni �t� ⇒ 0. Thus,
sups∈�0� t� n

−1/2�
k�k�
n
k �ns�−
i�i�

n
i �ns��⇒ 0.

Second and finally, translate convergence of flow
time differences into convergence of headcount differ-
ence by applying the generalized Little’s Law (see Van
Mieghem 1995, Proposition 4) to any pair of classes
k and i. This shows that sups∈�0� t� n

−1/2�
kN
n
k �ns� − 
i

N n
i �ns��⇒ 0. �

APPENDIX C. PROOF OF PROPOSITION 2

This is shown by inserting a lim� argument inside the proof
of Proposition 6 of Van Mieghem (1995), which holds for
any � � 1. The argument goes as follows. Fix ? > 0 and,
for any n ∈ �, consider the sequence of stopping times of
W̃ ∗

+� �ti " i ∈ ��, defined as follows:

t1 = min
{
1� inf

{
0 < t � 1 "

∣∣W̃ ∗
+�t�−
W̃ ∗

+�0�/?�?
∣∣� ?

}}
ti+1 = min

{
1� inf

{
ti < t � 1 "

∣∣W̃ ∗
+�t�− W̃ ∗

+�ti�
∣∣� ?

}}
�

Thus ti+1 is the first time W̃ ∗
+ changes by ? starting

from W̃ ∗
+�ti� at time ti. Because W̃ ∗

+ is continuous,
supi�ti+1− ti�→ 0 as ?→ 0, so that supi�ti+1− ti�=O�?�.
Using the fact that W̃ n

+ → W̃ ∗
+ and the construction of the

stopping times ti, we have that

�ti+1 − ti�
−1

∫ ti+1

ti

W̃ n
+�t�dt = W̃ ∗

+�ti�+O�?�+on�1�� (31)

Pick up the proof at the end of Page 830, which shows that
(recall that J̃ n

� = �J n� r
� �� and simplify notation by assuming

that � and � are constants)

�J n� r
� �� �

∑
k

∑
i

�k�ti+1 − ti�

·C��k

(
'−1
k �ti+1 − ti�

−1
∫ ti+1

ti

W̃ n
k dt+ ?i+@i�k

)
�

where we use the more detailed error notation ?i and @i�k to
signify that the errors depend on the index i and/or k. All
errors ?i and @i�k are independent of � and are uniformly
bounded by O�?� and on�1�, respectively. Now invoke the
mapping g� and (31) to get:

�J n� r
� �� �

∑
k

∑
i

�k�ti+1 − ti�

·C��k

(
'−1
k �g� � W̃ ∗

+�k�ti�+ ?i+@i�k

)
=∑

k

∑
i

�k�ti+1 − ti��k

·
(
'−1
k

1
�kDk
��k

1�
��W̃
∗
+�ti�+

?i+@i�k

Dk

)�

�

Now raise both sides to the power 1/� and take the limit
for � → �. Given that lim���k�ti+1 − ti��k�

1/� = 1 and
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lim� 
� = 
∗ and lim� 1�
��=1�
∗�, this yields

Jn� r
∗ = lim

�→� J
n� r
�

� sup
i

max
k

[
'−1
k

1
�kDk
∗� k

1�
∗�W̃
∗
+�ti�+

?i+@i�k

Dk

]
�

Take lim infn→� and recall that 
−1
∗k = �kDk and all errors

@i�k are bounded uniformly by on�1�:

lim inf
n→� Jn� r

∗ � sup
i

�1�
∗�W̃
∗
+�ti�+ ?i/Dk��

where the left-hand side is independent of ?. Therefore,
letting ? → 0 so that sup?i → 0 and supi�ti+1 − ti� → 0
because the bounds O�?� is uniform and W̃ ∗

+ is continuous;
this also implies that supi W̃

∗
+�ti�→ sups∈�0� t� W̃

∗
+�s� so:

lim inf
n−→� Jn� r

∗ � sup
s∈�0� t�

[
1�
∗�W̃

∗
+�s�

]
�

Finally, invoking the Skorohod representation theorem
shows that this inequality holds in distribution. �
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