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Here we Þrst summarize the explicit solutions to our pricing-capacity and quantity-capacity models for
both the monopoly and duopoly when uncertainty is uniformly distributed. Then follow the proofs and other
technical extensions. (For clarity, we use the subscript M for monopoly and D for duopoly, as needed.) The
main paper appeared in Management Science Vol. 45, No. 12, December 1999 pp. 1631-1649.

1 Explicit Solutions for the Uniform Distribution

1.1 Monopoly Price-Capacity Decisions

Lemma 1 If ε is uniformly distributed with mean ε0 and standard deviation σ, then the optimal capacity-
constrained monopoly price pM(K) for a monopolist depends on the coefficient of variation σ

ε0
as follows:

1. If 0 ≤ σ
ε0
≤ 1

3
√
3
(low variability), then

pM(K) =

 1
3(ε0 −

√
3σ −K)

µ
2 +

r
1 + 12

√
3σK

(ε0−
√
3σ−K)2

¶
if K ≤ 1

2ε0 +
√
3σ,

1
2ε0 otherwise.

2. If 1
3
√
3
< σ

ε0
≤ 1

2
√
3
(medium variability)

pM(K) =


1
2ε0 +

√
3
2 σ − 1

4K if K ≤ 2 ¡3√3σ − ε0¢ ,
1
3(ε0 −

√
3σ −K)

µ
2 +

r
1 + 12

√
3σK

(ε0−
√
3σ−K)2

¶
if 2

¡
3
√
3σ − ε0

¢
< K ≤ 1

2ε0 +
√
3σ,

1
2ε0 otherwise.

3. If 1
2
√
3
< σ

ε0
≤ 1√

3
(high variability):

pM(K) =

(
1
2ε0 +

√
3
2 σ − 1

4K if K ≤ 2
3

¡
ε0 +

√
3σ
¢
,

1
3ε0 +

√
3
3 σ otherwise.

Lemma 2 If ε is uniformly distributed with mean ε0 and standard deviation σ, then the optimal price-
capacity strategy for a monopolist depends on the coefficient of variation σ

ε0
and the investment cost c as

follows:

1. If 0 ≤ σ
ε0
≤ 1

3
√
3
(low variability): if c ≤ c̄1 = ε0 −

√
3σ, then

p = the unique root of 4p3 − 2 (ε0 + c) p2 + 2
√
3σc2 with

ε0
2
≤ p ≤ ε0 −

√
3σ, (1)

K = ε0 − p+
√
3σ

µ
1− 2c

p

¶
. (2)
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If c > ε0 −
√
3σ, then K = 0 and p is arbitrary.

2. If 1
3
√
3
< σ

ε0
≤ 1

2
√
3
(medium variability): if c ≤ c2 = ε20−3

√
3σε0+6σ

2

√
3σ

, then K and p are determined by

(1)-(2). If c2 < c < c̄2 =
(ε0+

√
3σ)2

8
√
3σ

, then

p =
1

6

Ã
ε0 +

√
3σ +

r³
ε0 +

√
3σ
´2
+ 24

√
3σc

!
, (3)

K = 2
³
ε0 +

√
3σ − 2p

´
. (4)

If c ≥ c̄2, then K = 0 and p is arbitrary.

3. If 1
2
√
3
< σ

ε0
≤ 1√

3
(high variability): if c ≤ c̄2, then K and p are determined by (3)-(4). If c ≥ c̄2, then

K = 0 and p is arbitrary.

1.2 Monopoly Quantity-Capacity Decisions

Lemma 3 If ε is uniformly distributed with mean ε0 and standard deviation σ, then the optimal capacity-
constrained monopoly quantity qM(K) for a monopolist depends on the coefficient of variation σ

ε0
as follows:

1. If 0 ≤ σ
ε0
≤ 1

2
√
3
(low & medium variability), then

qM(K) = min
³ε0
2
,K
´
,

2. If 1
2
√
3
< σ

ε0
≤ 1

3
√
3
(high variability)

qM(K) = min

Ã
ε0 +

√
3σ

3
,K

!
.

Lemma 4 If ε is uniformly distributed with mean ε0 and standard deviation σ, then the optimal quantity-
capacity strategy for a monopolist depends on the coefficient of variation σ

ε0
and the investment cost c as

follows: if c ≥ ε0, then K = 0, otherwise:

1. If σ
ε0
≤ 1

2
√
3
(low & medium variability), then

K =
1

2
(ε0 − c) . (5)

2. If 1
2
√
3
< σ

ε0
≤ 1√

3
(high variability): if c < 2

√
3σ − ε0, then

K =
1

3

Ã
2
³
ε0 +

√
3σ
´
−
r³

ε0 +
√
3σ
´2
+ 12

√
3cσ

!
, (6)

otherwise K = 1
2 (ε0 − c) .

1.3 Capacity Decisions under Quantity Competition

Lemma 5 If ε is uniformly distributed with mean ε0 and standard deviation σ, then the optimal quantity-
capacity strategy for a duopolist depends on the coefficient of variation σ

ε0
and the investment cost c as

follows: If c ≥ c̄ = ε0, then q = K = 0, otherwise q = K where

1. If 0 ≤ σ
ε0
≤ 1

3
√
3
(low variability):

Ki = Kj =
1

3
(ε0 − c).
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2. If 1
3
√
3
< σ

ε0
≤ 1√

3
(medium & high variability): if c ≤ c̄1 = −ε0+3

√
3σ

2 , then

Ki = Kj =
3

8

³
ε0 +

√
3σ
´
− 1
8

r³
ε0 +

√
3σ
´2
+ 32c

√
3σ. (7)

Otherwise, Ki = Kj = 1
3(ε0 − c).

Lemma 6 If ε is uniformly distributed with mean 1 and standard deviation σ, then

kn =


n
n+1 (1− c) if

√
3σ ≤ 1+nc

n+1 ,

1+
√
3σ

n+2

µ
1 + n−

r
1 + 4

√
3n(n+2)cσ

(1+
√
3σ)

2

¶
elsewhere.

(8)

and

kn % k =

(
1− c if

√
3σ ≤ 1+nc

n+1 ,

1 +
√
3σ − 2

p√
3σc elsewhere.

(9)

2 Proofs and Other Discussions

2.1 Scaling of the Demand curve

An arbitrary linear demand curve p0 = ε0 − bD0, where ε0 has mean ε0, reduces to p = ε −D after scaling
prices p0 = ε0p and quantities q0 = ε0

b q.
For the arbitrary demand curve, the unscaled marginal costs are c0 = ε0c so that unscaled revenues and

costs are ε20
b pq and ε

2
0cK, respectively.

2.2 Unimodality Assumption

The expected revenue function Eπ(p,K) for the deterministic, uniform (see Lemma�s below) and exponential
distribution (see paper) is indeed unimodal. If ε is normally distributed with mean 1 and standard deviation
σ (and truncated to the left at zero, so that ε is non-negative) we have:

f(ε) = Ae−
(ε−1)2
2σ2 , for ε ≥ 0

and A is normalization constant:

A−1 =
Z ∞

0

e−
(ε−1)2
2σ2 dε =

√
2πσ

2

µ
1 + erf

µ
1√
2σ

¶¶
.

Thus,

Eπ(p,K) = Ap

Z p+K

p

(ε− p) e− (ε−1)2
2σ2 dε+ApK

Z ∞

p+K

e−
(ε−1)2
2σ2 dε

and

1

A

∂

∂p
Eπ =

Z p+K

p

(ε− 2p) e− (ε−1)2
2σ2 dε+K

Z ∞

p+K

e−
(ε−1)2
2σ2 dε,

1

A

∂2

∂p2
Eπ = p

·
e−

(p−1)2
2σ2 − e− (p+K−1)2

2σ2

¸
− 2

Z p+K

p

e−
(ε−1)2
2σ2 dε.

Clearly, Eπ(·,K) is positive for positive p except at p = 0 and p = ∞ where Eπ(0,K) = Eπ(∞,K) = 0,
and thus has at least one maximum. Also, for each positive K, Eπ(p,K) is concave increasing at p = 0

(0 < ∂
∂pEπ(0,K) < AEε = A and ∂2

∂p2Eπ(0,K) < 0) and convex decreasing near p = ∞. Because ∂2

∂p2Eπ

is the difference of two positive unimodal functions, it may have more than one root (inßection point) and
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Figure 6: Eπ(·,K) for the (truncated) normal distribution is also unimodal. The graphs (each one for
K = 0.5, 1 and 2) show different variability levels: σ = 0.5 (left), 1 (middle) and 1.5 (right).

proving unimodality analytically is not straightforward. In our numerical simulations (see Figure 6), however,
Eπ(·,K) was always unimodal. Note that

1

A

∂

∂K
Eπ = p

Z ∞

p+K

e−
(ε−1)2
2σ2 dε > 0,

1

A

∂2

∂K2
Eπ = −pe− (p+K−1)2

2σ2 < 0,

so that Eπ is concave increasing in K for each p.

2.3 Proof of Proposition 1

Eπ(p,K) is twice differentiable in p and

∂V

∂p
=

Z p+K

p

(ε− 2p)f(ε)dε+
Z ∞

p+K

Kf(ε)dε, (10)

∂2V

∂p2
= pf(p) + 2F (p)− pf(p+K)− 2F (p+K). (11)

We have assumed that the measure P is such that Eπ(p,K) is unimodal so that the Þrst order condition is
sufficient.
If K > 0, ∂V

∂p > 0 if p = 0 so that pM(K) must be strictly positive and the Þrst order condition is
sufficient for the interior maximum. Implicit differentiation yields

∂2V

∂p2
dpM
dK

= − ∂2V

∂K∂p
= − (1− F (pM +K)− pMf(pM +K)) . (12)

The following sample path argument shows that dpM
dK ≤ 0. Assume that pM(K) is unique and consider the

three representative sample paths of π(p,K, ε) (refer to Figure 1 in the paper). If K increases to K + dK,
the revenue maximizing price for each sample path either remains the same (for low and medium values of ε :
ε < 2K) or decreases (for high values of ε > 2K). Therefore, the unique maximum pM(K) of Eπ(p,K) (which
is a convex superposition of the sample paths π(p,K, ε)) cannot increase when K increases to K + dK.

2.4 Proof of Proposition 2

The objective function

V =

Z p+K

p

p(ε− p)f(ε)dε+
Z ∞

p+K

pKf(ε)dε− cK (13)

is differentiable with, in addition to (10), the necessary Þrst order condition:

∂V

∂K
=

Z ∞

p+K

pf(ε)dε− c = pP (ε ≥ p+K)− c (14)
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For a boundary solution p = 0,K > 0 to be optimal we would need c = 0. Boundary solutions p ≥ 0,K = 0
yield V = 0. Thus, any non-trivial solution is an interior solution of the Þrst-order conditions which were
assumed to be sufficient.
Implicit differentiation of ∂V∂p = 0 and

∂V
∂K = 0 yields

∂K

∂c
=

∂2V
∂p2

∂2V
∂K2

∂2V
∂p2 −

³
∂2V
∂p∂K

´2 and ∂p∂c = −
∂2V
∂p∂K

∂2V
∂p2

. (15)

Because there is an interior maximum, V is concave at that point (p,K) and thus ∂K∂c < 0. Also, if
∂2V
∂p∂K > 0,

then ∂p
∂c > 0.

2.5 Duality Result for Capacity-Constrained Price vs. Quantity-Setting

Proposition 6 (Duality) The optimal capacity-constrained monopoly quantity is qM(K) = min(q∗,K),
where q∗ is the unique solution to Z ∞

q∗
(ε− 2q∗)f(ε)dε = 0. (16)

Dual: The optimal capacity-constrained monopoly price is pM(K) = max(p∗, p(K)), where p∗ is the unique
solution to Z ∞

p∗
(ε− 2p∗)f(ε)dε = 0, (17)

and p(K) solves the optimality equation of Proposition 1.

Corollary 3 If ε is bounded from above with probability one by ε̄, then P (Ω2(p)) = 0 for all prices p such that
p+K ≥ ε̄ and the capacity-constrained price is pM = p∗, which is independent of capacity. If, in addition,
ε is bounded from below with probability one by ε ≥ 1

2 , then P (Ω0(p)) = 0 and the capacity-constrained
price pM(K) and the expected revenue function are independent of variability and equal to the deterministic
solutions: ∀p ≤ ε ≤ ε̄ ≤ p+K :

pM(K) =
1
2 and Eπ

p
M(p,K) = p(1− p). (18)

The dual of qM(K) = min(q∗,K) is pM(K) = max(p∗, p(K)), where q∗ = p∗. In addition, the actual
capacity-constrained price and quantity are related via the deterministic demand curve (p = 1 − q) only if
variability is low and there is sufficient capacity: if ε has Þnite support [ε, ε̄] with 1

2 ≤ ε ≤ ε̄ ≤ 1
2 + K,

then pM(K) = qM(K) = 1
2 independent of the level of moderate variability. Because their expected revenue

functions differ, price-setting and quantity-setting in general yield different investment results. From the
duality result, one could hope that in the special case of low variability, both would yield identical investment
outcomes, but the next section will show that this is not true either.
Proof. We have that

qM(K) = arg max
0≤q≤K

EπM(q,K) =

Z ∞

q≤K
(ε− q)qf(ε)dε. (19)

Given our assumption that f is such that EπM(q,K) is unimodal concave-convex, the Þrst order equations
are sufficient. The unconstrained maximum q∗ must satisfy

R∞
q∗ (ε − 2q∗)f(ε)dε = 0. If q∗ < K, then

qM(K) = q
∗, otherwise EπM(q,K) is increasing over [0,K] so that qM(K) = K.

Dual: First note that for arbitrary large capacity K, clearly p∗ = p(K). Now, invoking Proposition 1
yields that p(K) increases as K decreases, so that in general p(K) ≥ p∗.

2.6 Proofs of Properties of Series kn (Corollaries 1 and 2)

First consider the simpler case of k, which solves:Z ∞

k

(ε− k)f(ε)dε = c (20)
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if c < 1, and k = 0 if c ≥ 1. The latter constraint guarantees a non-negative k. Indeed, the function

g(x) =

Z ∞

x

(ε− x)f(ε)dε⇒−1 ≤ g0(x) = −0 +
Z ∞

x

(−1)f(ε)dε = −F̄ (x) ≤ 0,

is positive and decreasing (strictly over the domain of ε) and g(0) = Eε = 1. Hence the solution (inverse
function) k(c) to g(k) = c is unique, with 1 ≥ g(x) ≥ 1− x. Thus, k(1) = 0 and k0(c) = 1

g0(k(c)) =
−1

F̄ (k(c))
≤

−1, so that k(c) ≥ 1− c and k(c)− k(c+∆c) ≥ ∆c.
The series kn involves the more complicated series of functions:

gn(x) =

Z ∞

x

(ε− n+ 1
n

x)f(ε)dε, (21)

with

gn(0) = Eε = 1,

g
0
n(x) =

1

n
xf(x) +

Z ∞

x

(−n+ 1
n

)f(ε)dε =
1

n
xf(x)− n+ 1

n
F̄ (x) ≥ −n+ 1

n
.

Again, kn(1) = 0 and g
0
n(x) ≥ −n+1

n , so that gn(x) ≥ 1− n+1
n x and kn ≥ n

n+1(1−c). Because g0n(0) = −n+1
n ,

gn is initially decreasing with a minimum at x∗n, where

x∗nf(x∗n)
F̄ (x∗n)

= n+ 1,

at which

gn(x
∗
n) =

Z ∞

x∗n

εf(ε)dε− n+ 1
n

x∗nF̄ (x
∗
n)

=

Z ∞

x∗n

εf(ε)dε− 1

n
x∗2n f(x

∗
n).

Although many distributions yield a unique minimum (from which uniqueness of kn would follow), there may
be distributions with multiple extrema. Hence, we deÞne kn as the smallest positive root to gn(x) = c ≤ 1.
Such a root always exists by Weierstrass� theorem because gn is continuous with gn(0) = 1, gn(∞) = 0
(because ε is Þnite with probability one so that F is a real distribution with xF (x) → 0 as x −→ ∞).
Because kn is the smallest positive root, we have that gn is decreasing at kn so −n+1

n ≤ g0n(kn(c)) ≤ 0 so
that k

0
n(c) =

1
g0n(kn(c))

≤ − n
n+1 .

Because gn(x) is increasing in n we have that the series kn is increasing.
Last, because the integrand of gn is negative for ε < n+1

n kn, we have

gn(x) < g

µ
n+ 1

n
x

¶
=

Z ∞

n+1
n x

(ε− n+ 1
n

x)f(ε)dε. (22)

Because the function g(x) =
R∞
x
(ε−x)f(ε)dε is monotone decreasing (see above) and g(k) = c per deÞnition,

we have that n+1n kn ≤ k.
Examples: If ε is exponentially distributed with mean 1, we have that

gn(x) =

Z ∞

x

(ε− n+ 1
n

x)e−εdε = e−x(1− x

n
),

which is convex-concave with indeed a unique minimum at

x∗n = n+ 1

where gn(x∗n) = − 1
ne

−(n+1) < 0, so that g(x) = c has a unique solution.
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If ε is uniformly distributed over [a, b], setting µ = 1
b−a

kn =
n

n+ 1
(1− c) if kn ≤ a,

kn =
1

(n+ 2)

³
b+ bn−

p
b2 + 2nc(n+ 2)/µ

´
elsewhere,

because Z b

kn

(ε− n+ 1
n

kn)µdε =
1

2
µ
b2n− 2bknn− 2bkn + k2nn+ 2k2n

n
.

Hence:

k = 1− c if kn ≤ a,
k = b−

p
2c/µ elsewhere.

2.7 Proof of Proposition 3

Proof. Any choice K > q∗, implies that d
dKEπM(q

∗,K) = 0 and thus d
dKVM(q

∗,K) = −c, which
cannot be optimal at positive cost. Thus, it must be that K = q∗ and necessary optimality equation
is
R∞
K
(ε − 2K)f(ε)dε = c, which has only has a solution if c < c̄, where c̄ = d

dKEπM(K,K)|K=0 =R∞
K
(ε− 2K)f(ε)dε|K=0 = Eε = ε0.

2.8 Proof of Proposition 4

Proof. First assume that Ki is large such that

max
0≤qi≤Ki

Z ∞

qi+qj

(ε− qi − qj)qif(ε)dε (23)

has an interior optimum qi(qj) which satisÞesZ ∞

qi(qj)+qj

(ε− 2qi(qj)− qj)f(ε)dε = 0 and qif(q+)− 2F̄ (q+) < 0, (24)

where 1− F (x) = F̄ (x) ≥ 0. It follows directly that the unconstrained intersection of the reaction curves, if
it exists, is symmetric: Z ∞

q+

(ε− q+)f(ε)dε = qi
qi=q

∗
D=

1
2 q+⇔

Z ∞

2q∗D

(ε− 3q∗D)f(ε)dε = 0.

Clearly, from Proposition 3 we know that qi(qj = 0) = qM(Ki) = q∗M if Ki is large (Ki ≥ q∗M). The implicit
function theorem yields

∂qi(qj)

∂qj
= − F̄ (q+)− qif(q+)

2F̄ (q+)− qif(q+) , (25)

so that if f(q+)/F̄ (q+) ≤ q−1i , we have that −1 ≤ ∂qi(qj)
∂qj

≤ 0 with qi(0) = q∗M . If Kj is also large with
interior optimum, it�s reaction curve is decreasing with slope ≤ −1 and it intersects the qi = 0 axis at q∗M .
Thus, the two reaction curves have exactly one intersection and that equilibrium is symmetric and is denoted
by (q∗D, q

∗
D) where q

∗
D ≤ q∗M .

If Ki is small (Ki < q∗M), the response function qi(qj) is constant at qi = Ki for small qj . After a certain
value of qj , the optimum of (23) becomes the interior point qi(qj) from before. Thus, if K ≤ (q∗D, q∗D), the
unique equilibrium is q = K and if K ≥ (q∗D, q∗D), the unique equilibrium remains (q∗D, q

∗
D). Thus, the only

remaining case is that Ki < q∗D, while Kj > q
∗
D (or its symmetric counterpart). Let qc denote the unique

intersection of Þrm j�s (unrestricted) reaction curve qj(qi) with qi = Ki: qc = qj(Ki). It directly follows that
q∗D ≤ qc ≤ q∗M . Now: if Kj ∈ (q∗D, qc], the unique equilibrium is q = K; otherwise if Kj > qc, the unique
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equilibrium is q = (Ki, qc). This also shows that if a Þrm has excess capacity (∀Ki > the unique equilibrium
qi(K)) we have that ∂

∂Ki
q(K) = 0.

In conclusion: there is a unique pure strategy equilibrium which cannot be larger than (q∗M , q
∗
M), and

thus, because in that case qi(qj) and qj(qi) ≤ q∗M , a sufficient condition is that

∀x, y ∈ [0, q∗M ] :
f(x+ y)

F̄ (x+ y)
≤ 1

x
. (26)

(The argument can be relaxed by requiring f(q+)/F̄ (q+) < 3
2q
−1
i so that −1 ≤ ∂qi(qj)

∂qj
< 1.)

2.9 Proof of Proposition 5

Proof. First consider the duopoly with n = 2. Any choice Ki > qi(K), implies that d
dKi

Eπi(q(K),K) = 0

and thus d
dKi

Vi(q(K),K) = −c, which cannot be optimal at positive cost. Thus, it must be that K = q(K)
and the capacity reaction curves become:

max
0≤Ki

Vi(K) =

Z ∞

K+

(ε−K+)Kif(ε)dε− cKi. (27)

Clearly if ∂
∂Ki

Vi|Ki=0 =
R∞
Kj
(ε −Kj)f(ε)dε − c < 0, Þrm i will not invest. Thus, if

R∞
0
εf(ε)dε = ε0 ≤ c,

no Þrm will invest and a unique trivial equilibrium follows: q = K = 0. If c < ε0, Þrm i0s reaction curves
becomes:

KiF̄ (K+) =

Z ∞

K+

(ε−K+)f(ε)dε− c and Kif(K+)− 2F̄ (K+) < 0. (28)

A similar argument as in the preceding proof shows that there is a unique intersection of the reaction curves
if ∀x, y ∈ [0, q∗] : f(x+y)

F̄ (x+y)
≤ 1

x . Moreover, this intersection is symmetric: Ki = Kj =
1
2K+ and because

f(x+y)
F̄ (x+y)

≤ 1
x < 2

1
x the sufficient optimality condition is satisÞed. The extension to n > 2 follows directly for

a symmetric equilibrium (there may exist additional equilibria).

2.10 Lemma 1: Capacity-constrained monopoly pricing under uniform uncer-
tainty

Depending on the location of (p,K) relative to the domain [a, b] of ε we distinguish the six possible cases for
EπM(K, p). For ease of notation let a = ε0 −

√
3σ, b = ε0 +

√
3σ and µ = (b− a)−1 if b > a.

Case 1: a < p < p+K < b : We have

EπM(p,K) = p

µ
K

2

¶
Kµ+ pK(b− p−K)µ, (29)

EπM(p,K) =
1

2
pKµ (−2p−K + 2b) . (30)

Capacity constrained monopoly pricing has sufficient interior optimality condition:

∂VM
∂p

=
1

2
Kµ (−K − 4p+ 2b) = 0 and ∂

2VM
∂p2

= −2Kµ < 0. (31)

Thus the capacity-constrained monopoly price is

pM(K) =
2b−K
4

, (32)

with corresponding revenue function

EπM(pM(K),K) =
µ

16
K (2b−K)2 . (33)

8



This case is optimal for any K such that a < p < p+K < b or:

a <
b

2
− K
4
and

3K

2
< b⇔ K < min(2(b− 2a), 2

3
b) (34)

This requires b > 2a (medium and high variability). Note that 2(b−2a) < 2
3b iff b < 3a (medium variability).

Case 2: p < a < p+K < b : We have

EπM = p(a− p+ p+K − a
2

) (p+K − a)µ+ pK(b− p−K)µ, (35)

EπM(p,K) = −1
2
pµ
¡
p2 − 2ap+ 2pK − 2Kb+ a2 +K2

¢
. (36)

The sufficient conditions for an optimal (p,K) interior in {(p,K) : 0 < p < a < p+K < b} are
∂EπM
∂p

= −1
2
µ
¡
3p2 − 4ap+ 4pK − 2Kb+ a2 +K2

¢
= 0,

∂2EπM
∂p2

= −µ (3p− 2a+ 2K) < 0.

Capacity constrained monopoly pricing has necessary interior optimality condition ∂VM
∂p = 0 or

pM(K) =
2

3
(a−K) + 1

3

r³
(a−K)2 + 6K(b− a)

´
, (37)

(the other root is not a maximum) with corresponding revenue function

EπM(pM(K),K) =
µ

27

"
(a−K) ¡18(b− a)K − (a−K)2¢+µq(a−K)2 + 6K(b− a)¶3# . (38)

This case is optimal for any level K such that p < a < p+K < b or:

2

3
(a−K) + 1

3

p
a2 − 8aK +K2 + 6Kb < a (39)

⇔
p
a2 − 8aK +K2 + 6Kb < (a+ 2K) (40)

⇔ a2 − 8aK +K2 + 6Kb− (a+ 2K)2 < 0 (41)

⇔ a2 − 8aK +K2 + 6Kb− (a+ 2K)2 < 0 (42)

⇔ 2(b− 2a) < K, (43)

and

a <
1

3
(2a+K) +

1

3

q
(a−K)2 + 6K(b− a) < b (44)

⇔ (a−K) <
q
(a−K)2 + 6K(b− a) < 3b− (2a+K) (45)

⇔ a2 − 8aK +K2 + 6Kb < (3b− (2a+K))2 and 0 < 3b− (2a+K) (46)

⇔ 4K < 3b− a and K < 3b− 2a. (47)

Thus we have

2(b− 2a) < K < min

µ
3b− 2a, 3b− a

4

¶
, (48)

and because 3b− 2a > 3b−a
4 and we must have 2(b− 2a) < 3b−a

4 ⇔ b < 3a. This, this case requires

b < 3a (low & medium variability) and 2(b− 2a) < K <
3b− a
4

.

9



Case 3: p+K < a : We have EπM = pK. Thus the capacity-constrained monopoly price is

pM(K) = a−K. (49)

with corresponding revenue function

EπM(pM(K),K) = (a−K)K.
This case is suboptimal as it is a boundary solution. ( p+K = a− (a− c) /2 < a⇔ c < a)
Case 4: p < a < b < p+K : In this case (??) becomes EπM = p(a−p+ b−a

2 ) = p(
a+b
2 −p) with optimal

response:

pM(K) =
a+ b

4
, (50)

with corresponding revenue function

EπM(pM(K),K) =

µ
a+ b

4

¶2
.

This case is optimal for any level K such that p < a < b < p+K or

b < 3a and
3b− a
4

< K. (51)

Case 5: a < p < b < p+K : We have EπM = µ
2p(b− p)2, with optimal response:

pM(K) =
b

3
, (52)

and corresponding revenue function

EπM(pM(K),K) =
2

27
µb3.

This case is optimal for any level K such that a < p < b < p+K or

3a < b and
2b

3
< K. (53)

Case 6: a < b < p < p+K :We have EπM = 0, so that any price p > b cannot be optimal for a positive
K.

2.11 Lemma 2: Monopoly capacity investment with price-setting (uniform un-
certainty)

We build on the results of lemma 1. There are three scenarios, depending on the level of variability. In all
scenarios, EπM(K, pM(K)) is strictly concave increasing in K up to a (scenario-dependent) level after which
it becomes constant. Let c̄ = d

dKEπM(K, pM(K))|K=0. Thus, for any positive cost c < c̄, there is a unique
optimal capacity level K. Now, depending on the scenario, we may have to break up the interval (0, c̄) to
derive the optimal K. For the low variability scenario we have that only case 2 (from lemma 1) is needed
and

d

dK
EπM(K, pM(K))

=
µ

9

h
K2 − 12Kb+ 10aK − 5a2 + 6ab−

p
(a2 − 8aK +K2 + 6Kb) (4a−K − 3b)

i
.

It is easily veriÞed that c̄M,low = d
dKEπM(K, pM(K))|K=0 = a and d

dKEπM(K, pM(K))|K= 3b−a
4
= 0.

For the medium variability scenario we have that for K < 2(b− 2a) case 1 is valid:
d

dK
EπM(K, pM(K)) =

1

16
µ (2b−K) (2b− 3K) ,

10



so that c̄M,medium = 1
4µb

2. At K = 2(b − 2a) case 2 becomes valid, at that point the derivative of
EπM(K, pM(K)) is µa (3a− b). Thus, for the medium variability scenario, we have that there is a unique
optimal capacity level K, which is determined by case 2 if 0 < c < µa (3a− b), and by case 1 if µa (3a− b) ≤
c < c̄M,medium =

1
4µb

2.
Finally, for the high variability scenario we have that only case 1 applies so that we have c̄M,high =

c̄M,medium =
1
4µb

2.
Thus, to get the explicit expressions for the optimal K, we only need to consider cases 1 and 2:
Case 1: a < p < p+K < b : We have that

VM(K, pM(K)) =
µ

16
K (2b−K)2 − cK, (54)

The optimal capacity level satisÞes

∂

∂K
VM(K, pM(K)) = 0⇔ µ (2b−K) (2b− 3K) = 16c (55)

with unique positive solution K = 2
3

³
2b+

p
b2 + 12c/µ

´
and thus p = 1

6

³
b+

p
b2 + 12c/µ

´
and corre-

sponding objective value:

V ∗i (c) = µp(b− 2p)(−2p− 2b+ 4p+ 2b)− c2(b− 2p), (56)

= 2
¡
p2µ− c¢ (b− 2p) . (57)

Conditions a < p, p + K = 2b − 3p < b and K = 2(b − 2p) ≥ 0 require max(a, b3) < p < b
2 . Thus: either

b
2 > a >

b
3 (medium variability) and

a <
1

6

³
b+

p
b2 + 12c/µ

´
≤ b

2
⇔ c2 = aµ (3a− b) < c ≤ c̄medium = 1

4
µb2,

or b
3 > a (high variability) and

b

3
<
1

6µ

³
µb+

p
(µ2b2 + 12cµ)

´
≤ b

2
⇔ 0 < c ≤ c̄high = 1

4
µb2.

Case 2: p < a < p + K < b : The optimality equation for this case ∂
∂KEπM(K, pM(K)) = c is a

third-order polynomial with a unique solution satisfying p < a < p+K < b and

4K3 + (2c+ a− 11b)K2 + 2
¡
2a2 + 3b2 + 10ca− 12cb− ab¢K + (a− c) ¡a2 − 9ca− 3ab+ 9cb¢ = 0.

However, an easier (but equivalent) expression is obtained by switching the order of optimization (which is
allowed, given the uniqueness of the optimum in the zone p < a < p+K < b). We have that

VM = −1
2
pµ
¡
p2 − 2ap+ 2pK − 2Kb+ a2 +K2

¢− cK. (58)

The necessary conditions for an optimal (p,K) interior in {(p,K) : 0 < p < a < p+K < b} are
∂VM
∂p

= −1
2
µ
¡
3p2 − 4ap+ 4pK − 2Kb+ a2 +K2

¢
= 0,

∂VM
∂K

= −pµ (p− b+K)− c = 0.

The optimal capacity level is most easily solved for algebraically by Þrst solving for K as a function of p
using ∂V

∂K = 0 such that K = −ρ2µ+ρµb−c
ρµ . Then substitute into ∂V

∂p = 0 and solve for p. The solution p is the
unique root of f(x) = −4µx3+µ (a+ b+ 2c)x2−c2 in the interval [0, a]. [Necessary and sufficient condition
for f (x) to have a single root in [0, a] is that c2− 2µa2c+4µa3−µ(a+ b)a2 = (c−α1)(c−α2) ≤ 0. Because
α1 + α2 < 0, we have a positive root α iff α1α2 = 4µa3 − µ(a+ b)a2 > 0⇔ 3a > b. One can verify that this
single positive root is α = c2 so that there is a valid price for this case if 3a > b and c < c2. Because c2 > a
when b < 2a, the condition c < a when b < 2a guarantees the uniqueness of the root.]
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2.12 Lemma 3: Capacity-constrained monopoly quantity setting

We have two cases:
Case 1: K < a : Because q ≤ K, the revenue function becomes

EπM = E(ε− q)q = (ε0 − q)q,
so that the capacity-constrained monopoly quantity is qM(K) = min

¡
ε0
2 ,K

¢
. (Note that if b > 3a (high

variability) we have that ε02 > a, so that qM(K) = K.)
Case 2: K ≥ a : If q = ε0

2 < a⇔ b < 3a (low & medium variability), the solution above holds. Otherwise
a ≤ q ≤ b, (clearly, one will never set q > b), and the revenue function becomes

EπM = E [(ε− q)q|a ≤ q ≤ b]P (a ≤ q ≤ b) =
bZ
q

(ε− q)qµdε = 1

2
qµ (b− q)2 , (59)

with a unique maximum at q = b
3 so that qM(K) = min

¡
b
3 ,K

¢
.

Conclusion:

1. If b < 3a (low & medium variability):

qM(K) = min
³ε0
2
,K
´
, (60)

2. If b > 3a (high variability):

qM(K) = min

µ
b

3
,K

¶
. (61)

2.13 Lemma 4: Monopoly capacity investment with quantity-setting (uniform
uncertainty)

We have two cases:
Case 1: b < 3a (low & medium variability). The value function becomes

V (K) =

½
K (ε0 −K)− cK if K ≤ ε0

2 ,¡
ε0
2

¢2 − cK if K > ε0
2 .

(62)

Clearly, K > ε0
2 is suboptimal. Thus, K ≤ ε0

2 , and the optimal capacity investment is

K =
1

2
(ε0 − c)⇒ V =

µ
ε0 − c
2

¶2
for low & medium variability, (63)

with conditions: c < ε0 and 1
2 (ε0 − c) < ε0

2 (which is clearly satisÞed with low&medium variability).
Case 2: b > 3a (high variability). The value function becomes

V (K) =


K (ε0 −K)− cK if K ≤ a,
1
2Kµ (b−K)2 − cK if a < K ≤ b

3 ,
2
27b

3µ− cK if K > b
3 .

(64)

Clearly, K > b
3 is suboptimal. Depending on the cost c, V can have a maximum in the zone [0, a] or in [a, b/3].

A maximum in [0, a] is as in case 1 with conditions c < ε0 and K = 1
2 (ε0 − c) < a⇔ a+b

2 − 2a = b−3a
2 < c.

If c < b−3a
2 , then the optimal K is in between a and b/3 and maximizes

V =
1

2
Kµ (b−K)2 − cK, (65)

with unique maximum:

K =
1

3

³
2b−

p
b2 + 6c/µ

´
, (66)

with conditions 0 < a < 1
3

³
2b−pb2 + 6c/µ´ < b⇔ 3a−2b < −pb2 + 6c/µ < b and because we must have

high variability this reduces to c < 1
2 (b− 3a) = 2

√
3σ − ε0.
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2.14 Lemma 5: Optimal duopoly capacity investment under quantity-setting
with uniform uncertainty

2.14.1 The quantity-setting subgame

We now consider the case of two Þrms; initially each Þrm i and j sets capacity at Ki and Kj for a total
industry capacity of K+ = Ki+Kj . Given the capacity choices in stage 1, each Þrm sets production quantity
qi 6 Ki and qj 6 Ki for a total industry production of q+ = qi+ qj . Hence, the expected proÞt for Þrm i is:

Eπi =

Z ∞

q+

(ε− q+) qif(ε)dε.

Case 1: q+ < a. The revenue function becomes Eπi = E(ε− q+) qi = (ε0 − q+)qi so that Þrm i�s
quantity reaction curve is

qi(qj |Ki) = min
µ
ε0 − qj
2

,Ki

¶
if q+ < a⇔ min

µ
a+ b+ 2qj

4
,Ki + qj

¶
< a.

An interior solution ε0−qj
2 requires ε02 =

a+b
4 < a⇔ b < 3a (low & medium variability).

Case 2: q+ ≥ a. Clearly, one will never set q+ > b, so that the revenue function becomes

Eπi =

bZ
qi+qj

(ε− qi − qj)qiµdε = 1

2
qiµ (b− qi − qj)2 ,

with a unique maximum at qi = 1
3 (b− qj) so that

qi(qj |Ki) = min
µ
1

3
(b− qj) ,Ki

¶
if q+ ≥ a⇔ min

µ
1

3
(b+ 2qj) ,Ki + qj

¶
≥ a. (67)

Thus, Þrm i�s reaction curve qi(qj |K) is piecewise linear. If capacity Ki is sufficiently large, the reaction
curve is strictly decreasing in qj whenever qi > 0 with decreasing slopes > −1 as shown in Figure 7. If
capacity is low, the reaction curve is the same, but restricted to the rectangle [0,Ki]× [0,Kj ]. In any case,
as discussed in the proof of Proposition 5, there is a unique equilibrium at the intersection of both Þrm�s
reaction curves.
Assuming capacity is sufficiently large, the equilibrium is q = (q∗D, q

∗
D) depends on the level of variability:

q∗D =
½

a+b
6 if 1

2(b− a) ≤ 1
2(3a− b)⇔ b < 2a (low variability),

b
4 otherwise (medium & high variability).

(68)

In general, denoting the unrestricted reaction curves by qUi (·), the equilibrium is

q(K) =


(Ki,Kj) if 0 ≤ Ki,Kj < q∗D,¡
min

¡
Ki, q

U
i (Kj)

¢
,Kj

¢
if 0 ≤ Kj < q∗D ≤ Ki,¡

Ki,min
¡
Kj , q

U
j (Ki)

¢¢
if 0 ≤ Ki < q∗D ≤ Kj ,

(q∗D, q
∗
D) if q∗D ≤ Ki,Kj .

(69)

2.14.2 The Capacity Stage (Full Game)

We know from Proposition 6 that in equilibrium q = K and K = 1
2(K+,K+) whereZ ∞

K+

µ
ε− 3

2
K+

¶
f(ε)dε = c (70)

for c < ε0, and q = K = 0 for c ≥ ε0.
Case 1:0 ≤ K+ ≤ a: ε0 − 3

2K+ = c⇔

K+ =
2

3
(ε0 − c) and V+ = E(ε−K+)K+ − cK+ = 2

9
(c− ε0)2 , (71)
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a 

Ri(pj,K)

qi

a qj

-1

(a+b)/4

b/3

(b-a)/2

(a+b)/2 b(3a-b)/2

Figure 7: Quantity-reaction curve for Þrm i for uniform uncertainty (assuming Ki > 1
4(a+ b)).

with condition:
2

3
(ε0 − c) ≤ a⇔ c ≥ ε0 − 3

2
a. (72)

With low variability (b < 2a), ε0− 3
2a < 0, so that this holds for all c < ε0. For medium and high variability

this case requires c ≥ ε0 − 3
2a =

b−2a
2 .

Case 2:a < K+:

Vi =

Z b

K+

(ε−Ki −Kj)Kiµdε− cKi, (73)

∂

∂Ki
Vi =

Z b

Ki+Kj

(ε− 2Ki −Kj)µdε− c = 0, (74)

∂2

∂K2
i

Vi = µ (3Ki + 2Kj − 2b) < 0. (75)

Thus, with Ki = Kj = 1
2K+ :

Z b

K+

µ
ε− 3

2
K+

¶
µdε =

1

2
µ (b−K+) (b− 2K+) = c and µ

µ
5

2
K+ − 2b

¶
< 0 and K+ > a, (76)

⇔ a < K+ =
1

4

³
3b±

p
b2 + 16c/µ

´
<
4

5
b, (77)

so that only the negative root remains and

V+(c) =

Z b

K+

(ε−K+)K+µdε− cK+ = 1

2
K+µ (b−K+)2 − cK, (78)

=
1

8

³
3b−

p
b2 + 16c/µ

´
µ

µ
b− 1

4

³
3b−

p
b2 + 16c/µ

´¶2
− c1

4

³
3b−

p
b2 + 16c/µ

´
, (79)

=
1

128

³
3b−

p
b2 + 16c/µ

´·
µ
³
b+

p
b2 + 16c/µ

´2
− 32c

¸
, (80)

with conditions:

a <
1

4

³
3b−

p
b2 + 16c/µ

´
<
4

5
b, (81)

4a− 3b < −
p
b2 + 16c/µ <

1

5
b. (82)

14



Thus, we must have b > 4
3a and

b2 + 16c/µ < (3b− 4a)2 ⇔ c <
1

2
(b− 2a) . (83)

This requires b > 2a (medium & high variability).

2.14.3 Quantity competition under exponential uncertainty

With exponential uncertainty, the quantity-optimized revenue is

Eπi(qi(K),K) = min(1,Ki) exp (−min(1,Ki)−min(1,Kj)) , (84)

with capacity reaction curves

(1−Ki) exp (−Ki −min(1,Kj)) = c and Ki ≤ 1. (85)

The symmetric duopoly equilibrium K = 1
2(K+,K+) where K+ solves for c < c̄ = 1 :¡
1− 1

2K+
¢
exp (−K+) = c. (86)
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