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Abstract

In a dynamic setting with demand following a random process, we ask how investment and op-

erating decisions can be delegated to a manager with unknown time preferences. Only the manager

observes the demand realization in each period and, therefore, has private information when choos-

ing whether to acquire the productive asset and, subsequently, how to utilize it. We derive accrual

accounting-based performance measures under which the manager will make the e�cient decisions

provided the investment date is exogenously given. We show that, in an environment where demand

follows a martingale process, the corresponding accounting rules are more decelerated if the �rm

has the option to idle capacity in case of negative demand shocks. We then extend our results to

a scenario in which the investment date is endogenously determined, i.e., the �rm has an option to

postpone its investment.



1 Introduction

The canonical net present value (NPV) rule calls for one-o� investment decisions at a pre-

determined point in time to be made if and only if the sum of the expected discounted cash

�ows is positive. Extending this rule to dynamic environments poses two challenges. First,

the future bene�ts of an investment depend on uncertainty resolved only over time and the

�rm's reaction to the new information about changing market conditions. Second, many

investments are not of the �now or never" kind but instead may be timed endogenously by

the �rm. The real options paradigm (Dixit and Pindyck, 1994) has proved fruitful in terms

of generating novel predictions for optimal investment timing as a function of characteristics

such as the degree of market uncertainty or discount rates.1 The question that remains,

however, is how real options a�ect the �rm's ability to delegate investment (and operating)

decisions to its managers who may have divergent objectives. This paper aims to answer this

question by developing a model in which market conditions follow a dynamic process. The

periodic realizations of the market size are privately observed by a �rm manager with un-

known time preferences, who makes the initial investment decision and subsequent operating

decisions regarding the use of the capacity initially acquired.

For settings with a single �now-or-never� investment decision, prior literature (e.g., Roger-

son, 1997; Reichelstein, 1997) has shown that investment decisions can be delegated to

managers with unknown time preferences by relying on historical cost-based performance

measures.2 In our fully dynamic setting, two kinds of optionality arise in connection with

the acquisition and operation of productive assets. As described above, a �exible investment

date generates an option to postpone the investment. But even with an investment date

that is exogenously given, the possibility to fully utilize, or partially idle, the productive

capacity at a later stage creates a �usage option.�3 The fact that future operating decisions

1On a conceptual level, however, the NPV rule is robust to the introduction of real options in that the
NPV can be de�ned so as to include all relevant option values. Speci�cally, the �rm's expected cash �ows can
be calculated taking into account the �rm's optimal reaction to the new information, and the option value
foregone by investing at any given point can be added to the initial cash out�ow. The predictions of the
real options literature can then be interpreted in terms of the �overall NPV� terminology. This alternative
interpretation is well acknowledged in the real options literature; see, e.g., pp. 6-7 in Dixit and Pindyck
(1994).

2This literature started with Rogerson (1997); see also Reichelstein (1997), Baldenius and Ziv (2003),
Dutta and Reichelstein (2005). The key insights from the goal congruence literature can often be generalized
in a straightforward manner to formal agency models, e.g., Christensen et al. (2002), Dutta and Reichelstein
(2002), Baldenius and Reichelstein (2005), Pfei�er and Schneider (2007).

3See also Pindyck (1988), Dixit and Pindyck (1994), and Reichelstein and Rohl�ng-Bastian (2014).
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can be adjusted to the then prevailing market conditions has a feedback e�ect on the ex-

ante investment decision. To ask how these two types of optionality a�ect the e�ciency of

delegated decision making, we �rst look at a simpli�ed problem in which the investment

date is exogenous�i.e., only the usage option is present�and then allow for both forms of

optionality to be present by endogenizing the investment date.

With an exogenous investment date, we �nd that residual income based on historical

cost accounting achieves goal congruence: the manager will use his private information in

such a manner so as to invest e�ciently and then utilize the asset e�ciently in subsequent

periods.4 Speci�cally, goal congruence is achieved if the �rm uses a depreciation rule (which

we label the Relative Expected Optimized Bene�ts or the REOB schedule) that matches

the cost of the investment with the periods of its useful life in proportion to the expected

and properly discounted relative bene�ts, factoring in the conditionally-optimal capacity

utilization decisions. Taking expectations over future demand scenarios is complicated by the

manager's informational advantage regarding future demand, as even the relative expected

bene�ts over time will generally be a nontrivial function of the current market size�and the

current market size is the manager's private information. The REOB schedule derived in this

paper nonetheless successfully aligns incentives by allocating capital costs to the periods in

proportion to their expected periodic bene�ts (given optimal operating decisions) evaluated

at the threshold (i.e., zero expected NPV) market size. As a result, the compensation for

a manager who invests given a privately observed market size above (below) this threshold

will increase (decrease) in expectation for each future period.5

Given the more demanding notion of goal congruence arising from the presence of oper-

ating decisions, how does this performance measure compare with that identi�ed for models

with a single decision date, e.g., Rogerson (1997)? To answer this question, we �rst verify

that if the �rm did not have the option to idle capacity when demand is low, our REOB

rule would coincide with the depreciation schedule identi�ed in Rogerson (1997).6 We �nd

4This is despite the fact that the manager has better information than the shareholders at any point in

time. Thus, the information asymmetry in our model is magni�ed compared with earlier models with only
one decision date, e.g., Rogerson (1997) and Reichelstein (1997).

5Hence, the manager internalizes the shareholders' objective at the investment date. Furthermore, in
future periods, the amount of capacity costs re�ected in the manager's performance measure is not a�ected
by the actual operating decisions, avoiding the well-known problems associated with absorption costing, so
the manager is incentivized to use the available capacity optimally.

6To make our model comparable to that in Rogerson (1997), we impose two additional assumptions that
i) asset are equally productive over their �nite useful life, and ii) the permanent component of the product
market size follows a martingale process, i.e., the expectation of price tomorrow given a certain quantity is
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that the usage option makes the REOB rule more decelerated (backloaded) relative to the

scenario where the �rm cannot adjust its capacity utilization. The key force driving this

result, at a technical level, is that the (optimized) contribution margin becomes a convex

function of the market size realization: the usage option allows the �rm to mitigate the

e�ect of unfavorable shocks to demand by idling capacity and saving on variable costs, hence

bending upwards the �left tail� of the expected bene�t function. Then, Jensen's inequality

implies that, from the perspective of the investment date, the expected optimized bene�ts

of investment increase over time for a stationary demand process. We show that this, in

turn, makes the depreciation rule that facilitates e�cient delegation of the initial investment

decision more decelerated relative to the benchmark without the usage option.

We next study the e�ects of demand growth (drift) and demand uncertainty on the

REOB depreciation rule. We show that REOB depreciation becomes more decelerated with

increases in the drift of the market size process or increases in its variance.7 While the

drift e�ect is rather obvious�e.g., outward expected shifts in the inverse demand function

over time increase the relative expected bene�ts in later periods�the variance e�ect is more

subtle. It again hinges on the fact that operating decisions, taken optimally, e�ectively

mitigate the pro�t implications of negative demand shocks. This result stands in contrast

to the traditional view in �nancial accounting that calls for more accelerated depreciation in

environments where investment bene�ts are less certain.8

We then extend our setting to allow for the investment date to be chosen endogenously: it

can be undertaken at any point in time, but only once. As is well known from the real options

literature (e.g., Pindyck 1988, Dixit and Pindyck 1994), the threshold market size for the

investment to be undertaken now exceeds the threshold with a �xed investment date, because

the net present value of expected cash �ows has to cover not just the investment cash cost

but also the option value. After identifying the �rst-best market size threshold above which

fully informed shareholders would want to invest, we again turn to the issue of delegation.

Unknown managerial time preferences now cause additional frictions, as they now a�ect not

equal to the price today at the same quantity level.
7Our formal results in Proposition 3 and Corollary 1 rely on additional assumptions about the asset's

productivity pro�le.
8For example, Penman and Zhang (2014) observe that �... if revenue from an investment is particularly

uncertain, the investment is expensed immediately as in the case of R&D and advertising�or subject to
rapid amortization. In justifying the immediate expensing of R&D under FASB Statement No. 2, the FASB
focused on the 'uncertainty of future bene�ts'.�
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just the manager's assessment of the present value of the project to be undertaken but also

that of the option value. To illustrate, it is useful to describe (heuristically) the distortions

that would arise under plausible candidate performance measures.

Suppose the performance measure is residual income with capital charges imputed based

on the shareholders' cost of capital, combined with REOB depreciation�i.e., the goal con-

gruent solution if the investment date is exogenous. If the manager had the same time

preferences as the shareholders, then this method would induce goal congruence even with

an option to wait.9 But if the manager were to discount future cash �ows at a higher rate

than the shareholders, then he would undervalue the option to wait and overinvest (invest

too early). In response to this overinvestment bias, the shareholders may consider raising the

capital charge rate used for calculating residual income, say, to the internal rate of the return

of the marginal investment project (the one that leaves the shareholders indi�erent between

investing right away and postponing the decision).10 This approach indeed can induce �rst-

best investment decisions, but only for a manager who is myopic in that he cares solely about

the present period. Other, more patient, managers would underinvest (invest too late) as

they would e�ectively �double-count� the option value: (i) it is re�ected in higher capital

charges and (ii) the manager will impute his personal option value, because by waiting a

period he may potentially garner higher future compensation. A manager compensated on

residual income with a hurdle rate equal to the threshold internal rate of return gets zero

expected compensation from investing at the threshold market size. Waiting for a period,

on the other hand, carries a positive option value; hence the underinvestment bias.

Formalizing these heuristic arguments, we derive an impossibility result: no linear per-

formance measure can achieve goal congruence when there is an option to wait. Given this

negative result, a natural question is whether a weaker form of goal congruence can be es-

tablished. The last result of our paper derives a family of performance measures that allow

for e�cient delegation of investment and operating decision if the shareholders were to know

9This follows immediately from the fact that residual income is fundamentally consistent with discounted
cash �ow considerations (e.g., Ohlson 1995, Feltham and Ohlson 1996).

10Several studies have documented that hurdle rates used by �rms for investment decisions often exceed
the cost of capital (see, for instance, Poterba and Summers 1995 and Summers 1987). Dixit and Pindyck
(1994) suggest that the di�erence between hurdle rates and the cost of capital can be explained by the option
value of waiting (see, for example, p.7). This would be consistent with the perfomance measure that we
describe above. Our results demonstrate, however, that, in the presence of a delegation problem, setting the
hurdle rate equal to the IRR of the marginal project will result in incentives to underinvest for managers
who discount payo�s at a rate close to that of shareholders.
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the manager's time preferences.11 We show that e�cient incentives can be provided if both

residual income and the REOB depreciation rule are calculated relative to a judiciously cho-

sen hurdle rate that only partially re�ects the net present value of the marginal investment

project. The hurdle rate must be chosen such that, at the threshold market size, the sum of

the option value re�ected in the higher capital charges of the performance measure and the

manager's own option value is precisely equal to the NPV of the marginal project. Since the

manager's option value intrinsically depends on his discount factor, so must the hurdle rate

that is used in calculating the manager's performance measure.

The e�ect of capacity constraints and excess capacity on a �rm's cost structure and its

product pricing decisions is a classic topic in accounting research (e.g., Banker and Hughes

1994; Göx 2001, 2002; Kallapur and Eldenburg 2005; Banker et al. 2013; Reichelstein and

Rohl�ng-Bastian 2014).12 Our model extends this literature by studying the issues of del-

egation and performance measurement. To the best of our knowledge, the only paper that

embeds the option to postpone investment in such a performance measurement framework

is Friedl (2005). One of the main di�erences between Friedl (2005) and our model is that in

his model the value of the option to wait is common knowledge. This leads him to conclude

that goal congruence is generally achievable with an endogenous investment date�contrary

to our �ndings. Several recent papers consider models where the �rm can continuously

make investments to expand its capacity (e.g., Rogerson 2008, Rogerson 2011, Nezlobin et

al. 2014). However, these papers assume that the product market is always weakly expand-

ing, thus rendering trivial any capacity utilization and investment timing decisions (i.e., in

these models, it is always optimal to utilize capacity fully and new investments are made

in essentially all periods). Lastly, our paper provides new insights about the structure of

hurdle rates for investment decisions in delegation settings (e.g., Poterba and Summers 1995,

Christensen et al. 2002, Dutta and Fan 2009).

The rest of the paper is organized as follows. Section 2 lays out the basic model structure.

Section 3 addresses a setting where the investment date is given exogenously and Section 4

11Our de�nition of weak goal congruence is slightly more general than that in Reichelstein (1997), because
in that paper the manager's discount factor was assumed to coincide with the shareholders'.

12Banker and Hughes (1994) study product pricing and capacity planning decisions in a model with demand
uncertainty. However, they do not consider the problem of incentivizing a better informed manager who is
responsible for both investment and operating decisions. Another di�erence between our model and the one
in Banker and Hughes (1994) is that in that paper the capacity constraint is �soft� in the sense that it can be
relaxed ex-post at an additional cost. See Göx (2002) for a model that incorporates both �soft� and �hard�
capacity constraints.
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one in which there is an option to wait. Section 5 extends some of our �ndings from discrete

to scalable investment decisions. Section 6 concludes.

2 Model Setup

2.1 The Firm, Capacity, Product Market, and Information

Consider a �rm owned by a risk-neutral owner (the principal), managed by a risk-neutral

manager (the agent). The �rm can invest in a long-lived capacity asset. Initially, we analyze

a scenario with a single binary investment decision: at date 0, the �rm can either invest b

dollars to build capacity for future periods or irretrievably lose the investment opportunity.13

We let the indicator function I ∈ {0, 1} denote whether the investment was made or not.

If the investment is undertaken (I = 1), the �rm can produce at most xτ units of its single

product in period τ ∈ {1, . . . , T}. Let Kτ denote the �rm's period-τ capacity:14

Kτ = I · xτ

for 1 ≤ τ ≤ T . The vector x ≡ (x1, . . . , xT ) describes the productivity pattern of the

�rm's asset. For some of the results to follow, we will invoke a one-hoss shay scenario: for

τ ∈ {1, . . . , T}, all xτ are equal.15

Demand in the product market is uncertain. For any quantity q > 0, the inverse demand

function in period t is given by Pt (q) = µt ·P (q). Speci�cally, we assume a constant-elasticity

inverse demand function:16

Pt (q) = µt · q−
1
η , (1)

13Later, we consider settings with an investment-timing option and a continuous investment decision.
14In our model, capacity cannot be extended. In Banker and Hughes (1994), in contrast, capacity can be

extended at a penalty cost to satisfy greater than expected demand.
15The one-hoss shay productivity pattern is frequently seen in the regulation literature (e.g., see La�ont

and Tirole, 2000; Nezlobin, Rajan, and Reichelstein, 2012; and Rogerson, 2008, 2011). Alternatively, the
�nance literature often considers a geometric-decline scenario, (e.g., see Dixit and Pindyck, 1994; Biglaiser
and Riordan, 2000), in which T = ∞ and xτ = (1 − α)τ−1, with τ ∈ {1, . . . ,∞} and α ∈ (0, 1) . Both of
these commonly considered patterns re�ect the idea that the asset's capacity is weakly declining with age
due to the physical depreciation of the asset or increasing maintenance requirements.

16We use subscript t to denote periods of time relative to date 0, and subscript τ to denote periods of the
asset's useful life relative to the time the asset was acquired. In a scenario with a single investment made
at date 0, these two subscripts have essentially the same meaning; the di�erence becomes important later,
when we consider settings where the �rm can postpone the investment.
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with η > 1.17 Here, µt is the realization of a stochastic price shift parameter describing the

evolution of the size of the product market over time: for a given level of quantity q, the

price between periods t and t+ 1 changes at a rate µt+1

µt
. If the �rm makes and sells qt ≤ Kt

units in period t ∈ {1, . . . , T}, cash �ows equal

R (µt, qt)− v · qt,

where R (µt, qt) ≡ Pt (qt) · qt is the �rm's revenue, and v > 0 is the unit variable cost. Given

the assumed constant elasticity demand formulation in (1), revenues are strictly increasing

and concave in quantity. Note that we allow for the product market to contract over time,

i.e., µt may decrease in t. Therefore, if the �rm invests in period 0, it may not �nd it

pro�table to utilize its capacity fully in some of the future periods.

Product-market uncertainty and asymmetric information are key ingredients of our anal-

ysis. The stochastic price shift parameter µt represents uncertain market size; this parameter

evolves over time with both a permanent shock and a transitory shock. Speci�cally,

µt = (1 + εt)mt−1, (2)

with the permanent shock captured by the random variable mt−1, drawn from a probability

distribution with support on (0,∞) at the beginning of period t (i.e., date t − 1), and the

transitory shock captured by the random variable εt, realized at the end of period t (i.e., date

t). Transitory shocks (1 + εt), are independently and continuously distributed over (0,∞),

with E[1 + εt] = 1 and V ar [1 + εt] = σ2
ε .

The permanent component of the price shift parameter evolves as follows: at date 0,

the manager privately learns the realization of m0 that determines the permanent demand

component in period 1. Then, at the beginning of every period t:

mt−1 = (1 + gt−1) ·mt−2, (3)

with the realization of gt−1 observed at date t− 1 by the manager, but not by the owner.18

17It can be shown that some of our results (Proposition 1, Proposition 2 and Corollary 1) hold for (inverse)
demand functions more general than those in (1). For those results, we could drop the constant elasticity
demand formulation and instead simply assume that Pt (q) = µt · P (q), for P (·) twice di�erentiable and
strictly increasing, and revenues P (q) · q strictly increasing and concave in q.

18We therefore assume that the manager perfectly anticipates one-period ahead permanent shocks to the
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The growth factors, (1 + gt−1), are independently log-normally distributed, with E[1+gt−1] =

1 + g∗ and V ar [1 + gt] = σ2
g . The permanent component of the price shift parameter is a

martingale if g∗ = 0.19 We assume that the parameters (g∗, σ2
g , σ

2
ε ) are commonly known.

Once period-t cash �ows are realized, µt can be inferred from revenues and quantities, since

both the manager and the owner know the functional form of the demand curves and observe

capacity utilization in every period.

With the structure of price shift parameters described above, the manager always enjoys

an informational advantage over the �rm's owners: when selecting the period-0 investment,

the manager privately knows m0; and when choosing period-t quantities, the manager pri-

vately knows mt−1. The exact timeline is:

• At date 0, the manager learns the realization ofm0. The manager then decides whether

to invest b dollars to make capacity available in future periods.

• At the beginning of each period t ∈ {1, . . . , T}, the manager learns the realization

of mt−1. The manager then selects the period-t quantity level qt (mt−1) ≤ Kt. The

period's revenues R (µt, qt (mt−1)) and costs v · qt (mt−1) are realized and observed by

the manager and the owner at the end of the period (date t), allowing both to infer

the realization of µt.
20

The �rm's cost of capital is r; the corresponding discount factor is γ = 1
1+r

. If the �rm invests

in period 0 and sells qt (mt−1) ≤ Kt units in periods t ∈ {1, . . . , T}, the �rm's period-0 value

is

−b+
T∑
t=1

γt · E0 [R (µt, qt (mt−1))− v · qt (mt−1)] . (4)

Let I∗ (m0) ∈ {0, 1} denote the optimal investment policy. The owner's problem is to provide

incentives for the manager to choose the initial investment I∗ (m0) and quantities q∗t (mt−1)

inverse demand function, but does not have any advance information about the transitory shocks. Our
results are unchanged if the manager's information about permanent shocks is imperfect or if the manager
gets signals about transitory shocks as well.

19To summarize, we assume that demand shocks a�ect the stochastic price shift parameter in a multiplica-
tive fashion. This speci�cation is consistent with much of the dynamic real options literature (e.g., Dixit
and Pindyck 1994, Chapters 5 and 6). In contrast, many studies on product costing and pricing assume that
shocks to demand are additive (see, e.g., Banker and Hughes 1994, Göx 2001, 2002). One advantage of the
multiplicative assumption for our model is that it ensures that the product price is non-negative after any
sequence of unfavorable shocks to the price shift parameter.

20In our model, the principal cannot o�er a �forcing� contract to the agent, under which the manager is
compensated only if the quantity produced in a period is equal to the ex-post e�cient level, because the
manager has to make investment and production decisions based on imperfect information about demand.
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that maximize (4) subject to the capacity constraint: for any t,

q∗t (mt−1) ≤ Kt = I∗ (m0) · xt. (5)

2.2 Performance Measures, The Manager's Preferences, and Goal

Congruence

To guide the manager's investment and operating decisions, the owner uses performance

measures π = (π1, . . . , πT ). We consider performance measures that, in each period t ∈
{1, . . . , T}, are based on that period's observed accounting information: the �rm's real-

ized contribution margin, depreciation, and the asset's book value. We use dτ to represent

the period-τ depreciation charge per dollar of upfront investment. The investment is fully

capitalized at date 0, and the date-τ book value per dollar of upfront investment is given by

bvτ = 1−
τ∑
i=1

di

for 0 ≤ τ ≤ T , with bvT = 0 (i.e.,
∑T

τ=1 dτ = 1). The total period-t depreciation charge is

Dτ = dτ · b,

and the date-τ book value of assets is BVτ = bvτ · b. Let d = (d1, . . . , dT ) represent the

depreciation schedule. For any qt ≤ Kt, period-t income is then equal to

Inct = R (µt, qt)− v · qt −Dt.

We will say that depreciation rule d is more accelerated than d′ if book values per dollar

of upfront investment are lower under rule d:

bvτ ≤ bv′τ

for all τ . Likewise, we will refer to a depreciation rule d as more decelerated than d′ if

bvτ ≥ bv′τ for all τ .

Realizations of accounting variables depend on the manager's investment and operating
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decisions. The owner seeks to design the performance measure to guide the manager to

make optimal decisions. The manager is risk neutral and attaches arbitrary utility weights

βi to future payo�s in period t. These weights may re�ect both the manager's discount

rate and the bonus parameters attached to performance measures. Formally, at any date

t ∈ {0, . . . , T − 1}, the manager's utility function is given by:

Ut = Et

[
T∑
i=t

βi · πi | mt

]
. (6)

For example, a recurring theme in the incentives literature is that managers may be less

patient than owners. To accommodate this in our framework, let βt = γ̂t · u for some time-

invariant bonus coe�cient, u > 0, and the manager's personal discount factor, γ̂ ≡ 1
1+r̂

, with

r̂ > r.

The manager selects each period's quantity qt to maximize the objective in (6) subject

to the capacity constraint that

qt ≤ Kt = I · xt. (7)

Note that, as long as the depreciation schedule is determined in advance, each period's

depreciation is independent of that period's quantity, and the manager's quantity choice will

not a�ect future performance measures.

At the investment date, the manager observes m0, anticipates making future quantity

choices that maximize (6) based on the available information in each period, and invests if

and only if

U0 = E0

[
T∑
i=0

βi · πi | m0

]
> 0.

The principal does not observe the manager's time preferences and seeks to design a

performance measure that will provide incentives for optimal investment and operating de-

cisions for all possible time preferences of the manager. Formally, a performance measure

π attains goal congruence for operating and investment decisions if and only if, for any

β = (β0, β1, ..., βT ): (i) each period t ∈ {1, . . . , T}, the optimal owner's quantity q∗t (mt−1)

maximizes the manager's objective in (6) subject to the capacity constraint (7); (ii) the opti-

mal owner's investment choice I∗ (m0) maximizes the manager's objective at the investment

date 0; and (iii) if βt > 0 for at least one t, 1 ≤ t ≤ T , the manager must strictly prefer to
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implement a project if it makes the principal strictly better o�.21

To summarize, the model entails a truly dynamic goal congruence setting in which in-

formation arrives over time and, after the initial asset acquisition decision, the manager

continues to make a sequence of operating decisions regarding the utilization of the asset.

3 Single Investment Opportunity

Earlier studies on performance measurement for investment decisions have shown that goal

congruence can be attained under certain accrual accounting rules if residual income is used

as the performance measure (e.g., Rogerson 1997, 2008). Residual income is de�ned as the

di�erence between the �rm's net income and an imputed interest charge on the beginning-

of-period book value of assets:

RIt = Inct − r ·BVt−1.

We will refer to the sum of depreciation expense and the interest charge on the book

value of assets as the historical cost of capacity in period t:

zt · b ≡ (dt + r · bvt−1) · b = Dt + r ·BVt−1.

Let z ≡ (z1, ..., zT ). Earlier literature has shown that there is a one-to-one mapping between

the vectors of per-dollar historical cost charges, z, satisfying

T∑
τ=1

γτ · zτ = 1,

21We impose condition (iii) to avoid trivial solutions, where the manager is always indi�erent between
investing and not investing in the project. Note that if only β0 > 0 and all other βi = 0, then satisfying
condition (iii) is impossible, since π0 is calculated before any cash �ows from the project are realized. Since
our focus is on inducing the privately informed manager to make �rst-best decisions in a robust manner
(i.e., for any possible time preferences and any realizations of the product market size), the principal's
probability distribution over the dynamic demand process is irrelevant for the solution. Also, the solution
will be simpli�ed by the fact that, once the investment is made, the operating decisions in each period are
intertemporally separable. The solution to the overall problem, however, still requires applying dynamic
programming on the part of the decision maker, because the ex-ante investment decision will depend on the
anticipated future demand and the anticipated future operating decisions.
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and depreciation schedules, d, satisfying the (nominal) clean surplus requirement22

T∑
τ=1

dτ = 1.

Therefore, in order to de�ne a certain depreciation rule, it su�ces to specify the correspond-

ing vector of historical cost charges.

We now turn to characterizing a depreciation rule based on which residual income is a goal

congruent performance measure. First, observe that if the �rm invests, the expectation at

date 0 of the �rm's period-τ optimized cash �ow is increasing in the (permanent component

of the) price shift parameter, m0. This is explained by the fact that higher realizations of

m0 correspond to greater expected values of mτ , for any τ ≥ 1, which, in turn, imply a

greater expected price for any given quantity of product supplied in that period.23 As a

consequence, if the �rm �nds it optimal to invest for a certain realization of m0, then the

investment should also be made for all greater realizations of m0. Therefore, the �rst-best

investment policy is characterized by a threshold market size, m0, such that the investment

is optimal if and only if m0 ≥ m0. Since the principal observes all parameters of the model,

except for the actual process realization, {mτ}, the threshold m0 is known to the principal.

At the threshold market size, the principal must be indi�erent between investing and

not investing in the capital asset, which implies that the net present value of the investment

opportunity is zero. Therefore, m0 is such that

b =
T∑
τ=1

γτ · E0 [Eτ−1 {R (µτ , q
∗
τ (mτ−1))− v · q∗τ (mτ−1)} | m0 = m0] . (8)

It will be convenient to denote the expected value of the optimized constrained contribution

margin in period t by CM∗
t (Kt,mt−1):

CM∗
t (Kt,mt−1) = Et−1 {R (µt, q

∗
t (mt−1))− v · q∗t (mt−1)} .

At the threshold market size, m0, the expected discounted value of constrained contribution

margins is equal to the initial investment.

22See Rogerson (1997) and Reichelstein (1997).
23Technically speaking, for any mo

0 and moo
0 > mo

0, the distribution over mt, t > 0, conditional on moo
0

�rst-order stochastically dominates that conditional on mo
0
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Let us consider a depreciation rule, d∗, corresponding to the following vector of historical

cost charges, z∗, with

z∗τ =
E0 [CM∗

τ (Kτ ,mτ−1) | m0]

b
. (9)

It follows from equation (8) that the discounted value of all z∗τ is equal to one, therefore, the

corresponding depreciation rule will satisfy the clean surplus condition,
∑T

τ=1 d
∗
τ = 1.We will

refer to this depreciation rule as Relative Expected Optimized Bene�t (REOB) depreciation.24

The REOB rule allocates the cost of investment to di�erent periods in proportion to

the expected optimized contribution margin the investment will generate in those periods at

the threshold market size. (Henceforth we will drop the �expected" and just say �optimized

contribution margin" when there is no potential for confusion.) This rule is related to

the Relative Bene�t Rule identi�ed in Rogerson (1997), with the main di�erence that the

expected bene�ts in each period are calculated assuming optimal future capacity utilization

decisions. This stems from the fact that, as described above, the manager in our setting

makes both investment and operating (quantity choice) decisions.

Let us now consider a manager who is compensated based on residual income calculated

using the REOB rule. First, if the �rm invests at date 0, then at date t − 1, the manager

will choose a production level that maximizes the expected residual income in the following

period:

Et−1 [R (µt, qt)− v · qt | mt−1]− z∗t · b.

Since the historical cost charge does not depend on the actual asset utilization, the manager

will choose the quantity that maximizes the expected contribution margin, which is the

optimal quantity for the �rm.

Second, note that from the perspective of date t − 1, the expected residual income in

period t, based on the REOB rule, can be rewritten as:

CM∗
t (Kt,mt−1)− E0 [CM∗

t (Kt,mt−1) | m0] .

At date 0, if, after observing the realization ofm0, the manager proceeds with the investment,

24This name is not precise: if m0 exceeds m0, then the d∗ depreciation rule will not allocate the cost of
investment to the periods of useful life in proportion to expected bene�ts. The cost is always allocated in
proportion to expected optimized bene�ts at the threshold market size.
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the expected value of period-t residual income, viewed from that initial date, is:

E0 [CM∗
t (Kt,mt−1) | m0]− E0 [CM∗

t (Kt,mt−1) | m0] .

Since the expected value of constrained contribution margins increases in the initial valuem0,

the quantity above will exceed zero if and only if m0 > m0. Therefore, from the perspective

of date 0, the manager's performance measure in each future period will have the same sign

as the net present value of the �rm's expected cash �ows. As a consequence, the manager

will make the optimal investment decision at date 0, regardless of his discount factor. We

can now formulate the following Proposition.

Proposition 1. In a model with a single investment opportunity, residual income based

on the REOB rule is a goal congruent performance measure for investment and operating

decisions.

While Proposition 1 does not speak directly to the question of uniqueness of a goal

congruent performance measure, we note that residual income is indeed the only measure

with this property if certain additional conditions are imposed. Speci�cally, if the set of

projects available to the �rm is su�ciently rich, the owners may have to restrict attention

to performance measures that allow for aggregation across assets. A performance measure

can be used to aggregate across assets with di�erent productivity pro�les if the coe�cients

that are attached to the accounting numbers are independent of the x vector. For this set

of performance measures, it can be veri�ed that residual income based on the REOB rule is

indeed the only goal congruent performance evaluation system for investment and operating

decisions.25

We now turn to characterizing how uncertainty about future market conditions and the

manager's ability to react to new information by idling capacity a�ect the performance

evaluation system described in the Proposition above. To that end, we consider a special

case of assets with one-hoss shay productivity pattern,

x1 = x2 = ... = xT ⇐⇒ Kt = K, for any t, (10)

25This uniqueness result is a variant of the one found in Reichelstein (1997), derived for a setting without
operating decisions. Nezlobin, Reichelstein and Wang (2014) provide further uniqueness results for invest-
ments in assets with usage-driven capacity decline and in a model with overlapping capacity investments.
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and assume that the permanent component of the price shift parameter is a martingale,

g∗ = 0. To isolate the e�ect of the manager's option to idle capacity, we �rst consider a

benchmark where the �rm does not have this option, i.e., the �rm is arti�cially constrained

to make and sellK units in every period regardless of the market conditions. In this scenario,

the structure of the �rm's cash �ows is e�ectively equivalent to those in Rogerson (1997)

and Reichelstein (1997).26 Consistent with those papers, goal congruence in the benchmark

case is achieved by the so-called r-annuity rule under which depreciation charges increase at

a rate r over time,

drτ+1 = (1 + r) drτ ,

and the historical cost charges, denoted zr, are constant over time:27

zrτ = zrτ+1.

The r-annuity depreciation rule is commonly recommended for assets with one-hoss shay

productivity in the practitioner and academic literature.28

We now ask the question: relative to the benchmark described above, how does the

presence of operating decisions, i.e., the option to idle capacity, a�ect the REOB depreciation

rule? We start by identifying conditions under which the ability of the �rm to adjust its

capacity utilization does not a�ect the optimal performance evaluation system.

26One remaining di�erence between Rogerson's (1997) model with one-hoss shay assets and our benchmark
scenario is that in Rogerson's model the investment opportunity is scalable (the �rm can decide how much
to invest at date 0), while in our model it is binary (the �rm can only decide whether or not to make a �xed
investment in a project). We demonstrate in Section 5 of this paper that our results in Propositions 1 and
2 can be extended to the model with a scalable investment opportunity.

27If the �rm has to operate at capacity at all times, assets have one-hoss shay productivity and mt is a
martingale, then, from the perspective of date 0, the expected value of the contribution margin in period τ
is R

(
m0,K

)
− v ·K. Therefore, goal congruence is achieved if

z∗τ =
R
(
m0,K

)
− v ·K

b
,

i.e., all z∗τ are equal. The corresponding depreciation schedule is the r-annuity rule, see Rogerson (1997) and
Reichelstein (1997).

28See, for instance, Ehrbar (1998) and Young and O'Byrne (2000). Rogerson (2008) shows that goal
congruence can be attained with the r-annuity rule if assets have one-hoss shay productivity and the product
market is always expanding. The assumption of an expanding product market is important in Rogerson's
(2008) model to make sure that the �rm never �nds itself in an excess capacity situation. In contrast, the
focus of our paper is on providing e�cient investment incentives to the manager taking into account the
possibility of such situations. The r-annuity rule also corresponds closely to the treatment for right-of-use
assets in Type B leases suggested by the IASB and FASB in their Exposure Draft #ED/2013/6.
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Observation 1. Assume that assets have one-hoss shay productivity and the permanent

component of the price shift parameter is a martingale (g∗ = 0). Then, the REOB rule

coincides with the r-annuity rule if:

1. All price shocks are transitory (σ2
g = 0), or

2. variable production costs are zero (v = 0).

With productivity being one-hoss shay and demand stationary (g∗ = σ2
g = 0), the capac-

ity utilization and optimized contribution margins, in expectation at date 0, will be the same

for all periods. Therefore, the historical cost charges should also be the same every period.

On the other hand, with zero marginal costs (v = 0), if the investment is made, the �rm's

manager will (e�ciently) choose to operate at capacity in every period, since the �rm's con-

tribution margin collapses to revenues, and revenues are increasing in quantity. Therefore,

the REOB rule coincides with the benchmark solution where the manager is constrained to

operate at capacity, i.e., the r-annuity rule.

The conditions in Observation 1 are rather strong. We therefore now assess how the

possibility of permanent price shocks in conjunction with nontrivial marginal production

cost a�ect the REOB depreciation rule.

Proposition 2. Assume that assets have one-hoss shay productivity and the permanent

component of the price shift parameter is a martingale (g∗ = 0, σ2
g > 0). Then, the REOB

rule is more decelerated than the r-annuity rule.

The intuition for this result is as follows. With the permanent component of the price

process being martingale (g∗ = 0), the expected market price is constant, but its variance

(conditional on date 0 information) is greater for later periods. At the heart of Proposition 2

lies the observation that the optimized contribution margin in each period, CM∗
t (Kt,mt−1),

is a (weakly) convex function of the permanent component of the price shift parameter

in that period, mt−1. To see why, note that given the demand formulation in (1), if the

�rm always were to sell its entire capacity, Kt, revenues would be linear in mt−1, and thus

so would be the optimized contribution margin. For favorable realizations of mt−1, such

that the capacity constraint (5) is binding, this will indeed be optimal. For unfavorable

realizations, however, the �rm will adjust the selling quantity accordingly, which mitigates
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the shortfall in contribution margin. The optimized contribution margin, CM∗
t (Kt,mt−1),

hence, is strictly convex in mt−1 in the left tail, and linear in the right tail.

Having established the convexity of optimized contribution margin in the permanent

component of the price shift parameter, Jensen's inequality then implies that the expectation

at date 0 of the optimized contribution margin in period τ increases in τ , if g∗ = 0.29 The

REOB depreciation rule is then characterized by monotonically increasing historical cost

charges, z∗τ . We show in the proof of Proposition 2 that the fact that historical cost charges

are increasing of the asset's useful life implies that the REOB rule is more decelerated than

the r-annuity rule. Under the more decelerated depreciation rule, the manager faces lower

historical cost charges upfront and, therefore, is more willing to invest at date 0. This is

precisely what the principal wants in the presence of permanent shocks to market prices

(as compared to the scenario with only transitory shocks), since greater uncertainty about

prices in later periods increases the expected value of optimized contribution margins in

those periods.

We will now explore the behavior of the REOB rule as a function of the product market

parameters: the drift and variance of the expected price process. Proposition 2 has assumed

a martingale price process and relied on a variance argument to make the case for deprecia-

tion decelerated relative to the annuity rule. Deviating from martingale processes introduces

a drift e�ect: if the drift is positive (g∗ > 0), it further raises far-future expected optimized

contribution margins relative to early ones, thereby making the REOB rule even more de-

celerated. On the other hand, one would expect the REOB rule to be accelerated relative

to the annuity rule if the drift in the permanent component of price shifts, g∗, is su�ciently

negative, i.e., if prices are expected to decline for given quantities. With constant elasticity

demand, there is a straightforward mapping between expected growth in prices (holding

quantity �xed) and expected growth in quantities (holding price �xed). Speci�cally, if prices

are described by a martingale process (g∗ = 0), then the corresponding dynamic process de-

scribing quantities will be such that expected quantity in t+ 1 will be greater than realized

quantity in t, holding price constant. Conversely, for quantities to be a martingale, holding

prices �xed, it would have to be the case that g∗ < 0.30

29Banker et al (2013) show in a static, stochastic model with exogenously given congestion costs that
a �rm is more willing to invest in �xed assets, the more uncertainty it faces. Numerous papers in the
adjustment-cost literature show that, with symmetric convex adjustment costs, investment levels increase in
price uncertainty, see Hartman (1972), Abel (1983, 1984), Caballero (1991), and Abel and Eberly (1994).

30More generally, if prices are submartingale, then quantities, a fortiori, will be submartingale, too. Con-
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Proposition 3. Assume assets have one-hoss shay productivity, σ2
g > 0, and the permanent

component of the price shift parameter declines su�ciently quickly in expectation, g∗ < 0,

so that the expected quantity demanded at a given price is a martingale (i.e., quantities are

expected to remain constant over time, holding price constant). Then, the REOB is more

accelerated than the r-annuity rule.

Because negative price drift parameters, g∗ < 0, push down the expected investment

bene�ts in later periods relative to earlier ones, it is not surprising that for g∗ su�ciently

negative the REOB depreciation rule becomes more accelerated than the r-annuity rule.

Proposition 3 derives an (implicit) upper bound for g∗ that is su�cient for this to happen: if

g∗ is such that quantities are expected to remain constant over time, holding price constant,

the drift e�ect dominates the variance e�ect. Note that Proposition 3 also holds, a fortiori,

for even lower values of g∗, such that quantities are expected to decline over time for given

price (i.e., if quantities evolve as a supermartingale).31

Characterizing the behavior of the REOB rule in g∗ and σ2
g beyond the case of undimin-

ished (one-hoss shay) productivity is di�cult, because our notion of accelerated/decelerated

depreciation is a demanding one in that it requires a uniform ranking of book values across

di�erent depreciation schedules period-by-period. To consider time-variant patterns of asset

productivity in a tractable fashion, we turn to assets with a two-period lifetime, i.e., T = 2:

Corollary 1. Suppose T = 2. Then, the REOB depreciation schedule becomes more decel-

versely, if quantities are supermartingale, then prices, a fortiori, will be supermartingale, too. To see this
formally, note that rewriting (1) yields

Qt(p) =

(
p

(1 + εt) ·mt−1

)−η

, η > 1.

Thus, Qt(·) is proportional to mη
t−1 and thereby a convex function of the price shift parameter, mt−1. This

implies that if prices evolve as a submartingale, then quantities evolve as a submartingale, too. Conversely,
if quantities evolve as a supermartingale, then so do prices.

31Proposition 3 may be (mis)read as suggesting that the manager's ability to adjust capacity utilization
makes the REOB rule more accelerated in environments where g∗ su�ciently less than zero�a message
seemingly at odds with that of Proposition 2. We note that Proposition 3 does not in fact identify the e�ect
of the manager's option to idle capacity on the REOB rule, since if g∗ < 0, the r−annuity rule ceases to be
the proper benchmark for the case in which the usage option were absent (i.e., if the �rm were constrained
to operate at capacity). If g∗ < 0 and the �rm is constrained to operate at capacity, then, consistent
with Rogerson (1997), the corresponding benchmark depreciation rule will be characterized by declining
historical cost charges and will be itself more accelerated than the r-annuity rule. The goal of Proposition
3 is to illustrate the e�ect of product market growth on the REOB rule: speci�cally, we derive an upper
bound for g∗ below which the REOB rule is more accelerated than the annuity rule and, consequently, more
accelerated than the REOB rule for g∗ ≥ 0.

18



erated as g∗ increases or as σ2
g increases, all else equal.

As we show in the proof, for increases in either the variance or the drift of the process

describing the evolution of prices over time, the project becomes more pro�table in expec-

tation, for any m0. As a result, the investment threshold m0 decreases. The period-1 cost

charge according to REOB, as in (9), depends on g∗ and σ2
g only through this threshold�and

is inversely related to the latter. Hence, the period-1 cost charge declines as either g∗ and

σ2
g increase, and the depreciation becomes more decelerated.

The central takeaway from this section is that �rms may employ depreciation schedules

that are more decelerated as a result of demand uncertainty. A key concern in managerial

accounting is how to account for the cost of idle capacity. With demand functions being

subject to a sequence of shocks with permanent components, one might expect the expected

cost of idle capacity to increase over time�hence the conventional wisdom associating greater

uncertainty with more accelerated depreciation (e.g., Penman and Zhang, 2014). As we

have shown, this conventional wisdom omits the option to idle capacity. Speci�cally, given

proper incentives, the manager will adjust his operating decisions to the state of the world

in a manner that mitigates unfavorable demand shocks. As a result, we have established

convexity of periodic bene�ts in the market size. Uncertainty about future market size

therefore translates into more decelerated depreciation rules, unless o�set by a su�ciently

negative drift in expected market sizes over time, i.e., an expected contraction in demand.

4 Option to Wait

In the preceding analysis, the �rm was endowed with the option to fully utilize or partially

leave idle the productive capacity, but the investment point in time was assumed exogenously

given. We now consider a scenario in which the �rm can choose when to make its investment.

By adding a classic investment timing (real) option to the picture, we now have two di�erent

kinds of options entering the �rm's decision making process.

As before, we assume that at date t the manager learns mt, the permanent component of

the price shift in period t+ 1. The manager can then decide whether to invest in the capital

asset immediately or postpone the investment decision to a future date. If the investment

is made at date t, the �rm will have capacity to produce xτ units of the output in period

t + τ for 1 ≤ τ ≤ T . The �rm can invest only once, and the �rm's capacity cannot be
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expanded after the investment is made. We use the indicator variable It ∈ {0, 1} to denote

the investment decision in period t, so that
∑∞

t=0 It ≤ 1. If the investment is made at date t,

the �rm's capacity is Kt+τ = xτ , for 1 ≤ τ ≤ T and Kt−i = 0 for 0 ≤ i ≤ t− 1. We assume

that

E[(1 + gt)
η] < 1 + r (11)

to ensure that the expected quantity of the product demanded by the market at a given

price does not grow faster than at a rate equal to the �rm's cost of capital.32

We show in the proof of Proposition 4 that the �rst-best investment policy is to invest

as soon as the market size exceeds a certain critical level m. The critical market size m will

be greater than the one identi�ed in the scenario without the option to wait. At any given

date t, if the �rm invests in the project, the present value of the cash in�ows, given optimal

operating decisions, equals

f (mt) ≡
T∑
τ=1

γτ · Et
[
CM∗

t+τ (Kt+τ ,mt+τ−1) | mt

]
.

On the other hand, we denote the present value of postponing the investment decision at

that date, for a given realization of mt, by Θm
w (mt), which we refer to as the option value,

calculated using the shareholders' cost of capital.33 Formally,

Θm
w (mt) = Et

[
γt(m)−t ·

(
f
(
mt(m)

)
− b
)
| mt

]
,

where t (m) is the random stopping time given by t (m) = min {t+ τ | mt+τ ≥ m} . Intu-
itively, if the �rm invests at date t, it incurs an immediate cash out�ow of b dollars and it

forgoes loses the option value. Therefore, at the threshold market size m, the expected value

of future optimized bene�ts exceed the direct cost of investment by the option value:

f (m) ≡ b+ Θm
w (m) . (12)

32Otherwise, the �rm's value can be made arbitrarily large by postponing the investment inde�nitely.
33The superscript m indicates that the option value is calculated under the rule that the investment will

be made as soon as the market size exceeds m. The option value also depends on the shareholders' cost of
capital, r, and the cost of investment (the �exercise� price of the option), b. We suppress the dependence of
option values on these variables whenever the relevant discount rate is r and the cost of investment is b, and

explicitly state it otherwise. That is, more generally, we write Θm
w

(
mt, r̃, b̃

)
for some discount rate r̃ and

investment amount b̃, and adopt the convention that Θm
w (mt) ≡ Θm

w (mt, r, b) .
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In most earlier real option models, single threshold investment policies usually exist.

Those models typically do not consider operating decisions once the investment has been

undertaken�or if they do, they model those as stark binary decisions (e.g., shut down

operations altogether in a period of negative shocks as in Dixit and Pindyck, 1994, Ch.6).

As a result, the investment problem was modeled for the most part as a perpetual American

call option with a payo� that is linear in market size, once the latter exceeds the threshold

for exercising the option. Because our model incorporates sequentially optimal operating

decisions, the payo� is no longer linear. As the following result demonstrates, a unique

investment threshold nonetheless exists:

Proposition 4. Assume the growth rate of the permanent component of the price shift

parameter, g∗, is greater than some threshold g∗min < 0, such that the expected quantity for

given price is a submartingale (i.e., quantities are expected to weakly increase over time,

holding price constant). Then, it is optimal for the �rm to invest as soon as the permanent

component of the price-shift parameter reaches a certain (uniquely-de�ned) threshold, m.

We now turn again to delegated decision making and the issue of goal congruence. To

accommodate the fact that the investment, at any date t, can be delayed by the manager,

we need to modify the manager's expected utility function at date t as

Ut = Et

[
∞∑
i=t

βi · πi | mt

]
.

As before, the utility weights βi may re�ect the manager's discount rate as well as bonus

coe�cients attached to the performance measure in each period. For example, if the man-

ager's bonus coe�cient, u > 0, is time-invariant and the manager's personal discount factor

is r̂, then βi = γ̂i · u for all i, where γ̂i = 1
1+r̂

. If, in addition, the manager plans on leaving

the �rm after period ī, then βi = γ̂i · u for i ≤ ī and βi = 0 for i ≥ ī.

With an option to wait, a performance measure π attains goal congruence for operating

and investment decisions if and only if, for any β = (β0, β1, ...): (i) once the investment is

made at some date t, the optimal owner's quantity q∗t+τ (mt+τ−1) maximizes the manager's

objective each period t+τ, 1 ≤ τ ≤ T ; (ii) if the shareholders strictly prefer to invest at some

date t, then the manager should also have strict incentives to invest at date t if βt+τ > 0 for

at least one 1 ≤ τ ≤ T .
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The delegation problem is now compounded by the fact that the manager's (unknown)

time preferences a�ect not just how he assesses the present value of compensation associated

with investing today, but also his tradeo� between investing now and waiting for another

period. To illustrate how this complicates the search for goal congruent metrics, we proceed

heuristically by proposing two manager �archetypes� and studying the distortions that would

arise for those under plausible candidate performance measures. We call a manager perfectly

aligned if his time preferences can be represented as βi = γi · u, for some u > 0. That is,

the manager receives a time-invariant bonus coe�cient, u, and discounts the future at the

shareholders' discount rate. We call the manager myopic at date t if he intends to leave the

�rm at the end of period t+1. In other words, βt, βt+1 > 0, but all other βi = 0 for i > t+1.

How will these two managers act if the �rm were to o�er them the same performance

measure identi�ed in Section 3, i.e., residual income with capital charges imputed using r

and REOB depreciation?

Observation 2. Assume that residual income based on the shareholders' discount rate, r,

and REOB depreciation is used as the performance measure. Then:

1. A perfectly aligned manager will invest at the optimal time and make optimal operating

decisions.

2. A myopic manager will overinvest at date t, i.e., he will invest for some values of

mt < m when waiting is preferred by the principal.

Part 2 of the observation follows directly from the conservation property of residual

income (e.g., Preinreich 1937),34 combined with the fact that an aligned manager also values

the option to wait equally as the shareholders. A myopic manager, on the other hand,

e�ectively assigns zero value to the option to wait. Hence, the latter will invest at date t as

long as f(mt−1) ≥ b, which by comparison with (12) implies overinvestment.

One way to make an impatient manager internalize the option value is by incorporating

the shareholders' value of the option to wait into the performance measure itself, speci�cally

by raising the capital charge rate used for computing residual income.35 De�ne residual

income based on the REOB rule relative to rate r̃ as a performance measure where both

34See also Ohlson (1995) and Feltham and Ohlson (1996). In fact, for the aligned manager, the choice of
depreciation method becomes arbitrary as long as the asset is fully depreciated over its life time.

35Hurdle rates employed in practice tend to exceed the �rm's cost of capital signi�cantly, e.g., Poterba
and Summers (1995).
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residual income and the REOB rule are calculated relative to an arbitrary discount rate r̃

(we will also call it the �hurdle� rate). Let d∗ (r̃), bv∗ (r̃), and z∗ (r̃) denote the vectors

de�ning the depreciation charges, book values, and historical cost charges under the REOB

rule relative to r̃. The three vectors must satisfy the following condition:

z∗τ (r̃) = d∗τ (r̃) + r̃ · bv∗τ−1 (r̃) ,

re�ecting the idea that residual income is now calculated relative to some rate r̃. Formally,

we de�ne the REOB rule relative to r̃ as the one corresponding to the following historical

cost charges:

z∗τ (r̃) =
CM∗

τ∑T
i=1 γ̃

i · CM∗
i

, (13)

where CM∗
τ = Et

[
CM∗

t+τ (Kτ ,mt+τ−1) | mt = m
]
and γ̃ = (1+ r̃)−1. Note that, for any value

of r̃, the historical cost charges de�ned above are proportional to the optimized expected

contribution margins of a project implemented at the threshold market size. The numerator

in (13) is chosen so as to ensure that the corresponding depreciation rule satis�es the clean

surplus condition. Further, let r∗ denote the internal rate of return of the project evaluated

at the �rst-best threshold m, as given by:

T∑
τ=1

1

(1 + r∗)τ
· Et

[
CM∗

t+τ (Kt+τ ,mt+τ−1) | mt = m
]
≡ b.

Then:

Observation 3. Assume that residual income based on the REOB rule relative to r∗ is used

as the performance measure. Then:

• A perfectly aligned manager will underinvest, i.e., will not invest for some values of

mt > m when investment is preferred by the shareholders.

• A myopic manager will make the optimal investment decision at date t.

A perfectly aligned manager, when charged the higher hurdle rate of r∗, will internalize

the option value twice.36 While even this manager will eventually invest, he will do so later

36The logic is reminiscent of that in Christensen et al (2002) regarding the double counting of risk premia if
risk-averse agents get charged hurdle rates for capital that are �in�ated� so as to incorporate the shareholders'
risk premium.
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than the shareholders would prefer. On the other hand, incorporating the option value into

the hurdle rates forces the myopic manager to internalize the option value and thereby invest

optimally.

Observations 2 and 3 together suggest that goal congruence may be elusive if the share-

holders don't know the manager's time preferences. We now con�rm this intuition formally.

In our search for goal congruent performance measures, we restrict attention to linear per-

formance measures of the form:

πt = αR ·Rt + αv · v · qt + αd ·Dt + αB ·BVt−1 + αI · b · It, αj ∈ R. (14)

Proposition 5. In the model with the option to wait, there does not exist a linear perfor-

mance measure that attains goal congruence.

No linear performance can ensure that a manager with unknown time preferences balances

the tradeo� between the value of a project available today (including the prospect of making

e�cient operating decisions throughout the project's lifetime) and the value of the option to

wait in the shareholders' best interest.37

Given the proven impossibility of achieving goal congruence in the sense of costless del-

egation to a manager with unknown time preferences, the natural question is what the �rm

could achieve if it had more information. To that end, we now consider a weaker notion

of goal congruence. We restrict attention to (potentially impatient) managers with known

constant discount factors, i.e., r̂ ≥ r, and time invariant bonus coe�cients. Overall,

βi = γ̂i · u.

A performance evaluation system (which can now depend on r̂) is weakly goal-congruent if

the manager whose discount factor is r̂ is incentivized to time the investment optimally and

make optimal operating decisions.38

37In Friedl (2005), a manager can invest today or one period later. Unlike here, in his model, the value of
investing tomorrow is assumed to be common knowledge. Therefore, goal congruence becomes attainable,
either by raising the hurdle rate or by capitalizing the option value in the asset base. In our model, because
of the presence of permanent demand shocks, the option value at any given point in time depends on the
current market size mt−1 and hence is the manager's private information.

38Our de�nition of weak goal congruence is slightly more general than that in Reichelstein (1997), as we
allow for the manager's discount rate, while common knowledge, to diverge from that of the shareholders.
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Proposition 6. Assume the growth rate of the permanent component of the price shift

parameter, g∗, is greater than some threshold g∗min < 0, such that the expected quantity for

given price is a submartingale (i.e., quantities are expected to weakly increase over time,

holding price constant). Then, for any r̂, there exists an r̃ < r∗ such that residual income

based on the REOB rule relative to r̃ is a weakly goal-congruent performance measure for a

manager whose discount rate is r̂.

The manager will have incentives to optimally time the investment if and only if, at the

threshold market size, he internalizes precisely the owners' direct cost of investment as well

as the owners' option value of waiting. From the manager's perspective, the cash �ows from

the marginal project must exceed the capital charges associated with the investment, so as to

result in a positive performance measure. In addition, the expected bonus payments to the

manager must cover the manager's option value of future compensation that is forgone by

investing immediately. The rate r̃ must be chosen such that the sum of the manager's option

value and the value of historical cost charges re�ected in the performance measure is equal

to the owners' total cost of investment. This rate depends on the manager's discount rate,

r̂, since the latter determines the manager's option value of forgone future compensation.

Therefore, the performance evaluation system described in Proposition 6 achieves weak goal

congruence, but, as demonstrated in Proposition 5, will not attain strong goal congruence

for any given value of the hurdle rate, r̃. A key takeaway is that the weakly goal-congruent

solution entails hurdle rates that are below the internal rate of return of the marginal project.

5 Scalable Investments

Up to this point, we have assumed that the �rm's investment opportunity is of �xed scale:

the �rm can spend b dollars to start a project with �xed capacity levels (x1, ..., xT ). While

such an assumption is plausible in certain environments and has been widely used in the

earlier literature (e.g., Dixit and Pindyck 1994, Chapter 6), in many cases, �rms can choose

the scale of their projects.39 In this section, we extend our results to a model where the

�rm's investment decision is continuous: the �rm can decide how much capacity to purchase

39A �rm could be facing an investment opportunity with a �xed scale if, for example, it considers buying
an existing asset or a widget factory. Expanding the capacity of an existing asset or a factory may be
economically infeasible. In contrast, �rms can often decide how large their new plants should be.
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at the investment date.40

We start by assuming that the investment opportunity is only available at date 0. A unit

of the capital asset purchased at date 0 generates xτ units of capacity in period τ . Without

loss of generality, the cost of one unit of the capital asset is normalized to one. In contrast to

our setting in Section 2, we now assume that the �rm can decide how many units of the asset

to purchase. Speci�cally, if the �rm invests b dollars at date 0, then the capacity available

for production in period τ is:

Kτ = b · xτ .

As before, let CM∗
τ (Kτ ,mτ−1) denote the optimized contribution margin in period τ if

the permanent component of the price-shift parameter for that period is mτ−1 and the �rm's

available production capacity is Kτ . The principal seeks to design a performance evaluation

system that incentivizes the manager to: (i) choose the optimal scale of the project at date

0 (i.e., the optimal b) and (ii) implement the optimal capacity utilization decisions in future

periods. We note that the two problems are interrelated: the optimal capacity utilization

decisions depend on the amount of capacity installed at date 0, since Kτ = b · xτ .
Formally, the optimal investment level solves the following problem:

max
b
−b+

T∑
τ=1

γτ · E0 [CM∗
τ (Kτ ,mτ−1) | m0] . (15)

Let b∗ (m0) denote the optimal investment policy. Taking the �rst-order condition yields:

T∑
τ=1

γτ · E0

[
∂CM∗

τ (Kτ ,mτ−1)

∂Kτ

∣∣∣∣
Kτ=b∗(m0)·xτ

· xτ | m0

]
= 1. (16)

Intuitively, the discounted sum of the expected marginal net bene�ts over the project's

lifetime has to be equal to one (which is the marginal cost of investment at date 0).

We now turn again to the issue of goal congruence under delegated decision-making.

Recall that with binary investment decisions, as in Section 3, the �rst-best investment was

described by a hurdle policy such that the investment was to be made if and only if the

date-0 market size exceeded a certain threshold. The REOB rule achieved goal congruence

while simply relying on information about the threshold market size, as the actual one

40We thank an anonymous referee for suggesting this extension of our model.

26



was known only to the manager. Given that the REOB rule resulted in zero expected

incremental residual income each period as a result of investing at the threshold market

size, the manager would expect a positive (negative) performance measure in each period

for market size greater (smaller) than this threshold, by stochastic dominance arguments.

With scalable investments, no such threshold policy exists; instead, the optimal investment

rule, b∗ (m0), is a monotonic function of the date-0 market size. The principal, however,

has to design the accounting system without knowledge of m0. Nevertheless, as we show in

this section, proper adjustments to the accounting rules identi�ed in Section 3 ensure goal

congruence.

Speci�cally consider the following variant of the depreciation rule discussed in Section 3,

which we label the marginal REOB rule:

z∗τ = E0

[
∂CM∗

τ (Kτ ,mτ−1)

∂Kτ

∣∣∣∣
Kτ=b∗(m0)·xτ

· xτ | m0

]
. (17)

We verify in the proof of Proposition 1′ that the expected marginal net bene�t in period τ

(the expression on the right-hand side of equation (17)) does not depend on m0. Therefore,

the vector of z∗τ for τ = 1, ..., T, can be calculated by the principal at date 0. Equations (16)

and (17) together imply that
T∑
τ=1

γτ · z∗τ = 1;

hence, there exists a depreciation rule d∗ = (d∗1, ..., d
∗
T ) that corresponds to historical cost

charges given by z∗τ in every period. The main di�erence between this rule and the one

described in Section 3 is that instead of setting the historical cost charges equal to the

expected optimized bene�ts at the threshold market size, now they are set equal to the

marginal expected optimized bene�ts calculated at the current market size. While the

principal does not know the current market size and the absolute value of future bene�ts,

the marginal expected bene�ts in future periods do not, in fact, depend on m0.

Consider a manager who is compensated based on residual income calculated under the

marginal REOB rule. First, it is clear that once the investment is made, the manager will

optimize the expected contribution margin in every period. Therefore, it is su�cient to check

the manager's investment incentives at date 0. From the perspective of date 0, the expected
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value of residual income in period τ is given by:

E0 [CM∗
τ (b · xτ ,mτ−1) | m0]− z∗τ · b,

where b is the investment level chosen by the manager. The de�nition of z∗τ in (17) implies

that the expression above is maximized at b∗ (m0), because

E0

[
∂CM∗

τ (Kτ ,mτ−1)

∂Kτ

∣∣∣∣
Kτ=b∗(m0)·xτ

· xτ | m0

]
− z∗τ = 0.

Therefore, the optimal investment level maximizes the manager's objective in each and every

period, and the manager has incentives to invest optimally regardless of his time preferences.

Proposition 1′. In a model with a single scalable investment opportunity, residual income

based on the marginal REOB rule is a goal congruent performance measure for investment

and operating decisions.

Our result in Proposition 2 also extends to the setting with a scalable investment op-

portunity. However, to apply the same intuition as in our discussion following Proposition

2, we need to show that the marginal expected optimized cash �ow in period τ is a convex

function of the permanent component of the price shift parameter, mτ−1. This indeed turns

out to be the case, as we demonstrate in the proof of the following result.

Proposition 2′. Assume that assets have one-hoss shay productivity and the permanent

component of the price shift parameter is a martingale (g∗ = 0, σ2
g > 0). Then, the marginal

REOB rule is more decelerated than the r-annuity rule.

To conclude this section, we ask how scalable investments should be timed optimally if

the �rm has the option to postpone its investment. It follows from the proof of Proposition

1′ that the optimal investment decision becomes degenerate in the sense that the �rm either

invests immediately or postpones the investment ad in�nitum. Speci�cally, one can show

that the net present value of the �rm's expected cash �ows is proportional to mη
t−1 with

the proportionality factor being common knowledge. Depending on the sign of this propor-

tionality factor (which indeed can take on either sign even with limit on expected demand

growth speci�ed in (11) in place), the �rm will invest immediately or always postpones by
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another period.41

6 Conclusion

This paper has developed a dynamic goal congruence model in which information arrives

over time and investment and operating decisions are delegated to a manager who always

has a leg up, informationally, over the �rm's owners and whose time preferences are unknown

to the principal. For the case of an exogenously given investment date, we have identi�ed

an asset valuation rule (the REOB depreciation schedule) that achieves goal congruence, if

combined with residual income as the periodic performance measure. Two features of the

REOB rule are worth emphasizing. First, we have shown that if demand demand follows

a martingale process, the REOB rule is decelerated relative to the scenario where the �rm

cannot adjust its capacity utilization. The reason is that the manager's option to idle capacity

if the �rm is hit by a sequence of unfavorable demand shocks mitigates the negative pro�t

consequences of those shocks. Second, in terms of informational requirements, the REOB rule

can be implemented by a corporate controller without exact knowledge of the current market

conditions. With demand following a dynamic process with permanent shocks, a manager

who is informed about the market size at the outset thereby also has better information

about all future expected demand scenarios. Nonetheless, goal congruence is attainable

if the investment date is exogenous. These �ndings apply equally to binary and scalable

investments with only minor adjustments to the respective depreciation schedules.

We have also considered a scenario where the manager can time the investment. From the

shareholders' point of view, the investment should be undertaken only if the attendant NPV

exceeds the value of the option to wait, which comprises the expected cash �ows associated

with future possible investment dates, properly weighted and discounted. The manager

follows similar logic when deciding when to invest, by comparing the present value of his

41More technically, the net present value of expected cash �ows (after deducting the investment cost) is
given by A ·mη

t−1, with the constant A being common knowledge. The �rm, then, faces an optimal stopping
problem with the payo� A · mη

t−1. The process that determines the net present value of the project (if
undertaken at date t − 1), discounted to date 0 is given by A · mη

t−1 · γt−1. This process is a geometric
Brownian motion with a drift equal to E[(1 + gt)

η
]γ < 1. Therefore, if A is positive, the �rm should start the

project immediately, and if A is negative, the project is never implemented. A corner solution obtains in this
model because instead of postponing its investment when the market conditions are relatively unfavorable,
the �rm can reduce the investment amount optimally. In contrast, most earlier models that study a single
investment decision with endogenous timing assume that the project in question has a �xed scale, i.e., the
investment option has a �xed exercise price (see, for instance, Dixit and Pindyck 1994, Chapters 5 and 6).
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compensation if investing today versus investing later. The fact that now the manager's

opportunity cost of investing is non-zero but instead depends on his time preferences, which

only he knows, makes goal congruence impossible to achieve. Only a weak form of goal

congruence is attainable in that case, in the sense that the principal would need to know the

manager's time preferences.

Our model does not include formal agency problems.42 Earlier literature has shown that

many key �ndings obtained from goal congruence models carry over qualitatively to mod-

els that include elements of moral hazard and/or adverse selection. Performing a similar

robustness check on our model would be complicated by the fact that permanent negative

demand shocks may lead agents to quit the �rm, given plausible commitment assumptions.

Another possible next step in this research agenda is to look at overlapping capacity in-

vestments. Earlier studies on such overlapping investments have assumed that the markets

are su�ciently fast-growing (at least in expectation) to avoid any idle capacity issues (e.g.,

Rogerson 2008, Dutta and Reichelstein 2010, Nezlobin et al 2014). Our setting with tempo-

rary and permanent price shocks could be fruitfully employed to study the consequences for

performance measurement if that continuing growth assumption were dropped.

42Several other studies have incorporated other types of options into agency models. For instance, in
Pfei�er and Schneider (2007) the �rm can abandon its multistage project prior to completion. Arya and
Glover (2001) study a model with two uncorrelated projects that become available at di�erent points in time.
They present a control problem that can make the option to wait valuable. In our model, the option to wait
is valuable because the manager learns new information about the changing product market conditions over
time. Johnson et al. (2013) focus on externalities across divisions when they share a common resource.
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Appendix

Proof of Proposition 1

Using constant elasticity of demand in (1), the optimal unconstrained quantity for period

t solves

max
q

Et−1 [µt · P (q) · q − v · q] .

This problem can be rewritten as:

max
q

mt−1q
η−1
η − vq.

Therefore, the optimal unconstrained quantity is:

q
t
(mt−1) ≡

(
(η − 1)mt−1

ηv

)η
.

The �rm will operate at capacity for mt−1 large enough such that q
t
(mt−1) ≥ Kt, and it will

sell the unconstrained quantity if q
t
(mt−1) < Kt. Equivalently, qt(mt−1) = Kt if

mt−1 ≥ mt−1(Kt) ≡
ηv

η − 1
K

1
η ,

and qt(mt−1) = q
t
(mt−1) if mt−1 < mt−1(Kt). By straightforward algebra, the contribution

margin in these two cases is given by:

CM∗
t (Kt,mt−1) =


1

η−1

(
η−1
η

)η
v1−η ·mη

t−1, if mt−1 < mt−1(Kt),

K
η−1
η

t ·mt−1 − v ·Kt, otherwise.
(18)

Note that

1

η − 1

(
η − 1

η

)η
v1−η ·mη

t−1

∣∣∣∣
mt−1(Kt)

=

(
K

η−1
η

t ·mt−1 − v ·Kt

) ∣∣∣∣
mt−1(Kt)

=
v

η − 1
Kt.

Therefore, the function in (18) is continuous in mt−1. Note further that CM∗
t (Kt,mt−1)

is linear in mt−1 to the right of mt−1 = mt−1(Kt), and is proportional to mη
t−1 before that

point. Therefore, to verify that CM∗
t (Kt,mt−1) is convex in mt−1, it su�ces to check that

at mt−1 = mt−1(Kt) the right and left derivatives match.
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The right derivative of CM∗
t (Kt,mt−1) with respect to mt−1 at mt−1(Kt) = η

η−1vK
1/η
t is:

K
η−1
η

t = mη−1
t−1

(
η − 1

η

)η−1
v−(η−1).

The left derivative at that point equals the expression because:

η

η − 1

(
η − 1

η

)η
v1−η ·mη−1

t−1 = mη−1
t−1

(
η − 1

η

)η−1
v−(η−1).

Therefore, CM∗
t (Kt,mt−1) is convex in mt−1.

Let us show that if it is optimal for the �rm to invest given a certain realization of m0,

then it is also optimal to invest for any realization m′0 > m0. Undertaking the investment is

optimal given m0 if and only if

T∑
t=1

γt · E0 [CM∗
t (Kt,mt−1) | m0] ≥ b.

Observe that the distribution of mt−1 given m
′
0 �rst-order stochastically dominates the dis-

tribution of mt−1 | m0:

Pr {mt−1 > k | m0} = Pr

{
t−1∏
τ=1

(1 + gτ ) >
k

m0

}
< Pr

{
t−1∏
τ=1

(1 + gτ ) >
k

m′0

}
= Pr {mt > k | m′0} .

Since CM∗
t (Kt,mt−1) is increasing in mt−1, it follows that

T∑
t=1

γt · E0 [CM∗
t (Kt,mt−1) | m′0] ≥

T∑
t=1

γt · E0 [CM∗
t (Kt,mt−1) | m0] ≥ b,

and undertaking the investment is optimal given m′0.

Let us now show that E0 [CM∗
t (Kt,mt−1) | m0] is continuous in m0. It follows from the

global convexity of CM∗
t (Kt,mt−1) and equation (18) that the derivative of CM∗

t (Kt,mt−1)
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with respect to mt−1 is everywhere bounded by K
η−1
η

t . Then, for any m0, m
′
0, we have:

43

|E0 [CM∗
t (Kt,mt−1) | m0]− E0 [CM∗

t (Kt,mt−1) | m′0]|

=

∣∣∣∣∣Eg1,...,gt−1

[
CM∗

t

(
Kt,m0 ·

t−1∏
τ=1

(1 + gτ )

)]
− Eg1,...,gt−1

[
CM∗

t

(
Kt,m

′
0 ·

t−1∏
τ=1

(1 + gτ )

)]∣∣∣∣∣
=

∣∣∣∣∣Eg1,...,gt−1

[
CM∗

t

(
Kt,m0 ·

t−1∏
τ=1

(1 + gτ )

)
− CM∗

t

(
Kt,m

′
0 ·

t−1∏
τ=1

(1 + gτ )

)]∣∣∣∣∣
≤ K

η−1
η

t · |m0 −m′0| ·

∣∣∣∣∣Eg1,...,gt−1

[
t−1∏
τ=1

(1 + gτ )

]∣∣∣∣∣ .
The last term of the inequality above approaches zero as m′0 approaches m0, therefore

E0 [CM∗
t (Kt,mt−1) | m0] is continuous in m0.

We have shown that the bene�ts of investment are monotonically increasing and contin-

uous in m0. From this it follows that the optimal investment policy is characterized by a

threshold realization of m0, denoted m0, at which the present value of future expected opti-

mized cash �ows is precisely equal to the initial investment cash out�ow of b. The remainder

of the proof follows from the argument that precedes the statement of the Proposition in the

main text of this paper.

Proof of Proposition 2

We have shown in the proof of Proposition 1 that CM∗
τ (Kτ ,mτ−1) is a convex function of

mτ−1. Under the conditions stated in Proposition 2, capacity is constant over time, Kτ = K

for any τ . Now consider the role of the parameters describing the permanent component

of the price shift process, g∗ and σ2
g . If g∗ = 0, then mτ is a mean-preserving spread of

mτ−1. Given that the proof of Proposition 1 has established that CM∗
τ (Kτ ,mτ−1) is convex

in mτ−1, it follows by Jensen's inequality that

CM∗
τ

(
K,mτ−1

)
≤ Eτ−1

[
CM∗

τ+1

(
K,mτ

)
| mτ−1

]
43In some of the proofs, we write Eg1,...,gt−1

[·] to emphasize that the expectation is taken over the random
variables listed in the subscript - g1, ..., gt−1.
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for any mτ−1. Then, by the Law of Iterated Expectations,

E0

[
CM∗

τ

(
K,mτ−1

)
| m0

]
≤ E0

[
CM∗

τ+1

(
K,mτ

)
| m0

]
, (19)

and, therefore,

z∗τ ≤ z∗τ+1. (20)

It remains to show that equation (20) implies that the REOB rule is more decelerated than

the r-annuity rule.

First, note that for any vector of historical cost charges, z, the corresponding vector of

book values (per dollar of the initial investment) is given by:

bvτ = γ · zτ+1 + ...+ γT−τ · zT .

Then,

dτ + r · bvτ−1 = bvτ−1 − bvτ + r · bvτ−1 = γ−1 · bvτ−1 − bvτ

=
(
zτ + ...+ γT−τ · zT

)
−
(
γ · zτ+1 + ...+ γT−τ · zT

)
= zτ .

Recall that for the r-annuity rule, all zrτ are equal, and, therefore,

zrτ
zrτ+1

= 1 ≥ z∗τ
z∗τ+1

,

and, equivalently,
z∗τ
zrτ
≤
z∗τ+1

zrτ+1

. (21)

We will now show that the inequality above implies that the sequence bv∗τ/bv
r
τ increases in

τ .

Let us rewrite bv∗τ/bv
r
τ as:

bv∗τ
bvrτ

=
z∗τ+1 + ...+ γT−τ−1 · z∗T
zrτ+1 + ...+ γT−τ−1 · zrT

=
z∗τ+1 + bv∗τ+1

zrτ+1 + bvrτ+1

.
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It can be easily veri�ed that the equation above implies that

bv∗τ
bvrτ
≤
bv∗τ+1

bvrτ+1

whenever
z∗τ+1

zrτ+1

≤
bv∗τ+1

bvrτ+1

.

The latter inequality holds because

bv∗τ+1

bvrτ+1

=
γ · z∗τ+2 + ...+ γT−τ−1 · z∗T
γ · zrτ+2 + ...+ γT−τ−1 · zrT

≥
γ · zrτ+2 ·

z∗τ+1

zrτ+1
+ ...+ γT−τ−1 · zrT ·

z∗τ+1

zrτ+1

γ · zrτ+2 + ...+ γT−τ−1 · zrT

=
z∗τ+1

zrτ+1

.

We have shown that
bv∗τ
bvrτ
≤
bv∗τ+1

bvrτ+1

.

To conclude that proof note that the inequality above implies that

bv∗τ+1 ≥
bv∗τ
bvrτ
· bvrτ+1.

Therefore, if for some value of τ , bv∗τ is (weakly) greater than bv
r
τ , it will also be the case for

all greater values of τ . At the beginning, bv∗0 = bvr0 = 1, so the depreciation rule d∗ is more

decelerated than dr.

Proof of Proposition 3

Let m̃t−1 = mη
t−1. We will �rst verify that if σ2

g and g∗ are such that E [(1 + gt)
η] = 1,

then g∗ is less than zero. For this value of g∗, the process {m̃t}, and therefore the expected

quantity demanded at a given price, is a martingale, while the expected price holding the

quantity �xed declines over time.44

44The expected quantity demanded at price p given mt−1 is given by:

Eεt
[
p−η (1 + εt)

η
mη
t−1

]
= p−ηEεt [(1 + εt)

η
]mη

t−1.

Therefore, the expected quantity demanded at a given price is always proportional to m̃t−1 ≡ mη
t−1.
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Recall that (1 + gt) are independently log-normally distributed and let κ and δ2 denote

the mean and variance of the underlying normal distribution. Then, σ2
g and E [(1 + gt)

η] can

be expressed in terms of κ and δ2 :

σ2
g =

(
eδ

2 − 1
)
e2κ+δ

2

, (22)

E [(1 + gt)
η] = eκη+δ

2η2/2 = 1. (23)

From (23), it follows that κ = −δ2η/2. Then,

1 + g∗ = E [(1 + gt)] = eκ+δ
2/2 = eδ

2(1−η)/2 < 1. (24)

Therefore, the corresponding value of g∗ is less than zero.45

The optimized constrained contribution margin in (18) can be rewritten as a function of

m̃t−1 as follows:

CM∗
t (Kt,mt−1) = C̃M

∗
t (Kt, m̃t−1) =


1

η−1

(
η−1
η

)η
v1−η · m̃t−1, if m̃t−1 <

(
η
η−1

)η
vηKt,

K
η−1
η

t · m̃1/η
t−1 − v ·Kt, otherwise.

This function is continuous and increasing in m̃t−1. Furthermore, this function is linear in

m̃t−1 for m̃t−1 <
(

η
η−1

)η
vηKt, concave in m̃t−1 otherwise, and it is di�erentiable everywhere.

The remainder of the proof proceeds along similar steps as that of Proposition 1, com-

bined with the proof of Proposition 2 with all inequalities ��ipped�.

Proof of Corollary 1

Given T = 2, the REOB cost allocation schedule, z∗ as in (9), reduces to:

z∗1 =
CM∗

1 (K1,m0)

b
,

z∗2 =
E0 [CM∗

2 (K2,m1) | m0]

b
.

45It follows from equations (22), (23), and (24) that Proposition 3 applies to environments characterized
by
{
g∗, σ2

g

}
where

σ2
g =

(
(1 + g∗)

− 2
η−1 − 1

)
(1 + g∗)

2
.

Clearly, for any −1 < g∗ < 0, there exists a σ2
g such that the condition above is satis�ed. It can be veri�ed

that if η < 2, then for any σ2
g there exists a corresponding g

∗ < 0 such that the condition above is satis�ed.

If η ≥ 2, then such g∗ exists for σ2
g ∈

(
0, σg

2
)
for some σg

2 that depends on η.
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Note in particular that the �rst-period cost charge depends on the parameters describing the

demand dynamics, g∗ and σ2
g , only via their e�ect on m0. The latter is implicitly de�ned by

(8), which for T = 2 reads

(1 + r) · b ≡ CM∗
1 (K1,m0) + γ · E0 [CM∗

2 (K2,m1) | m0] .

At the same time, z∗1 = d∗1 + r and z∗2 = (1 − d∗1) · (1 + r). In this case, we can say that

depreciation becomes more decelerated if and only if z∗1 goes down.

An increase in g∗, all else equal, increases E0 [CM∗
2 (K2,m1) | m0] and thereby lowers

the investment threshold m0. This in turn reduces z∗1 , i.e., depreciation becomes more de-

celerated. On the other hand, an increase in σ2
g , all else equal, implies a mean-preserving

spread over m1's. Together with the fact that CM∗
2 (K2,m1) is convex in m1 (see proof of

Proposition 1), this implies, again, a drop in the investment threshold m0, and thus a more

decelerated depreciation schedule.

Proof of Proposition 4

Using the same notation as in the proof of Proposition 3, let us write the �rm's optimized

contribution margin in period t+ τ as a function of m̃t+τ−1 ≡ mη
t+τ−1:

46

C̃M
∗
t+τ (Kt+τ , m̃t+τ−1) =


1

η−1

(
η−1
η

)η
v1−η · m̃t+τ−1, if m̃t+τ−1 <

(
η
η−1

)η
vηKt+τ ,

K
η−1
η

t+τ · m̃
1/η
t+τ−1 − v ·Kt+τ , otherwise.

It is straightforward to verify that C̃M
∗
t+τ (Kt+τ , m̃t+τ−1) and

∂C̃M
∗
t+τ (Kt+τ , m̃t+τ−1)

∂m̃t+τ−1
· m̃t+τ−1 (25)

are concave functions of m̃t+τ−1.

The total bene�ts of investing at date t can be written as:

φ (m̃t) ≡
T∑
τ=1

γτ · Et
[
C̃M

∗
t+τ (Kt+τ , m̃t+τ−1) | m̃t

]
.

46See the proof of Proposition 3 for details.
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Let g∗min be such that E [(1 + gt)
η] = 1 so that m̃t is a martingale. Then, for any g∗ > g∗min,

{m̃t} is a submartingale. The �rm is presented with an optimal stopping problem with a non-

linear payo� of φ (m̃t)−b. We need to show that there exists a unique optimal stopping policy

of the �threshold� type: the �rm should invest as soon as m̃t exceeds a certain threshold,

mη.47 For future reference, we note that the concavity of C̃M
∗
t+τ (Kt+τ , m̃t+τ−1) and the

concavity of the functions in (25) for all τ imply that φ (m̃t) and (φ′ (m̃t) · m̃t) are concave.

There exists a unique optimal threshold policy under the following two conditions (see

Dixit and Pindyck (1994), pp. 128-129):

1. Writing the di�erence between the value of waiting for exactly one period and stopping

right away as

∆(m̃t) ≡ γ · Et [φ (m̃t+1)− b | m̃t]− (φ (m̃t)− b) ,

then this di�erence is decreasing in m̃t: ∆′(m̃t) ≤ 0.

2. The distribution of future values of m̃t+1 shifts uniformly to the right for higher values

of m̃t.

It is straightforward to see that condition 2 holds for the process {m̃t} .48 To verify that

condition 1 holds, note that

∆′(m̃t) = γ · Egt+1 [(1 + gt+1)
η · φ′ ((1 + gt+1)

η m̃t) | m̃t]− φ′ (m̃t)

≤ γ · Egt+1 [(1 + gt+1)
η] · φ′

(
Egt+1 [(1 + gt+1)

η] m̃t

)
− φ′ (m̃t) ,

which follows from Jensen's inequality and the concavity of (φ′ (m̃t) · m̃t) established above.

Note, further, that since φ′ (·) is concave and 1 ≤ Egt+1 [(1 + gt+1)
η] ≤ 1 + r, we have

γ · Egt+1 [(1 + gt+1)
η] · φ′

(
Egt+1 [(1 + gt+1)

η] m̃t

)
− φ′ (m̃t) ≤ φ′

(
Egt+1 [(1 + gt+1)

η] m̃t

)
− φ′ (m̃t)

≤ φ′ (m̃t)− φ′ (m̃t) = 0,

which concludes the proof of the proposition.

Proof of Proposition 5

47The condition m̃t ≥ mη is equivalent to mt ≥ m.
48See also the proof of Proposition 1.
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We prove impossibility of goal congruence for T = 1. For T = 1, we can drop capacity

Kt as an argument in the contribution margin. Then, the present value of cash �ows if the

�rm invests for mt is:

f(mt)− b = γ · CM∗
t+1(mt)− b. (26)

Let m denote the �rst-best investment threshold. Then, the �rm is indi�erent between

investing and waiting further when mt = m :

f(m)− b−Θm
w (m) = 0.

Expanding, we can write:

γ · CM∗
t+1(m)− b− Et

{
γt(m)−t+1 ·

[
CM∗

t(m)+1(mt(m))− b
]
| mt = m

}
= 0. (27)

Now turn to delegation. Suppose the manager's time preferences are given by βt = γ̂t ·u,
where γ̂ = (1+ r̂)−1 and we normalize u = 1, without loss of generality. That is, the manager

discounts his performance measures, given in (14) for general T , at a rate of r̂. Start by

normalizing αR = 1. To ensure operating decisions are delegated e�ciently, αv = −αR = −1

must hold. Therefore, for T = 1, if the �rm invests at date t, the present value of the

performance measures from the manager's point of view simpli�es to

γ̂ · CM∗
t+1(mt) + αd · γ̂ ·Dt+1 + αB · γ̂ ·BVt + αI · b, (28)

that is, for αv = −αR = −1, we can take as given that the manager will make optimal

operating decisions and focus on showing that the shareholders cannot align the investment

incentives with their own if they don't know the manager's discount rate, r̂. 49 Since for

T = 1 the accounting system fully depreciates the asset in the only year of its useful life,

i.e., d1 = 1, BVt = b and Dt+1 = b, the manager's payo� can be written as:

γ̂ · CM∗
t+1(mt) + (αd · γ̂ + αB · γ̂ + αI) b.

Goal congruence requires that the manager have incentives to invest as soon as mt ≥ m.

49The �rst three terms in (31) re�ect the manager's (discounted) performance measure in period t + 1,
πt+1, and the last term is equal to πt.
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Therefore, at mt = m, the manager must be indi�erent between investing and waiting

further. Formally, the manager's payo� net of the personal option value must be equal to

zero:

γ̂ · CM∗
t+1(m) + (αd · γ̂ + αB · γ̂ + αI) · b

−Et(m)

{
γ̂t(m)−t+1 ·

[
CM∗

t(m)+1(mt(m)) + (αd · γ̂ + αB · γ̂ + αI) · b
]
| mt = m

}
= 0,(29)

for all r̂. Note that when r̂ →∞, the left-hand side of the equation above approaches αI · b,
therefore, αI must be equal to zero.

Consider two special cases: (i) r̂ = r and (ii) r̂ →∞.

Case (i): Here we show that, if r̂ = r, then αd · γ + αB · γ = −1 will have to hold for

the manager to internalize the correct investment threshold. If r̂ = r, then subtracting (27)

from (29), we obtain

(αd · γ + αB · γ + αI + 1) · b− (αd · γ + αB · γ + αI + 1) · b · Et(m)

{
γt(m)−t+1 | mt = m

}
= 0.

(30)

Therefore,

αd · γ + αB · γ = −1.

Case (ii): Now assume r̂ →∞. Since we have shown that αI = 0, equation (29) can be

simpli�ed as follows:

γ̂ · CM∗
t+1(m) + (αd · γ̂ + αB · γ̂) b

−Et(m)

{
γ̂t(m)−t+1 ·

[
CM∗

t(m)+1(mt(m)) + (αd · γ̂ + αB · γ̂) b
]
|mt = m

}
= 0

for all r̂. Dividing by γ̂ and then taking the limit, as r̂ →∞, this expression tends to

CM∗
t+1(mt) + (αd + αB) · b = γ−1 · (f (m)− b) > 0,

where the last inequality holds because the NPV of the threshold project exceeds zero by

the option value. Therefore, equation (29) cannot simultaneously hold for r̂ = r and for

su�ciently high values of r̂.
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Proof of Proposition 6

Without loss of generality, we can assume that u = 1. By Proposition 4, it is optimal for

the �rm to invest as soon as mt exceeds m. Assume that if the manager invests when the

permanent component of the price shift variable is equal to mt, his payo� is given by

f (mt, r̂)− b̂, (31)

where f (mt, r̂) is the present value of the expected optimized cash �ows from the project,

calculated at the manager's discount rate and b̂ is some constant.50 Let us show that there

exists a b̂, such that the manager will invest as soon as mt exceeds m.

Given the manager's objective function in (31), the manager's problem is equivalent to the

principal's problem studied in Proposition 4 with a di�erent discount factor and investment

cost. From the proof of Proposition 4, it follows that the optimal investment policy for the

manager is to invest as soon as the value of mt exceeds a certain threshold level m̂. At this

threshold, the manager is indi�erent between investing immediately and waiting further:

f (m̂, r̂)− b̂ = Θm̂
w

(
m̂, r̂, b̂

)
, (32)

where Θm̂
w (m̂) represents the option value of postponing the project until the next date when

mt exceeds m̂, calculated at the manager's interest rate, r̂, and assuming that the cost of

investment is b̂. Formally,

Θm̂
w

(
m̂, r̂, b̂

)
= Et

[
γt(m̂)−t ·

(
f
(
mt(m̂), r̂

)
− b̂
)
|mt = m̂

]
,

where t (m̂) is the random stopping time given by t (m̂) = min {t+ τ |mt+τ ≥ m̂}.
We need to show that there exists a b̂ such that equation (32) is satis�ed at m, the

principal's optimal investment threshold:

f (m, r̂)− b̂ = Θm
w

(
m, r̂, b̂

)
. (33)

50By the manager's payo�, we mean the manager's utility measured in date t dollars. Formally, we assume

that if the manager invests at date t, then Ut = γ̂t ·
(
f (mt, r̂)− b̂

)
.
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The derivative of the right-hand side of the equation above with respect to b̂ is equal to

−γ̂ · Pr {t (m) = t+ 1 | mt = m} − γ̂2 · Pr {t (m) = t+ 2 | mt = m} − ...,

which is strictly greater than −1, as t (m) is �nite with probability one. The derivative of

the right-hand side of (33) with respect to b̂ is equal to −1. It is easy to verify that for b̂ = 0,

f (m, r̂) > Θm
w (m, r̂, 0) ,

i.e., if the manager is impatient and does not internalize any cost of investment, then the

manager will overinvest. On the other hand, if b̂ = b+Θm
w (m) (i.e., the manager internalizes

the principal's direct cost of investment plus the principal's option value), then

f (m, r̂)− b̂ < Θm
w

(
m, r̂, b̂

)
,

and the manager underinvests. The observations above imply that there exists b̂, 0 ≤ b̂ ≤
b+ Θm

w (m), such that

f (m, r̂)− b̂ = Θm
w

(
m, r̂, b̂

)
.

It remains to construct a performance measure with the property that the manager's

expected payo� is equal to

f (mt, r̂)− b̂

if the project is implemented at date t. Assume that the manager is compensated based on

residual income. Then, once the investment is made, the manager will be optimizing the

contribution margin in each period. Therefore, the manager's expected compensation is:

T∑
τ=1

γ̂τ
(
Et
[
CM∗

t+τ (Kt+τ ,mt+τ−1) |mt

]
− z∗τ (r̃) · b

)
= f (mt, r̂)−

T∑
τ=1

γ̂τ · z∗τ (r̃) · b,

where t is the investment date and z∗τ (r̃) are the historical cost charges corresponding to the

REOB rule relative to r̃ (i.e., z∗τ (r̃) = d∗τ (r̃) + r̃ · bv∗τ−1 (r̃)). We need to show that there

exists an r̃ such that
T∑
τ=1

γ̂τ · z∗τ (r̃) =
b̂

b
.
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Recall that

z∗τ (r̃) =
CM∗

τ∑T
i=1 γ̃

i · CM∗
i

,

where CM∗
τ = Et

[
CM∗

t+τ (Kτ ,mt+τ−1)|mt = m
]
. Therefore, it su�ces to choose r̃ such that

∑T
τ=1 γ̂

τ · CM∗
τ∑T

τ=1 γ̃
τ · CM∗

τ

=
b̂

b
. (34)

Note that
∑T

i=1 γ̂
τ · CM∗

τ must be greater than b̂, for otherwise condition (33) cannot be

satis�ed at b̂. Therefore, equation (34) implies that r̃ < r∗, since at r∗, the denominator in

the left-hand side is equal to b, and this denominator is monotonically decreasing in r̃.

Proof of Proposition 1′

Recall that the optimal investment policy, b∗, is given by:

T∑
τ=1

γτ · E0

[
∂CM∗

τ (Kτ ,mτ−1)

∂Kτ

∣∣∣∣
Kτ=b∗(m0)·xτ

· xτ | m0

]
= 1.

We need to show that

E0

[
∂CM∗

τ (Kτ ,mτ−1)

∂Kτ

∣∣∣∣
Kτ=b∗(m0)·xτ

| m0

]

does not depend on m0. Then, the result in Proposition 1′ will follow from our discussion

that precedes its statement in Section 5.

Recall from the proof of Proposition 1 that

CM∗
τ (Kτ ,mτ−1) =


1

η−1

(
η−1
η

)η
v1−η ·mη

τ−1, if mτ−1 <
η
η−1vK

1/η
τ ,

K
η−1
η

τ ·mτ−1 − v ·Kτ , otherwise.

Let Gτ−1 ≡ mτ−1

m0
be the cumulative growth factor of the permanent component of the price

shift parameter from date 0 to date τ − 1, and χτ−1 (·) be its probability density function.51

51Speci�cally, Gτ−1 =
∏τ−1
i=1 (1 + gi) , and is, therefore, log-normally distributed.
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Then, we have:

E0 [CM∗
τ (Kτ ,mτ−1) | m0] =

Gτ−1ˆ

0

A1 ·mη
0 ·G

η
τ−1 χτ−1 (Gτ−1) dGτ−1 (35)

+

∞̂

Gτ−1

(
K

η−1
η

τ ·m0 ·Gτ−1 − v ·Kτ

)
χτ−1 (Gτ−1) dGτ−1,(36)

A1 ≡
1

η − 1

(
η − 1

η

)η
v1−η,

Gτ−1 ≡
mτ−1(Kτ )

m0

=

η
η−1vK

1/η
τ

m0

.

We can now di�erentiate the expression in (36) with respect to Kτ by applying Leibniz's rule

(note that Gτ−1 depends on Kτ and recall that CM
∗
τ (Kτ ,mτ−1) is continuous atmt−1(Kτ ) =

η
η−1vK

1/η
t ):

E0

[
∂CM∗

τ (Kτ ,mτ−1)

∂Kτ

| m0

]
=

∞̂

Gτ−1

(
η − 1

η
K
− 1
η

τ ·m0 ·Gτ−1 − v
)
χτ−1 (Gτ−1) dGτ−1. (37)

The �rst-order condition for b∗ becomes:

T∑
τ=1

γτ ·
∞̂

η
η−1

v(b∗xτ )
1
η /m0

xτ

(
η − 1

η
(b∗xτ )

− 1
η ·m0 ·Gτ−1 − v

)
χτ−1 (Gτ−1) dGτ−1

 = 1.

Note that the expression on the left-hand side can be written as a function of (b∗)−
1
η ·m0.

It follows that if we let b1 ≡ b∗ (1) denote the optimal investment level for m0 = 1, then

b∗ (m0) = b1 ·mη
0. (38)

We can now use the condition de�ning the optimal investment policy (38) and equation
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(37) to calculate the marginal expected cash �ow in period τ :

E0

[
∂CM∗

τ (Kτ ,mτ−1)

∂Kτ

∣∣∣∣
Kτ=b∗(m0)·xτ

· xτ | m0

]

= xτ

∞̂

η
η−1
·v·b1/η1 ·x1/ητ

(
η − 1

η
· b−1/η1 · x−1/ητ ·Gτ−1 − v

)
χτ−1 (Gτ−1) dGτ−1.

The expression above does not depend on m0, which concludes the proof of Proposition 1′.

It is useful to note that one can use equations (35) and (38) to verify that the expected

value of the contribution margin in period τ is proportional to mη
0. Since, according to (38),

the �rm's investment amount is also proportional to mη
0, the net present value of the optimal

investment project is proportional to mη
0.

Proof of Proposition 2′

Given our discussion in the main text of Section 5, it is su�cient to verify that

∂CM∗
τ (Kτ ,mτ−1)

∂Kτ

∣∣∣∣
Kτ=b∗(m0)·xτ

is a convex function of mτ−1. The rest of the proof follows from the argument in the proof

of Proposition 2.

Under the one-hoss shay assumption, all xτ are equal to one, so let K ≡ b∗ = Kτ denote

the capacity available in all periods. Then, we have

∂CM∗
τ

(
K,mτ−1

)
∂K

=

0, if mτ−1 <
η
η−1vK

1/η
,

η−1
η
·K−1/η ·mτ−1 − v, otherwise.

This function is continuous and convex in mτ−1.
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