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This article studies the optimal prices and service quality grades that a queuing system---the
‘‘ firm”---provides to heterogeneous, utility-maximizing customers who measure quality

by their experienced delay distributions. Results are threefold: First, delay cost curves are in-
troduced that allow for a flexible description of a customer’s quality sensitivity. Second, a
comprehensive executable approach is proposed that analytically specifies scheduling, delay
distributions and prices for arbitrary delay sensitivity curves. The tractability of this approach
derives from porting heavy-traffic Brownian results into the economic analysis. The general-
ized c� (Gc�) scheduling rule that emerges is dynamic so that, in general, service grades need
not correspond to a static priority ranking. A benchmarking example investigates the value
of differentiated service. Third, the notions of grade and rate incentive compatibility (IC) are
introduced to study this system under asymmetric information and are established for Gc�
scheduling when service times are homogeneous and customers atomistic. Grade IC induces
correct grade choice resulting in perfect service discrimination; rate IC additionally induces
centralized-optimal rates. Dynamic Gc� scheduling exhibits negative feedback that, together
with time-dependent pricing, can also yield rate incentive compatibility with heterogeneous
service times. Finally, multiplan pricing, which offers all customers a menu with a choice of
multiple rate plans, is analyzed.
(Pricing; Quality of Service (QoS); Differentiation; Queuing; Incentive Compatibility; Asymmetric
Information; Delay Costs; Scheduling; Dynamic Priority; Generalized c� Rule; Threshold Rules)

1. Introduction and Summary of
Results

A service provider is considering offering differenti-
ated quality of service to a market consisting of several
customer segments or types. Quality of service (QoS)
is measured by the delay distributions that customers
experience in receiving service. Differentiation derives
from offering multiple service grades that each ren-
der a different delay distribution at a different price.
The provider has three direct controls that together

define the mechanism used to achieve differentiation:
the number of grades, their price schedules, and a
scheduling rule, which determines the order in which
service requests are served. We will analyze how
this mechanism can be designed to tailor the decen-
tralized allocation of scarce processing resources to
individually-acting customers.
The example shown in Figure 1 illustrates our model

as follows. Customers can sign up as ‘‘subscribers”
to receive access rights to send a stream of service
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Figure 1 A Differentiated Quality of Service Model Where Customer Types Choose Service Grades and Submission Rates, and the Service Provider
Decides on the Number of Service Grades, Their Prices, and Scheduling

requests or ‘‘ jobs” to one or multiple service grades
over time. A customer type is multidimensional and
characterized by a triplet of functions: a gross utility
function specifies the value that a customer derives
from service, a delay cost function models QoS sensi-
tivity by specifying the value degradation that accom-
panies longer delay, and a service time distribution
function. Customers choose service grades and sub-
mission rates that maximize their net utility, which is
gross utility minus delay costs and price. The deci-
sion structure considers two objectives for the service
provider: maximize total system utility (social pricing)
or its own server profits (monopoly pricing).
This article strives to contribute along three dimen-

sions. The first dimension concerns model formulation:
this model introduces delay cost curves that allow a
flexible description of a customer’s quality sensitiv-
ity, as assumed for type 1 in Figure 1. Virtually all
of the literature has restricted attention to linear de-
lay costs---i.e., one marginal cost number per type---
and associated static priority scheduling rules. Includ-
ing delay cost curves is an important addition be-
cause delay sensitivity is nonlinear in many practi-
cal settings, such as telephone and Internet service
or where lead-times or due-dates are concerned. The
model also presents an integrated approach to service
design, pricing, and execution. Conventional models
take QoS levels as exogeneously given, usually in the
form of hard QoS guarantees quoted to customers as
in Maglaras and VanMieghem (2000). Here, delay cost
functions are the building block to value QoS, and dif-
ferentiation and associated delay distributions emerge
endogeneously from profit-maximizing firm behavior.

Associated with each service grade, then, is a price
and delay distributionmeasuring the expected, but not
guaranteed, QoS level.
The second dimension concerns mode of analysis

and solution technique. Optimal service levels are de-
termined by an optimal scheduling rule, which is
unknown for a general delay cost structure. Instead of
restricting attention to exact optimality and linear de-
lay costs, this article proposes to approximate the op-
timal unknown policy by a concrete scheduling rule,
called the generalized c� (Gc�) rule, which is asymp-
totically optimal in heavy traffic as shown in Van
Mieghem (1995). Moreover, Gc� is a dynamic schedul-
ing rule so that, in general, service grades need not
correspond to a static priority ranking. By importing
simple heavy-traffic Brownian results, this approxi-
mate mode of analysis makes complex stochastic, eco-
nomic systems tractable. Its power is manifested by its
results: We present an executable proposal that speci-
fies dynamic scheduling policies and its associated de-
lay distributions and prices analytically for arbitrary
delay sensitivity curves. As an example, we analyze
the value of offering differentiated service. The model
is also sufficiently general to serve as a first step in ex-
tending the analysis to a network setting, for which our
approximate mode of analysis should prove useful.
Finally, the third dimension concerns the study of

price and service discrimination under full and asymmet-
ric information. We analyze three cases, listed in de-
creasing order of information availability and allowed
actions (and thus decreasing performance):
1. In the centralized system the service provider has

full information and can directly control all customer
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rates. Optimal scheduling differentiates by customer
type resulting in perfect service discrimination. In
queuing terminology this means that queuing classes,
which contain the finest information set on which a
scheduling rule can be defined, correspond to cus-
tomer types. The centralized system yields an upper
bound on the performance of decentralized systems in
which the service provider uses grades and prices to
indirectly control customer-chosen grades and rates.
2. Under full information, the server observes each

job’s originating customer type and can implement
perfect service discrimination, regardless as to which
grades customers choose. 1 With correct allocation
of job types to queuing classes, as indicated by the
dotted line in Figure 1, prices only need to influ-
ence the total rate into each class. If the server can
set customer-specific prices, offering and pricing one
grade is sufficient to induce each type to choose the
centralized-optimal rate. Such a mechanism in which
customers self-select the centralized-optimal rate is
called rate incentive-compatible (IC). It perfectly coordi-
nates the decentralized system and achieves perfect
price discrimination. If the server cannot set customer-
specific prices, it can still replicate the former outcome
by offering as many grades as there are types and
have grades correspond to queuing classes. Under full
information, scheduling control by itself 2 can induce
customers to each self-select their centralized-optimal
grade, which is called grade incentive compatibility.
Grade-specific prices can then again be set only to
induce the centralized optimal rates. Section 3 shows
that with full information, customer reservation prices
can be extracted by a customer-specific two-part tar-
iff, consisting of a fixed subscription fee and variable
usage fee.
3. Under asymmetric information, the service provider

cannot observe the type of a job. Grade information
now is the finest information on which the server can

1 Discriminatory service highlights scheduling as a valuable
lever to improve price discrimination in backoffice operations
such as e-commerce or call-centers where the server may have
full type information.
2 For example, willfully delaying any type i job submitted to
grade j �= i for a long time inflicts such high delay cost onto
type i that would discourage such choice of grade.

price and schedule, which typically leads to imper-
fect service and price discrimination. (For example, in
Figure 1, queuing class two may hold customers of
either type and the server cannot distinguish between
them.) Under asymmetric information, pricing and
scheduling interact to induce grade and rate choices
and grade incentive compatibility can no longer be
achieved through scheduling only. Thus, grade and
rate IC are much harder to achieve than under full
information where the two can be effectively sepa-
rated. In special cases, however, the mechanism may
achieve the dual goal of inducing customers not only
to choose the ‘‘right” grade, but also the ‘‘right” rate
to that grade. We establish such grade and rate incen-
tive compatibility for Gc� scheduling when customers
are atomistic and have homogeneous service time
distributions. This directly extends the results of Led-
erer and Li (1997) and Mendelson and Whang (1990)
for static priority queuing to dynamic Gc� scheduling
with arbitrary delay cost functions. We explain how
negative feedback inherent in dynamic Gc� schedul-
ing and time-dependent pricing can reinforce each
other to also yield rate incentive compatibility when
service time distributions are type-dependent. Finally,
instead of offering all customers a single price plan
the firm can offer a menuwith a choice of multiple rate
plans, known as multiplan pricing and widely adopted
in practice. The analysis of multiplan pricing in eco-
nomic queuing models with asymmetric information
appears to be novel.
The outline of this article is as follows. This intro-

duction concludes with a short literature review be-
low. Section 2 presents the model. Section 3 analyses
Cases 1 and 2: the centralized system followed by full
information. Section 4 shows how to derive the Gc�
scheduling rule and its delay distributions. Section 5
illustrates this approach by valuing differentiated ser-
vice using the Gc� rule versus traditional fixed priority
and FIFO service. Section 6 analyzes the third case of
asymmetric information. Section 7 offers concluding
remarks.
Lederer and Li (1997) and Mendelson and Whang

(1990) provided our main starting inspiration. The
literature that studied the use of pricing to manage
the impact of externalities in congestion systems is
extensive and appears to have been started by Naor

MANAGEMENT SCIENCE/Vol. 46, No. 9, September 2000 1251



VAN MIEGHEM
Incentive Compatibility of Gc� Scheduling

(1969). Knudsen (1972) and Lippman and Stidham
(1977) first highlighted the difference between profit-
maximizing and socially optimal control of queuing
systems. In a hallmark paper, Mendelson (1985) em-
bedded the queuing system in an economic frame-
work. Dolan (1978), Mendelson and Whang (1990),
and Rao and Petersen (1998), among others, study
incentive-compatible pricing of static priority queues.
De Vany and Saving (1983), Reitman (1991), Loch
(1991), Lederer and Li (1997), and Cachon and Harker
(1999) consider delay-quality differentiation in com-
petitive industry models. Lui (1985) and Ha (1998)
add service-rate effort as an additional decision vari-
able to incentive-compatible pricing for homogeneous
customers under FIFO scheduling. Bradford (1996),
adds static routing control. AfFeche and Mendelson
(2000) take a first crack at the network extension. Ha
(1999) shows that a single variable price is optimal
and incentive compatible for heterogeneous customers
that choose service requirements under uniform pro-
cessor sharing. Finally, we refer to Courcoubetis (1998)
and Gibbens and Kelly (1999) for an overview of the
Internet-related pricing literature, which seems fairly
disconnected from the above.

2. A Multitype, Multiservice
SubscriptionModel

A basic element of the formulation is a model of the
heterogeneity of customer behavior and of service
offerings. For this purpose, each customer or market
segment is classified as one of several types, indicated
by superscripts i=1, : : : , m, while the different service
grades are indicated by subscripts k=1, : : : , n.

Customer Behavior Modeling. Customers can sign
up as subscribers to receive access rights to send a
stream of service requests or ‘‘ jobs” to the service
provider over time. They can distribute their total ser-
vice needs over the various service grades. We model
customer type i’s stream of service requests as a re-
newal vector process with average rate of requests
sent to grade k denoted by �i

k. The n-dimensional sub-
scription rate vector �i=(�i

1, : : : , �
i
k, : : : , �

i
n) represents

the strategic decision variable of customer type i.

Type i customers are identified by a triplet of func-
tions (Vi, Ci, Fi) defined as follows. Receiving services
at total rate �i

+ =
∑

k �
i
k generates gross utility or value

Vi(�i
+) per unit of time to customer type i. At the same

time, any delay in receiving service may degrade that
value. That is, a particular type i job may have to wait
some time t before service is initiated, inflicting a delay
cost Ci(t) onto customer type i. The actual processing
time needed to serve a request is called the service time.
As usual, service times are assumed to be iid random
variables with generic representative �i with cumula-
tive distribution function Fi.
Customers may split their total service needs over

the various service grades, precisely because a ‘‘better”
grade may provide more timely service and reduce
delay costs. Customer i’s delay experienced by a ser-
vice request to grade k is modeled by the generic ran-
dom variable tik, because delays may depend on quan-
tities that are unknown at the time when customer i
makes her subscription decision. Thus, customer i will
make her subscription rate decision �i

k to grade k antic-
ipating a total grade k delay cost rate �i

kEC
i(tik), where

E denotes the expectation operator under equilibrium
conditions (a precise notion of equilibrium will be dis-
cussed later). After processing a job, a customer must
pay a price that may be a function of the actual (ex-
post observed) processing time �i and of the chosen
grade. In addition, depending on the regulatory environ-
ment, the price may be customer-specific. If customer-
specific pricing is not allowed, then all customers must
be offered the same price contract. In general, then,
customer type i’s ex-ante expected payment rate (per
unit of time) can be denoted by EPi(�i, �i), which we
simplify to Pi(�i) if the charge is not explicitly service-
time dependent and to EP(�i, �i) if customer-specific
pricing is not allowed. In equilibrium, customer i will
make her subscription rate decision3 �i to maximize

3 We first assume that a single decision maker sets the sub-
scription vector �i for customer type i. This implies that each
customer type either represents one major customer (e.g., cor-
porate customer of an IT service provider) or many customers
who collusively set �i. Later, in §6, we simplify to the ‘‘atomistic
model” where a type comprises many small customers who
each decide individually whether or not to subscribe at an in-
finitesimal rate and the type vector �i is the aggregate result of
these individual decisions.
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her expected net monetary profit rate �i, where

�i=Vi(�i
+)−

n∑
k=1

�i
kEC

i(tik)− EPi(�i; �i); (1)

which is the value rate net of expected delay costs and
payments. All value functions are concave increas-
ing, the traditional economic assumption of decreas-
ing marginal returns. The delay cost functions are
assumed to be convex increasing, reflecting the fact
that more waiting is increasingly costly.

The Process View. In addition to choosing the num-
ber n of service grades, the service provider designs its
service offering through two strategic control levers:
pricing and scheduling. The service provider can par-
tially control subscription rates by setting the price
schedules {Pi(�, t) : i=1, : : : , m} defined earlier. In-
deed, this more tailored control is exactly the motive
behind offering differentiated services. In addition, the
service provider has dynamic internal control in that it
can choose a scheduling rule r to decide at each point
in time how to serve jobs through its service process.
(The firm has no explicit admission control because
once customers have subscribed, their jobs must be
served.) The service process is modeled by a queuing
process with q classes, indexed j=1, : : : , q. The class
designation captures the finest possible information
that the service provider possesses: He cannot distin-
guish ex-ante among different jobs in class j and, hence,
must treat them homogeneously. Consequently, the
scheduling rule r is defined in terms of classes, which
may be thought of as physical queues. Under full in-
formation, the service provider can observe each job’s
type and classes are grade and customer specific: class
j=(i, k) and its arrival process has rate Hj=�i

k and
its service times are i.i.d. with distribution Fj=Fi and
mean denoted mj=1=�i. Customer i’s generic random
delay time tik for grade k equals class j delay time tk.
Under asymmetric information, types are not observ-
able and classes are grade-specific only: Class j=k ag-
gregates all subscriptions to service grade k. Its arrival
process thus is a compound renewal process with rate
Hj=

∑
i �

i
j and its service times distribution becomes

Fj(x) =
m∑
i=1

�i
j

Hj
Fi(x) with mean mj=

1
�j
=

m∑
i=1

�i
j

Hj

1
�i :

(2)

In that case, all customers submitting to grade k re-
ceive the same generic random delay time tk. Under
either information structure, the average rate of work
(or ‘‘ traffic intensity”) submitted to class j and the total
system is, respectively,

�j=
Hj

�j
, and � =

q∑
j=1

�j: (3)

We consider dynamic scheduling rules that may
depend on the current internal state of the queuing
process and the arrival vector H because the ser-
vice provider (but not the customers) observes the
dynamic queue-count in each class. We do restrict
attention, however, to stationary control rules that
do not explicitly depend on time. Then, regardless of
the queuing system’s internal complexity, the service
process can be summarized by a technology function,
which specifies how the control rule r transforms a
total subscription arrival vector H into class-dependent
delay times, represented by their distribution func-
tions Fr

j (· |H). Thus, customer i’s expected delay cost
when submitting a job to grade k is:

Er
HC

i(tik)=




∫
Ci(t)dFr

j=(i, k)(t|H)
under full information,∫
Ci(t)dFr

j=k(t|H)
under asymmetric information;

(4)

where Er
H represents the expectation operator when

rule r is used and the total arrival vector is H. Two
remarks are at place here: First, (4) shows that cus-
tomer i’s delay cost of grade k depends on the total
subscription vector H. Reversing the argument, by
sending a job to grade k, customer i may impact
the delay cost of other customers. This externality
effect will impact the pricing decisions. Second, (4)
allows for perfect service discrimination in the sense
that scheduling is customer-type-specific if types are
observable so that different customers submitting
to the same grade can receive a different expected
QoS.
The service provider bears an operating cost

CS(H) per unit of time when processing vector H.
As traditionally, we assume that CS is convex
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increasing. In equilibrium, using price rate schedules
{Pi(�, t) : i=1, : : : , m} and internal control rule r, the
service provider will earn profit rate �S, where

�S=
m∑
i=1
EPi(�i, �i)−CS(H): (5)

We distinguish two objectives for the service provider:
maximize either its own individual profit �S or social
systemwide profits �S +

∑
i �

i.
We assume the following information structure: ag-

gregate type characteristics {(Vi, Ci, Fi) : i=1, : : : , m}
and the mechanism defined by the triplet (n, P, r)
of number of grades, their price schedules, and a
stationary scheduling rule (or, equivalently, the de-
lay distributions Fr

k ), are common information to all
agents (customers and service provider). While each
customer always knows its type, we distinguish be-
tween full and asymmetric information, depending on
whether the service provider can observe a job’s
originating customer type or not. As said earlier, the
queue-count state vector of the internal service pro-
cess is observable to the service provider but not to
the customers; grades and prices form the only in-
terface between service system and customers. As
usual, actual service times �i are not observable ex-
ante.
This information structure guarantees that the non-

cooperative game is well specified. 4 We will analyze
the system dynamics in equilibrium, which we define
in the usual Nash sense as follows. An equilibrium of
this noncooperative decision model is any quadru-
plet (n, P, r, �) of number of grades, price schedules,
scheduling rule, and customer subscription rate vec-
tors that satisfies the system dynamics and that is
such that no agent has an incentive to unilaterally
deviate from the equilibrium. Such equilibrium there-
fore captures a consistent and sustaining solution to
the service provider’s and the m customers’ decision
problems.

4 Common information requirements may be reduced at the ad-
ditional complication of modeling learning and dynamic pric-
ing. See Masuda and Whang (1999) for a first exploration of
such approach.

3. Price and Service Discrimination
Under Full Information

Centralized System. It is instructive to first analyze
the relaxed problem where one central planner makes
all decisions (which implies full information) to maxi-
mize social, systemwide profits Ir(�), where

Ir(�) =�S +
∑
i
�i=

m∑
i=1
(Vi(�i+)−

n∑
k=1

�ikE
r
HC

i(tik))−CS(H):

(6)

The performance of this centralized system represents
a ‘‘ first-best” solution and provides an upper bound
to the decentralized system performance. The central
planner has direct control of the scheduling rule r and
the rate vectors �i, obviating indirect control through
pricing and offering grades. Indeed, ‘‘service grades,”
in the sense defined earlier, are superfluous in the
centralized system: The central planner allocates types
directly to queuing classes as that offers the finest
information set on which can be scheduled. 5 (Such
allocation clearly dominates any ‘‘mixing” of several
customer type flows into one class, as the finer allo-
cation can always replicate the coarser.) Let tj denote
the generic random delay of class j. Let vi=(@=@�ik)V

i

represent customer i’s marginal value rate function
and ck =(@=@Hk)CS=(@=@�ik)C

S the service provider’s
marginal cost of class k subscriptions. It is obvious
that:

PROPOSITION 1. The optimal centralized system yields
profits I∗=Ir∗(�∗) by using a scheduling rule r∗ that
minimizes total delay cost rate, denoted by DCr

H =∑
i, k �

i
kE

r
HC

i(tik) for any given load vector H, and achieves
perfect service discrimination (queuing classes are type-
specific: �ik �=i=0). Type i’s optimal scalar rate �∗i ≥ 0 and

5 If the service provider is ex-ante restricted to q¡m queue-
classes, then at least one class will contain multiple customer
types and scheduling will be coarser (imperfect service dis-
crimination). In that case, optimal allocation of customer types
to classes solves (7) after replacing the single summation by∑m

j=1
∑q

l=1 �
∗j
l @=@�ikE

r∗
H∗C

j(tl) + u∗ik , where u∗ik ≤ 0 is the opti-
mal Lagrange multiplier on the nonnegativity constraint of
�ik : �

∗i
k u∗ik =0.
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dual variable u∗
i ≤ 0 solve: ∀i=1, : : : , m : �∗i u∗

i =0 and
6

vi(�∗i ) =E
r∗
H∗Ci(ti) +

m∑
j=1

�∗j
@
@�i
Er∗
H∗Cj(tj) + ci(H∗)−u∗

i :

(7)

Convexity of the total expected delay cost
∑

i �iE
r∗
H

Ci(ti) would yield concavity of Ir∗ and thus unique-
ness of the solution. This is the case with linear delay
cost functions Ci(t) =cit for which the optimal schedul-
ing rule r∗ is the c� rule, which ranks the priority of
classes in the order of index ci�i. For general delay cost
functions, however, the optimal scheduling rule and
its delay distributions are unknown. Hence, convex-
ity and uniqueness, while plausible because delays are
typically convex in the rates and the delay cost func-
tions are convex, cannot be guaranteed.
The necessary first-order conditions (7) have a fa-

miliar economic interpretation: the optimal rate �∗i
equates the marginal value of customer i’s incremen-
tal class i job with its total marginal cost. The latter is
born by three parties: (1) the ‘‘self-regulating” term
Er∗
H∗Ci(ti) + �∗i (@=@�i)E

r∗
H∗Ci(ti) is born by customer i,

(2) the externality term
∑

j �=i �
∗
j (@=@�i)E

r∗
H∗Cj(tj) is in-

flicted onto other customers, and (3) the marginal
operating cost ck(H∗) is born by the service provider.
Finally, a zero rate �∗i =0 obtains if its marginal value
does not outweigh its marginal cost.

Full Information and Customer-Specific Pricing.
When the service provider observes types, grades
are superfluous for scheduling purposes and perfect
service discrimination is achieved by allocating cus-
tomer types to classes one-to-one. Yet, the service
provider needs at least one grade because service
grades and their prices form the observable interface
with customers in the decentralized system. With
optimal scheduling already guaranteed, prices only
need to induce customers to self-select the centralized-
optimal rate, which is called rate incentive compatibility
(IC).

6 The notation of �ii and @=@�ii will be simplified to �i and @=@�i
whenever possible.

PROPOSITION 2. Let (�∗, r∗) represent the centralized
optimum and define ∀i=1, : : : , m:

b∗i =ci(H∗) +
m∑

j=1, j �=i
�∗j

@
@�i
Er∗
H∗Cj(tj), (8)

a∗i =Vi(�∗i )− �∗i EC
i(ti)− b∗i �

∗
i : (9)

Under full information and customer-specific pricing, it is
sufficient to offer one service grade: n∗=1. If the delay cost
�iEr∗

H∗Ci(ti) is locally (globally) convex in the scalar �i at
�∗ for each i, then an equilibrium exists (is unique) and
any customer-specific affine pricing Pi∗(�) =ai + b∗i �, where
ai ≤ a∗i , together with (n

∗, �∗, r∗), is a social-welfare equi-
librium. If ai=a∗i , it is also a profit-maximizing equilibrium
and the service provider extracts all system profits: �∗S=I∗

and �∗i=0 ∀i.

REMARKS. The prices Pi∗ are two-part tariffs where
ai is the fixed subscription fee that gives customer i
access rights, while b∗i is the variable price for a unit
rate from customer i. These constant marginal prices
force customer i to incorporate the marginal external-
ity that she inflicts onto other agents in her decision
making process. Section 6 will show that the fixed
fee is zero in the simpler atomistic model and that
more complex schedules, which may be service-time
dependent, will be used under asymmetric informa-
tion. The prices P∗ are perfectly discriminating because
each customer is charged its ‘‘reservation price”: the
service provider extracts all surplus and customers
are indifferent between participating or not. Finally,
this mechanism perfectly coordinates the decentralized
system because it induces the centralized-optimal
solution.
PROOF. Let us briefly review the standard economic

argument to derive the equilibrium (n∗, P∗, �∗, r∗) un-
der full information as it will be useful for §6. If an
equilibrium exists, customer i will make her subscrip-
tion decision �i to maximize her expected net profit
rate �i as given in (1) with necessary first-order condi-
tions:

vi(�i+) =E
r
HC

i(tk) +
n∑
j=1

�ij
@
@�ik

Er
HC

i(tij ) +
@
@�ik

Pi(�i)+ui
k

∀k=1, : : : , n, (10)

and �iku
i
k =0, where ui

k ≤ 0 is the Lagrange multiplier
on the nonnegativity constraint of �ik. Compare the
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decentralized conditions (10) with the centralized con-
ditions (7). To induce rate IC, it suffices to offer one
grade: n∗=1 so that �i becomes a scalar. In addition,
the service provider must use the centralized-optimal
control rule r∗ and a price schedule with constant
marginal prices b∗i =(d=d�

i)Pi(�i) to induce the rate �∗i .
Then, under the local convexity of �iEr∗

H∗Ci(ti), cus-
tomer i has no incentive to unilaterally deviate from
�∗i . Second, the participation conditions insure that
customer iwill ‘‘participate”: ai ≤ a∗i implies �i(�∗i) ≥ 0
so that customer i is at least indifferent to subscribing
or not.
Similarly, we must show that, if all customers

choose the centralized solution �∗, then the service
provider will choose one grade, pricing schedule P∗

and scheduling rule r∗, and that he has no incentive
to deviate from that decision. Clearly, the sum of all
profit rates in the decentralized system cannot exceed
the optimal centralized system profit:

∑
i �

i + �S ≤ I∗.
Thus, the best the service provider can possibly hope
for is to capture all the profits of the system: �∗S=I∗

and
∑

i �
i=0, which implies �i=0 (∀i) to satisfy our

participation constraint. This indeed is possible if the
service provider uses one grade with control rule r∗

and pricing schedule P∗ with intercept a∗i . The service
provider’s profit rate becomes:

�S=
∑
i
P∗i(�∗i)− CS(H∗)

=
∑
i
[Vi(�∗i)− �∗i EC

i(ti)]− CS(H∗) =I∗,

so that service provider has no incentive to unilaterally
deviate from his decision. Under social welfare maxi-
mization, the allocation of system profits I∗ to agents
is irrelevant so that any ai ≤ a∗i forms an equilibrium.
Finally, if all customer delay costs �iEr∗

H∗Ci(ti) are glob-
ally convex, all first-order conditions have a unique
solution �∗.

Full Information andGrade-Specific Pricing. If the
service provider cannot set customer-specific prices,
he can still induce the centralized outcome by offer-
ing as many grades as there are types (n∗=m) and
by making queuing classes grade specific. Under full
information, it is easy to induce customers to each
self-select their centralized-optimal grade (class) and
achieve such grade incentive compatibility. The grade IC

conditions can be stated as bij �=i(�)¡bii (�), where

bij (�) =vi(�ii)− Er∗
H Ci(tij )− �i

@
@�ij
Er∗
H Ci(tii)− bj (11)

is type i’s marginal profit at � from a grade j sub-
scription; the rate IC conditions require in addition
that bii (�

∗) =0. Under full information, grade IC can
be achieved purely through scheduling. For example,
willfully delaying a type i job submitted to grade j 
=i
for a constant long time Ti, where Ci(Ti)¿vi(�∗ii ), in-
flicts a high delay cost onto type i that, exacerbated by
the fixed fee, would discourage such choice of grade:
bij (�

∗)¡0, which makes �∗i=(0, : : : , 0, �∗i , 0, : : : , 0) an
equilibrium. With grade IC, grade-specific prices be-
come equivalent to customer-specific prices. As before,
it is optimal to set them at b∗i to induce the centralized
optimal rates. In conclusion: under full information,
differentiated service grades and scheduling achieve
grade IC, leaving prices the only task of inducing rate
IC, which results in perfect price discrimination and
coordination.

4. TheGc� Scheduling Rule and its
Delay Distributions

The previous section highlighted the role of the op-
timal scheduling rule r∗: it minimizes total expected
delay costs, denoted by DCr∗

H =
∑

i, k �
i
kE

r
HC

i(tik), for
any given load vector H. In addition, we need its de-
lay distributions to quantify the expected delay cost
and its gradients to compute the optimal rates �∗ and
prices P∗. Unfortunately, as described in the introduc-
tion, the exactly-optimal scheduling rule is unknown
when delay cost functions are convex increasing. In
Van Mieghem (1995), however, we present the Gen-
eralized c� (Gc�) rule, which is shown to be asymp-
totically optimal in a single server system in ‘‘heavy
traffic” (i.e., if traffic intensity �→ 1). Here we show
how to specify the Gc� rule and its delay distributions
in our setting and we provide some intuition behind
the rule. To stress the approximate mode of analysis,
we will use � to denote approximate relationships
that are asymptotically exact if �→ 1.
DEFINITION. Gc� scheduling serves class j jobs in

the order they arrive (FIFO). Classes correspond to
customer types if types are observable, otherwise
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they correspond to grades. Let ci(x) =(d=dt)Ci(x) be
customer type i’s marginal delay cost and Nj(t) the
number of waiting class j jobs at time t. Then Gc�
serves the class with highest priority index

Ij(t) =




cj
(
Nj(t)
Hj

)
�j under full information,

∀j=1, : : : , m: Hj=
n∑

k=1

�j
k,

m∑
i=1

�ij
�j

ci
(
Nj(t)
Hj

)
under asymmetric

information,

∀j=1, : : : , n : Hj=
m∑
i=1

�ij:

(12)

Notice that the Gc� rule is well defined, even under
asymmetric information, as will be illustrated in the
next section. (If types are not observable, the server can
infer the rates �ij under rational decision making by the
customers just likewe did for Proposition 2). To specify
delay distributions, we need a mapping g(·) from R+
to ‘‘class-space” R q

+ that is defined as the solution of
the following linearly constrained convex optimization
problem for W ≥ 0:

g(W ) =arg min
w∈Rn

+

m∑
i=1

n∑
k=1

�ikC
i(tik) (13)

s:t::




m∑
j=1

wj=W and ∀i, k: tik =wi
�i
,

�i=
n∑

k=1

�ik
�i under full information,

n∑
j=1

wj=W and ∀i, k: tik =wk
�k

�k =
m∑
i=1

�ik
�i under asymmetric information:

(14)

As the next section will illustrate, this mapping defines
the switching curve of the Gc� rule parameterized by
scalar W . Denote the aggregate squared coefficient of
variation of the service and interarrival times by C2s
and C2a , respectively.

PROPOSITION 3. The Gc� rule is asymptotically optimal
for all arrival vectors H such that �(H)→ 1. Its delay distri-
butions are FGc�

j (t|H)�FW (g−1j (�jt)|H), where the mapping
g solves (13) and (14) and

FW (t|H) � 1− �e−+t, where +−1 =�−1 �
1− �

C2a + C2s
2

:

(16)

(The Appendix gives the intuition behind Proposi-
tion 3, whereas Van Mieghem (1995) contains precise
formulations and proofs.) The mixed distribution (16)
is one of many possible Brownian approximations to
the total workload distribution of a GI=G=1 queue.
We use it, rather than the asymptotically equivalent
1−e−+t, because it makes our approach consistent with
the exact results for the single-class FIFO M=M=1
queue, for which g(W ) =W and

FFIFO(t) =1− �e−�(1−�)t=FGc�
single class(t):

While the Gc� rule minimizes total delay costs
asymptotically in heavy traffic, our approximate mode
of analysis derives from the fact that in this model
arrival rates and traffic intensity � are endogeneous.
Cost minimization will ensure moderate traffic in
equilibrium and we propose to use the Gc� rule in this
regime for which optimality has not been proved in
general. The benchmarking study in the next section
and our simulation analysis in Van Mieghem (2000a),
however, show that the approximation is very good
for moderate traffic. Moreover, the rule is prima facie
reasonable and appealing for implementation and for
complex problems such as service time tail objectives
(Ayhan and Olsen 2000) or lead-time constraints (Van
Mieghem 2000b).

5. Pricing and Valuation of
Differentiated Service: An
Example

This section illustrates our methodology with a com-
prehensive benchmarking example assuming types
are observable; the next section considers the case
of asymmetric information. The executable proposal
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is: (i) Characterize the Gc� rule for the delay cost func-
tions at hand. (ii) Calculate the associated delay distri-
butions and total expected delay cost DC∗. (iii) Solve
equations (7) for the centralized optimal rates �∗. (iv)
Evaluate the gradients of DC∗ at �∗ to derive the equi-
librium prices P∗ as in Proposition 2. Verify local con-
vexity of customer delay costs to assure stability of the
equilibrium. 7

Consider a stylized example with two customer
types and delay cost functions:

C1(t) =
.
2
t2 and C2(t) =t: (17)

Our interest is in moderate values of the parameter
.≥ 0 that model a nontrivial tension between the two
customer types’ delay costs. Clearly, as .→∞, type
1 should get static priority, while type 2 should get
static priority as .→ 0. We assume 8 Poisson arrivals
and exponentially distributed service times with type-
dependent mean mi=1=�i so that Fi(t) =1− exp(−�it).
As a first benchmark to the Gc� rule, consider un-

differentiated service. With a single queuing class, the
Gc� rule simplifies to FIFO. The resulting M=G=1 queu-
ing system has compound Poisson arrivals with rate
H=�1 + �2 and a two-phase hyperexponential service
distribution with mean �−1 =

∑2
i=1(�

i=H)mi=�=H and
second moment

∑2
i=1(�

i=H)2m2
i . This yields the rate +

in the Brownian approximation (16) for the workload
distribution:

+−1 =�−1 �
1− �

C2a + C2s
2

=
m1�1 +m2�2

1− �
: (18)

Under FIFO, g(W ) =W and Proposition 3 then yields
the delay distribution of the FIFO M=G=1 system:
FFIFO(t)�FW (�t), which is exact for M=M=1 if �1 =�2.

7 The equilibrium is stable in all our examples. One should
investigate mixed strategy equilibria in the unusual case that
there is no Nash equilibrium in pure strategies, to which we
restrict attention here.
8 Gc� easily handles general service time distributions and more
complex delay cost functions; For example, Gc� for lead-time
constraints is a generalization of longest queue policies, as
shown in Van Mieghem (2000b). We assumed quadratic costs
and exponential service times to allow analytic benchmarking
with static priority rules. (Exact calculation of first and second
moments is about as ‘‘good as it gets” for static priority rules.)

The delay moments Et kFIFO � k!�(�+)−k yield 9 the to-
tal delay cost rate DCFIFO � .�11�

−1+−2 + �21+
−1. As a

second benchmark, consider differentiated service,
using preemptive and nonpreemptive static priority
scheduling rules, allocating types to classes. Exact ex-
pressions for the first and second delay moments are
summarized in Table 1.

(i) The Gc� Rule. Under differentiated service with
two grades, the two customer types may spread their
load over both service grades yielding load vectors
�1 =(�11, �

1
2) and �2 =(�21, �

2
2). Under asymmetric infor-

mation, classes correspond to grades and class utiliza-
tion �k =m1�1k+m2�2k . While the index (12) is immedi-
ately applicable, it is insightful to solve (13) and (14)
for the mapping g:

g(W ) =




( u2W+u3
u1+u2

, u1W−u3
u1+u2

)

if W≥max(−u3
u2
, u3

u1
),

(W , 0)
if 0≤W¡u3

u1
(and thus u3≥ 0),

(0, W )
if 0 ≤ W¡−u3

u2
(and thus u3¡0),

(19)

where u1 =.(�11=�
2
1), u2 =.(�12=�

2
2), u3 =�22=�2 − �21=�1. As

shown in Figure 2, g is a switching curve that de-
fines the Gc� scheduling rule in the workload space
R 2+: whenever the workload vector (W1, W2) deviates
from the switching curve, serve the class that brings
the workload vector back to the vector g(W1 +W2) on
the switching curve. In the case of full information,
scheduling is type specific and allocates customers to
classes: �ik =/ikHi. Hence, u2 =0 and the switching curve
g defines a simple threshold rule represented by the
dashed line in Figure 2. Note that this Gc� rule vali-
dates the practice of expediting jobs that have beenwait-
ing too long, thereby violating a static priority sched-
ule and giving empirical evidence that delay costs are
nonlinearly increasing. As noted earlier, static priority
rules can be interpreted as two extreme cases of the
Gc� rule for .→ 0 or∞.

9 Note that EtFIFO is always exact, while the exact Et2FIFO=2+
−2+

2((m21�1 +m22�2)=(1− �)). Our approximation Et2FIFO � 2�−1+−2 is
exact for m1 =m2 and, for general m1 �=m2, asymptotically exact
for �→ 1.
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Table 1 Moments of the Class Delays for the Gc� Threshold Rule and for Nonpreemptive (SPNP1) and Preemptive-Resume Static Priority
(SPP1) to Class 1. 1= +�1m1=.m2 and 2=m1m2(�1(1 + �1))=((1 − �1)3) + m2=m1(2�1m2 + m1)(�1)=(1 − �1)):

Gc� SPNP1 SPP1

E t 1
�

+�1
(1 − e−�) 1−�

+(1−�1)
m1�1
1−�1

E t 2
�
+�2
e−1 1

+(1−�1)
1

+(1−�1)
+ m2�1

1−�1

E t 2
1

2�
(+�1)2

(1 − (1 + 1)e−1) 2(�1m
2
1+�2m

2
2)

1−�1
+ 2�1m1(1−�)

+(1−�1)2
2�1m

2
1

(1−�1)2

E t22
2�

(+�2)2
e−1 2(�1m

2
1+�2m

2
2)

(1−�1)2(1−�)
+ 2�1m1

+(1−�1)3
+ 2

+2(1−�1)2
E t2

SPNP1

2 + 2m2�1
+(1−�1)2

+ 2

Figure 2 The Gc� Rule

Note. When customers submit to multiple service grades (boldface) it becomes
a threshold rule (dashed) when customer i is optimally routed to queue class i.

(ii) The Delay Distributions and Costs. Using
Proposition 3, the asymptotic delay distributions un-
der the Gc� threshold rule are:

FGc�
1 (t|H)� Pr

{
t1 � g1(W )

�1
≤ t
}

=

{
FW (�1t) if t¡ 1

.
�2
�1
,

1 if t ≥ 1
.
�2
�1
,

FGc�
2 (t|H)� Pr

{
t2 � g2(W )

�2
≤ t
}

=FW

(
�1
.

�2
�1
+ �2t

)
:

It is impressive how easily distributions that are in-
tractable in exact analysis, are obtained in heavy traf-
fic. Total delay costs DC=�11(.=2)Et

2
1 + �22Et2 require

the first and second delay moments, which are easily
calculated and are summarized in Table 1. Denoting
f (�1, �2)=�2(m1�1+m2�2)�=(1−�), 1=+(�1=.)(�2=�1) and
h(1) =1−1(1−e−1) yields our approximation ofDCr∗ to-
gether with bounds because 1 ≤ (1− �)=m2. ≤ 1=m2.:

f (�1, �2)h
(
1− �
m2.

)
≤DCGc�(H) � f (�1, �2)h(1)

≤ f (�1, �2): (20)

Thus, DCGc� is ‘‘sandwiched” between two convex
functions and ‘‘ the sandwich becomes very thin” 10

for small ., or if � → 1, or if m2 is large. Extremely
tedious analysis shows that DCGc� is indeed jointly
convex in H for all . if m1 =m2. (Verifying convexity
analytically for general m1 
=m2 was deemed too
laborious.)
While the static priority rules yield same order of

magnitude delay costs, the Gc� threshold rule balances
dynamic priorities relative to . to minimize total delay
cost. Obviously, delay costs are increasing in the de-
lay sensitivity parameter ., as shown in Figure 3. All
benchmark scheduling rules are linearly increasing in
., except for the Gc� rule: the intercepts are ordered
for m1 =m2, and the reverse ordering applies to the
slopes. Hence, as . increases, the best benchmark rule

10 For our examples we have � ≥ 0:5 and . ≤ 2 so that h((1 −
�)=m2.) ≥ h( 14 )= 0:8848 for all m2 ≤ 1, which yields a ‘‘sandwich
thickness” of less than 12%.
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Figure 3 Benchmarking of Total Delay Costs DC As a Function of
Delay Sensitivity

switches from SPNP2 to FIFO to SPNP1 to SPP1 as in-
tuitively expected. The interesting observation here is
that it would not always be beneficial to offer differen-
tiated services if the service provider were restricted
to traditional static priority scheduling rules. The Gc�
rule, however, always gives superior value (in terms
of delay costs) to differentiated services.

(iii) Optimal Rates and the Value of Centralized
Differentiated Service. Convexity of DCGc�(H) im-
plies that the centralized ‘‘near-optimal” vector H∗, Gc�

is unique for any concave value functions (V1, V2). To
quantify the optimal rates �∗ and total monetary value
I∗ in the centralized system, we first must specify
the customer gross utility functions Vi. For simplicity,
assume zero operating costs (CS=0) and value func-
tions that only depend on a type’s total subscription
rate 11 and expected service time:

Vi(�) =mi
�1−4

1− 4
, (21)

11 These value functions are often used in economics be-
cause they yield demand functions with constant elasticity
1=4: Vi′ (�) = p⇔ �= (�ip)−1=4. (When we graph results, we will
fix 4=1=2.) We also analyzed concave parabolic value func-
tions. While this results in minor numeric changes it does not
alter any of our conclusions.

with 0¡4¡1. The concave rate equations (7) are eas-
ily solved numerically for the rates �∗i . The associated
optimal profits and utilization 12 are reported in Fig-
ure 4 as a function of the delay sensitivity parameter
.. The Gc� threshold rule yields both the highest mon-
etary profit and highest utilization: It is able to serve
more customers profitably.

(iv) Perfect Discriminating Prices. Numerical anal-
ysis verified that both customers’ delay cost rates
DCi are locally convex in �i at �∗, Gc�. Thus, Propo-
sition 2 guarantees that the Gc� threshold rule to-
gether with (�∗, Gc�, P∗, Gc�) form an equilibrium 13

in the decentralized system under full information.
The server captures all system value by charging
type i a fixed subscription fee a∗i and a variable price
b∗, Gc�
i =�∗j �=i(@=@�i)DCGc�

j �=1 evaluated at �∗, Gc�, which
can be calculated analytically (and shall be used for
time-dependent pricing in the next section):

b∗; Gc�
1 =

��2e−1

(1− �)
(m1(�+)−1 +m2

1(1− (1− �).−1�2)

+m3
1�1.

−1�2 +m4
11�

2
1) (22)

b∗, Gc�
2 =

.
(1− �)�1m1

(
−m−1

2 �
(�1

.
m1

)2
e−1

− (1 + �)
�1
+.

m1e−1 − +�
(�1

.
m1

)2
e−1

+m2

(
(1 + �)+−2(1− e−1)− 2��1

.
m1e−1

)

+m2
22+

−1�(1− e−1)
)
: (23)

12 Utilization decreases from � � 1 for small . (type 1 is delay
insensitive) to 0.4 for large ..
13 Both customer’s delay cost rates DCi are ‘‘sandwiched” be-
tween convex functions:

DC1 = f (�1, �2)

(
1− (1 + 1)e−1

1

)
and DC2 = f (�1, �2)e−1,

but DC1 is actually not convex near �1 = 0. Yet, both �i are
unimodal convex-concave in �i, implying that the equilibrium
�∗ is also unique.
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Figure 4 Comparing Differentiated Service Under Different Scheduling Rules to FIFO: Optimal Centralized Profits and Utilization

6. Price and Service Discrimination
Under Asymmetric Information

Section 3 showed that, under full information, the
firm can choose grades, prices, and scheduling that
coordinate the system so that customers self-select
the centralized-optimal rates. With full information,
perfect service discrimination and grade incentive
compatibility is easily accomplished through type-
dependent scheduling. Variable prices only had one
remaining task: inducing the correct choice of ag-
gregate rate by each type. With grade and rate IC,
the server captures all system profits through perfect
price discrimination.
Under asymmetric information, however, the

server cannot observe the type of each job and
scheduling and pricing can only be based on coarser
grade information (queuing classes correspond to
grades). In general, this results in imperfect price
and service discrimination. Lacking sufficient in-
formation, the server can no longer perfectly align
customer incentives with the optimal centralized
objectives. That may lead to an equilibrium that
differs from the centralized optimal (�∗, r∗), re-
sulting in a coordination loss, denoted by P, where
P=I∗ − �S − ∑m

i=1�
i ≥ 0. Moreover, the service

provider may no longer be able to extract all sys-
tem profits and has to share them with customers.
The next subsection, however, shows that, in a sim-
plified model, scheduling and prices can perfectly
coordinate the system by inducing both the right
grade choice and the right rate choice into each
grade.

6.1. Incentive Compatibility of r∗ �Gc� in the
‘‘ Atomistic” Model

We now describe a special case of our model, which
we call the atomistic model, that has been introduced
by Mendelson (1985) and adopted by Lederer and
Li (1997) and Mendelson and Whang (1990), among
others. Market segment or type i now consists of
many atomistic customers who each decide individ-
ually whether or not to subscribe at an infinitesimal
rate. As before, type i customers share the same de-
lay cost function Ci but are heterogeneous in that
they derive different value from processing. Similar
to traditional demand curves in economics, type i
customers can be ordered in decreasing value and
it is convenient to endow them with a ‘‘ label”: the
customer with label xi receives value vi(xi) dxi from
service at rate dxi. With each customer receiving in-
finitesimal value, the surplus and thus fixed fee is
infinitesimal (ai=0) and pure variable prices b̃∗i are
socially optimal (tildes denote atomistic model). As
before, customers can subscribe to multiple grades
k: dxi=

∑
k dx

i
k. When subscribing to grade k at rate

dxik, the customer incurs the self-regulating delay
cost [E∗HC

i(tk) +
∑

j �=k(dx
i
j ) (@=@�

i
k)E

r∗
H Ci(tj)] dxik and the

charge b̃∗k dx
i
k, which simplify (to first order) our profit

expression (11) to:

b̃ik(x
i) =vi(xi)− Er∗

H Ci(tk)− b̃∗k : (24)

As before in §3, a central planner with full information
makes queuing classes type specific. Let �i denote the
label of the ‘‘marginal type i customer”who is indiffer-
ent between subscribing to grade i or not: b̃ii(�i) =0. By

MANAGEMENT SCIENCE/Vol. 46, No. 9, September 2000 1261



VAN MIEGHEM
Incentive Compatibility of Gc� Scheduling

construction, vi(xi) decreases in xi, so that all customers
with labels xi¡�i have b̃ii(x

i)≥ 0 and subscribe. 14

The aggregate result of the atomistic customers’ indi-
vidual decisions is as before: type i rate, value, and
delay cost are �i=

∫ �i
0 dxi, Vi(�i) =

∫ �i
0 vi(xi) dxi and

DCi=�iEr∗
H Ci(ti). Thus, Proposition 1 applies verba-

tim to the atomistic model. Comparing, as before in
Proposition 2, individual optimality (b̃ii(�

∗
i ) =0) with

centralized optimality (7) yields the socially optimal
variable price:

b̃∗i =ci(H∗) +
m∑
j=1

�∗j
@
@�ii
Er∗
H∗Cj(tj): (25)

Hence, adopting the atomistic model moves the exter-
nality �∗i (@=@�i)E

r∗
H Ci(ti) that the marginal type i cus-

tomer inflicts on higher valued type i customers from
our profit expression (11) to the price b̃∗i . The results
of Lederer and Li (1997) and Mendelson and Whang
(1990) nowdirectly extend to arbitrary delay cost struc-
tures and the dynamic Gc� rule:

PROPOSITION 4. Under asymmetric information, (n∗=m,
�∗, b̃∗, r∗) is a socially optimal equilibrium in the atomistic
model if marginal operating costs and service time distribu-
tions are homogeneous (i.e., type independent): The prices
b̃∗ and the scheduling rule r∗ �Gc� are grade and rate in-
centive compatible.

PROOF. Suppose the mechanism was not grade IC.
Then, there would exist an atomistic type i customer
with label x≤ �i, that has incentive to submit to a grade
j 
=i so that b̃ij (x)¿b̃ii(x). The term vi(x) cancels and sub-
stituting (25) into (24) yields, with cj(H∗) =ci(H∗):

Er∗
H Ci(tj) +

m∑
j′=1

�∗j′
@

@�jj
Er∗
H∗Cj′ (tj′ )

¡Er∗
H Ci(ti) +

m∑
i′=1

�∗i′
@
@�ii
Er∗
H∗Ci′ (ti′ ): (26)

With equal service time distributions (Fi=Fj),
type i jobs and type j jobs are indistinguishable

14 Hence, in the atomistic model, variable prices are no longer
perfectly discriminating because all type i customers with labels
xi¡�i have a higher ‘‘reservation price” than b̃∗i and enjoy a
customer surplus.

from a scheduling perspective. Thus, adding an
infinitesimal rate d6 of either type i jobs or type
j jobs to grade (=class) j impacts delay distribu-
tions, and thus expected delay costs, identically:
(@=@�ij )E

r∗
H Cj′ (tj′ ) d6=(@=@�

j
j )E

r∗
H Cj′ (tj′ ) d6. Hence, (26)

simplifies to (@=@�ij )DCr∗
H −(@=@�ii)DCr∗

H ¡0,whichmeans
that total delay costs DCr∗

H would decrease by reallo-
cating an infinitesimal rate d6 of type i from queue
class i to queue class j 
=i. This would contradict the
optimality of r∗ for any flow vector H. Hence, there
exist no x, i, or j 
=i that satisfies b̃ij (x)¿b̃ii(x). Thus, the
mechanism is grade IC and, by construction of the
prices b̃∗ so that b̃ii(�

∗
i ) = 0, also rate IC.

With ‘‘one-dimensional types” that are differen-
tiated along a single dimension (say value), Clarke
(1971) and Groves and Loeb (1975) showed that charg-
ing a customer his or her ‘‘ full externality,” which
is the difference between I∗ and the optimal system
profits that obtain when that customer would not be
present, is incentive compatible. With homogeneous
service times, types differ in value and delay costs, but
only delay costs create externalities so that types are
essentially one-dimensional. In addition, with atom-
istic customers (25) equals the full externality and
hence yields incentive compatibility, in agreement
with Clarke-Groves-Loeb. The next section discusses
the case of heterogeneous service times, 15 monopoly
pricing and nonatomistic customers.

6.2. Incentive-Compatibility in the ‘‘General”
Model

In general, the optimal design problem under asym-
metric information with multidimensional types is
intractable and involves a calculus of variation prob-
lem over all possible pricing functions and scheduling
rules. Our mode of approximate analysis, however,
makes the scheduling problem tractable: in §4 we spec-
ified the Gc� rule for the general case of asymmetric

15 Lederer and Li (1997) argue that there is no information
problem if a job’s type can be ascertained by its processing
requirements. That is the case for deterministic service times,
or if the service times distributions of different types do not
overlap. If they do, one must resort to service-time-dependent
pricing as in §6.2.
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information. In practice, the calculus of variation pric-
ing problem is approximated by an optimization over a
parametrized family of pricing functions. We consider
two pricing families: (1) Single-plan pricing charges
each customer a two-part tariff PSP(�) =a +

∑n
k=1bk�k

for its subscription vector �. (Without the fixed sub-
scription fee, a, this reduces to linear pricing.) One
could consider multipart tariffs, but typically most
gains are captured by a two-part tariff relative to lin-
ear pricing, as will be illustrated shortly. (2) Under
multiplan pricing, each customer must choose one
plan from a menu that specifies p two-part tariffs and
is charged PMP(�)∈{al +

∑n
k=1blk�k : l=1, : : : , p}.

The executable proposal under asymmetric in-
formation becomes: (i) Fix a number of service
grades n and characterize the Gc� rule under
asymmetric information for the delay cost func-
tions at hand. (ii) Calculate the associated delay
distributions and total expected delay cost DC∗.
(iii) Fix a pricing plan and vectors a and b, and
find the associated Nash equilibrium rates �i(a, b)
by solving the system of first-order constraints (10).
Calculate corresponding customer and server prof-
its �i(a, b) and �S(a, b) via (1) and (5). (iv) Optimize
over vectors a and b by iterating step (iii) to max-
imize either system profits I=�S +

∑
i �

i for social
pricing or server profits �S for monopoly pricing.
(v) Optimize over number of grades n.
To investigate the possibility of perfect coordi-

nation it is reasonable to first restrict the search to
perfect service-discriminating mechanisms by set-
ting n=m and imposing the grade IC conditions
(11). This simplifies the optimization because now
�ik �=i=0 leaving only m unknown rates, but at the
expense of adding the grade IC constraints. One
would use the perfectly discriminating prices b∗ from
Proposition 2 as the initial conditions for the vari-
able prices b. In the special case that the centralized-
optimal rates �∗ are still an equilibrium (as in the
atomistic model), perfect coordination is achieved and
no further optimization is needed under social welfare
maximization: n∗=m, �∗, and b∗ are socially optimal.
If, however, another rate vector than �∗ provides the
optimal grade IC equilibrium, then one should also
optimize over the class of not-grade-IC mechanisms
because the best imperfect discriminating mechanism

Figure 5 Relative System Profits Under Social Welfare Maximization
Under Full Information with Perfect Price Discrimination (F)
and Under Asymmetric Information with Dual Plan (DP) and
Linear Pricing (L) for Our Example with .= 0.1 and �i= 1

may conceivably outperform the best perfect service
discriminating mechanism. Even if (�∗, b∗) form a
socially optimal equilibrium, the server may extract
a larger profit �S with another equilibrium under
monopoly pricing. In the remainder of this section,
we will investigate whether a perfect-service discrim-
inating equilibrium is actually optimal or not.
Until to date, we have not been able to present a

simple price expression as in Proposition 4 for the
not-atomistic model under asymmetric information.
(Clearly, charging the full externality does the trick,
but that expression is complex.) The reason is the pres-
ence of the term �∗i (@=@�i)E

r∗
H Ci(ti) in (11) in the general

model, rather than in the price term (25) in the atom-
istic model. In addition, with finite-sized customers,
the ‘‘ full externality” typically differs from its differen-
tial approximation that appears in the central-optimal
prices b∗ and it seems unlikely that the prices b∗ could
be shown in general to be rate IC (although our re-
sults below suggest they may be). Therefore, we will
restrict attention in the remainder to our two-type ex-
ample of §5, but now under asymmetric information,
an highlight some insights.
• In our example, the prices b∗ remain grade and rate

IC with the Gc� rule in the general model under social wel-
fare maximization, but not under monopoly maximization.
The optimized system profits for our example from §5
under social welfare maximization are shown in Fig-
ure 5 assuming homogeneous service times �1 =�2 =1
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Figure 6 Relative Agent Profits Under Server Profit Maximization for Four Different Pricing Strategies in our Example with .= 0.1 and �i= 1

and .=0:1. As expected, using suboptimal traditional
scheduling rules yields a positive coordination loss,
which is exacerbated under asymmetric information.
With the dynamic Gc� rule, however, no value is lost
and the prices b∗, Gc�

i of (22) and (23) perfectly coor-
dinate the system (adopting the Gc� rule as a proxy
for the unknown optimal rule r∗ to verify numeri-
cally that P�P|r∗�Gc�=0 for all .∈ [10−4, 104]). This
suggests that Proposition 4 may well extend to not-
atomistic customers. Under server profit maximization
(monopoly pricing), however, the Gc� rule incurs a co-
ordination loss as shown in Figure 6.
• The example shows that the addition of a fixed

subscription fee has the largest gain relative to linear
monopoly pricing. A single two-part tariff allows the
service provider to extract all system profits under
differentiated service, more than doubling his profit
compared to linear pricing (Figure 6). Under social
welfare maximization, however, single-plan two-part
tariffs in essence reduce to linear pricing because the
specific allocation of profits is immaterial.
•Negative feedback in theGc� induces grade IC. It is not

surprising that static preemptive priority rules suffer
from an increased coordination loss under asymmetric
information. If they were to use the perfect discrim-
inatory prices b∗, the lowest grade corresponding to
the lowest priority service would be free because it
imposes no externality cost on higher grades. Cost-
less service may tempt the customers who in the
centralized system should be using higher priority
grades at higher price to ‘‘cheat” and also submit to
the lowest priority grade. The Gc�, rule, however,
uses negative feedback control to actively discourage
cheating: it charges positive prices and ‘‘ threatens” to

adjust its scheduling to counteract cheating. Indeed,
assume customer 2 were to shift some of its load to
grade 1. The Gc� rule would increase its threshold
(Figure 2), which would increase the QoS of grade 2
and reduce grade 1’s QoS to discourage customer 2
from cheating. This shows how dynamic scheduling
can improve price discrimination.
• Service-time dependent pricing is needed to induce

grade IC and perfect coordination with heterogeneous
service times. It is surprising that the perfect discrim-
inatory prices b∗, deduced under full information,
remain optimal with the Gc� rule under asymmetric
information in Proposition 4 and in our example. It is
not true that those simple prices are always optimal:
Under heterogeneous service times and social wel-
fare maximization, the Gc� rule incurs a coordination
loss if .¡0:6 (∀�i ∈ [0:1, 10]). For example, for .=0:1
and �=(10, 2), the prices b∗, Gc�=(0:015, 0:376) are no
longer grade IC.
The perfect discriminatory price b∗, Gc�

i specifies the
charge for a type i job, which is known to take an av-
erage of mi=1=�i time-units of the server. Typically,
shorter jobs will be priced lower so that under asym-
metric information a type with long jobs (m=1=2 in the
example with b∗, Gc�

2 =0:376) may find it better to use
grades designed and priced for types with shorter jobs
(m=1=10 with price 0.015). To counteract this, Mendel-
son and Whang (1990) proposed a pricing scheme that
is quadratic in the actual service time for static-priority
rules and linear delay costs.With service time dependent
(TD) pricing, customer i anticipates a variable price
Ebk(�i) for grade k, giving the service provider addi-
tional control to counteract cheating. For TD prices to
be perfectly coordinating, they must be grade IC and
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coincide with the perfect discriminatory prices in ex-
pectation to induce rate IC: Ebr

∗
i (�

i) =b∗i .
In our example, inspired by (22) and (23), which

can be written as b∗Gc�
i =

∑4
j=04

i
jm

j
i , we propose the

TD prices: bGc�
i (t) =max{b∗Gc�

i ,
∑4

j=04
i
j (t

j
i =j!)} for which

EbGc�
i (�i) =b∗Gc�

i , so that these prices are perfectly coor-
dinating if they are grade IC. For our example with
.=0:1 and �=(10, 2) types 2’s price if it were to choose
grade 1 now becomes EbGc�

1 (�2)=5:217, which is much
larger than type 1’s price for that grade, b∗, Gc�

1 =0:015,
thereby discouraging type 2 from cheating. We ver-
ified that these TD prices are indeed grade and rate
IC and thus perfectly coordinating for all �i and . in
[10−1, 10].
• The example shows how service-time dependent

prices can be designed from expanding the perfect discrim-
inatory prices in terms of the service times. Notice that
many expansions may work 16 so that coordinating
TD prices need not be unique. On the other hand, we
have no guarantee that coordinating TD prices always
exist.
• Multiplan pricing may further improve system perfor-

mance. It allows more control variables and will not
reduce system profits because it includes single-class
pricing as a special case. Under social welfare maxi-
mization, dual plan pricing can improve system per-
formance by giving customers better incentive to truth-
fully reveal their type. For static priority rules, this can
eliminate the increased coordination loss due to asym-
metric information (Figure 5).
• Restricting attention to perfect service discrimination

(grade IC) with multiplan pricing may decrease server
profits relative to single-plan pricing. For example, under
server profit maximization (Figure 6), dual plan pric-
ing may increase server profits under FIFO and static
priority rules, while under Gc� making the server
worse of than single-plan pricing. (For other . param-
eters, the reverse can happen.) It may be surprising
that multiplan pricing may benefit customers at the
expense of the service provider. The culprit is the re-

16 In our example, the terms 4i
j contain 1 and �, which can

actually be further expanded into mi, yielding another, but more
complex, TD price. Also, the term in m−1

2 is captured into 420
because no moment E(�2)k yields m−1

2 .

striction to perfect service discrimination and offering
a two-part tariff Pk(�) =ak + bk�k associated with each
service grade k. While multiplan pricing adds more
control variables to the server, it also imposes discrete
choice on the customers, which adds more grade in-
centive compatibility constraints. Indeed, multiplan
pricing is more intricate than single-plan pricing for
which the equilibrium vectors �i solve the first-order
differential conditions (10). It involves the calculation
of equilibrium vectors �i and corresponding customer
profits �i in each subgame that assumes a particular
customer choice vector of plans, and the identification
of a (subgame perfect) Nash equilibrium choice vector,
which adds incentive compatibility constraints in the
form of discrete choice conditions. The result of more
variables and more constraints is case specific: server
profit may increase or decrease relative to single-plan
pricing (as it does in our example depending on the
value of parameter .).
For our two-type example, each subgame requires

calculating customer equilibrium rates �ik1k2 and profits
�i
k1k2 by solving the first-order conditions (10) assuming
customer i chooses plan ki. Notice that the scheduling
rule reduces to FIFO if both types choose the same
plan. Denoting plan 0 for not subscribing, profits in all
subgames can be summarized in a pay-off matrix:


(0, 0) (0, �201) (0, �202)

(�110, 0) (�111, �
2
11) (�112, �

2
12)

(�120, 0) (�121, �
2
21) (�122, �

2
22)


 :

The equilibrium customer plan and rate choice for
the multiplan price menu must form a Nash equilib-
rium choice vector (k∗1 , k

∗
2 )=(1, 2); which adds the dis-

crete choice IC constraints that �112≥ max(0, �122) and
�212≥ max(0, �211). The profit-maximizing dual pricing
plan menu, then, is found by optimizing �S=P1(�112) +
P2(�212) over {a1, b1, a2, b2} and defines a subgame per-
fect Nash equilibrium to our decision problem.

7. Concluding Remarks
This article presents theory and tools to study social
and monopoly pricing of heterogeneous customers,
each wanting a specific service and each having a de-
lay sensitivity for that service. Our main results can be
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summarized as:
1. From a modeling perspective, we introduce delay

cost curves that allow a flexible description of quality
sensitivity.
2.We propose a comprehensive executable approach

that analytically specifies scheduling, delay distribu-
tions and prices for arbitrary delay sensitivity curves.
The tractability of this approach derives from porting
heavy-traffic Brownian results into the economic anal-
ysis. The Gc� scheduling rule that emerges is dynamic
so that in general service grades need not correspond
to a static priority ranking.
3. We introduce the notions of grade and rate incen-

tive compatibility to study this systemunder asymmet-
ric information and establish them for Gc� scheduling
when service times are homogeneous and customers
atomistic. We illustrate with a benchmarking example
and extend to time-dependent andmultiplan pricing to
strive for incentive compatibility with heterogeneous
service times and not-atomistic customers.17

17 My brother Piet Van Mieghem introduced me to differenti-
ated QoS in communication networks and motivated this study.
I am also grateful to Philipp AfFeche, Mike Harrison, and Rakesh
Vohra for many stimulating discussions, and to area editor Paul
Glasserman and two anonymous referees for helpful questions
and suggestions.

Appendix. Intuition Behind the Gc� Rule and
Proposition 3
The Gc� rule is founded on three facts from queuing theory that
are best described in terms of the total workload process W ,
which measures the total amount of work (in time units) that is
waiting: E[W |N] =∑q

j=1 Nj=�j. First, total workload is invariant
for scheduling rules that do not idle when there is work present
in the system. Indeed, new arrivals contribute to an increase
in EW at (average) rate �, while serving drains EW at rate
1 regardless of which class is served, yielding a net decrease
of EW at rate 1 − �, as long as there is work present. The
scheduling rule, however, does impact how this total workload
W is distributed over the different classes: when serving class
k, its average class workload EWk decreases at rate 1−�k , while
arrivals increase the average workload of any other class j at rate
�j. The two other facts follow in heavy traffic: class workloads
‘‘ live on a faster timescale” than the total workload process.
Indeed, as �→ 1; total workload hardly changes, while class
workloads keep changing at a finite rate. At the timescale of
the total workload, it is as if one can almost instantaneously
shift workload away from one class to the other classes by

serving that class for an infinitesimal amount of time while
the total workload is unchanged. Third, in well-behaved heavy
traffic limit systems, the class workload process ‘‘converges”:
Wk=W approaches aW-dependent constant. In effect, scheduling
switches among classes precisely so as to keep (W1, W2, : : : , Wq)
close to the point gk(W) on the switching curve. Aside from fast,
but small disturbances around the switching curve, the Wk thus
follow the W movement and change very slowly. Meanwhile
many class k jobs flow through the system at rate �k while
(W1, W2, : : : , Wq) remains relatively constant. ‘‘ It is as if a job
takes a snapshot of the network when it enters and all queues
remain at that same value during the job’s sojourn throughout
the network” (Reiman 1982, p. 413). In Van Mieghem (1995),
we apply Little’s law to yield the state-dependent delay:

tk
distribution� Nk

�k

distribution� Wk

�k
: (27)

Using (27), the instantaneous delay cost rate can be expressed
in terms of class workloads as

∑
i, k �

i
kC

i(wk=�k). The intuition
behind the Gc� rule then is to ‘‘distribute” the total work-
load W=

∑n
k=1Wk over the different classes such that this delay

cost rate is minimized at each point in time. This greedy cost-
minimizing allocation of total workloadW to class workloads is
found by solving (13) and (14) and represented as Wk = gk(W).
As a positive sum of convex functions,

∑
i; k �

i
kC

i(wk=�k) is con-
vex so that Wk solves the sufficient first-order conditions:

m∑
i=1

�ik
�k

ci
(
Wk

�k

)
− 6k =

m∑
i=1

�ik′
�k′

ci
(
Wk′

�k′

)
− 6k′

∀ classes k and k′, (28)

with Wk6k =0 and
∑

kWk =W , where 6k ≥ 0 is the Lagrange
multiplier on the nonnegativity constraint of wk . Recogniz-
ing that Wk=�k =Nk=Hk ; shows that the Gc� rule with index18

(12) attempts to implement the first-order conditions (28).
Finally, using (27), we have that the delay distribution
FGc�
k (t) =Pr(tk ≤ t)�Pr(gk(W)≤ �kt) = FW (g−1k (�kt)): Notice that
this approach is consistent with the conservation law: overall
average delays

∑
k(�k=�)tk equal the FIFO delay tFIFO �W=�.

18 Given (27), an alternative implementation of the Gc� rule
keeps track of arrival times and replaces Nk=Hk in the index
(12) by the ‘‘age” Ak of the oldest job in each class.
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