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1. Introduction 
 
 The move to fair value accounting is arguably the most radical shift in 

accounting standards during the past decade.  Under fair value accounting a firm’s 

assets and liabilities are marked to market at each reporting date rather than 

maintained at their original acquisition cost (less some mechanical adjustment for 

depreciation).  The gains and losses arising from such revaluations are reported as part 

of a firm’s comprehensive income1.  There is widespread support among regulators and 

academics for fair value accounting.  The only concerns that have been expressed are 

those stemming from the difficulty of determining fair market values in settings where 

markets are thin or missing.  There isn’t much skepticism, which is surprising because 

not enough is known about important questions such as:  What are the equilibrium 

economic consequences of fair value accounting?  Who benefits and why?     

While the arguments supporting fair value accounting are not based on any 

formal analytical models that we are aware of, the intuition underlying its support 

seems to be the following.   The current market values of a firm’s assets and liabilities 

are much more descriptive of a firm’s financial position/wealth than their historical 

acquisition cost.  Therefore, the assessment and recording of fair values will better 

inform outside stakeholders who make decisions whose payoffs depend at least 

partially upon the firm’s true wealth.   Also, fair value information is obviously relevant 

to valuation and fair values are used as inputs into analytical models of valuation.  

Empirically it has been found that changes in fair values seem to be reflected in capital 

market assessments of debt and equity values.  Thus the provision of fair value 

information would make markets more “efficient” and capital market valuations would 

be more consistent with the fundamentals of the firm.  It is believed that these 

1 We are ignoring the effect of incorporating conservatism and other imperfections into fair value 
measurements, in order to focus solely on the principle of fair value reporting.  

                                                 



3 
 

arguments are so obvious and compelling that any formal analysis is unnecessary.2  

Although the financial crises of 2007-09 raised significant concern that the accounting 

principle of mark-to-market was aggravating and prolonging the downward economic 

spiral, supporters of fair value accounting argue that bank regulators, rather than the 

accounting numbers, were at fault.   

 But the above intuitive arguments supporting fair value accounting are drawn 

from a Robinson Crusoe economy where the firm’s wealth (financial position) is treated 

as a state of Nature, and the interaction between decisions and wealth is entirely one –

sided.  In such settings more information (in the Blackwell sense) is always preferred to 

less.  Thus, since fair value accounting ostensibly provides incremental information 

about a firm’s wealth, Blackwell’s theorem would imply that fair value accounting is 

strictly preferred to historical cost accounting in any decision setting where the firm’s 

wealth is payoff relevant to decision makers.  More precisely, if the wealth of the firm is 

a given random variable w , q  is some decision to be made by a decision maker, with 

payoff ( , )f q w  then, since the expectation of a maximum is always greater than the 

maximum of an expectation,  

 

  [ ]( , ) ( , )w q q wE Max f q w Max E f q w  >   

 

The difference, known as the expected value of perfect information, is always positive 

and the inequality continues to be true when the information is less than perfect. 

  However, we do not live in the sterile environment of a Robinson Crusoe 

economy, and assessments of a firm’s wealth are not analogous to assessments of the 

2 See Mary Barth: “Why It’s Not Fair to Blame Fair Value”, (2010) IESE Insight 7: 48-54 (available 
from Harvard Business School Publishing), for a fuller articulation of such arguments. 
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states of Nature.   A firm’s wealth endogenously depends upon the actions of a vast 

multitude of individuals: corporate managers, and outside stakeholders such as the 

firm’s customers, suppliers of labor and suppliers of capital.  When the actions of 

corporate managers and outsiders interact sequentially in the determination of a firm’s 

wealth, the actions taken by corporate managers will depend at least partially upon 

their anticipation of outside stakeholders’ actions that are taken in the light of 

accounting and other sources of information.  Therefore, if outside stakeholders’ actions 

are partly guided by assessments of the firm’s wealth, then information provided to help 

in the assessment of a firm’s wealth will impact the decisions of both insiders and 

outsiders and will therefore change the wealth distribution that is being assessed.  The 

purpose of this paper is to move beyond a Robinson Crusoe setting and study a realistic 

example of such complex interactive settings in order to gain additional insights into the 

economic consequences of fair value accounting. 

 In our analysis, the outside stakeholders who affect the firm’s wealth are 

customers who place orders for the single good that the firm produces.   Customers’ 

demand for the good produced by the firm depends partially upon assessments of the 

firm’s wealth because the ability of the firm to service the future needs of customers 

could be severely affected if the firm is financially weak.   The firm’s wealth is affected 

not just by the decisions that customers make, but also by an asset portfolio decision 

that is made by the firm’s manager at a date earlier to the date on which customer 

orders are placed.   This asset allocation decision consists of allocating capital between a 

risk free asset and a risky asset whose expected return is larger than the risk free rate of 

return.  The firm is risk averse.   Investment in the risky asset increases the firm’s 

expected wealth, but also increases the risk that the firm must bear.  Fair value 
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accounting for the risky asset provides incremental decision facilitating information 

about the firm’s wealth to its customers.   

 The results we obtain are striking and quite contrary to popular belief.  We find 

that, while the information provided by fair value accounting is uncertainty decreasing 

from the perspective of the firm’s outside stakeholders, it is uncertainty increasing from 

the perspective of corporate managers.  More precise information causes more variation 

in customer decisions.  This implies that the more precise is the information provided 

by fair value accounting, the greater becomes the volatility of the firm’s income and 

wealth  from an ex ante perspective.  This increased volatility is not cosmetic in the 

sense of volatility of reported income rather than real income.  The firm’s real income 

becomes more volatile.  Corporate mangers respond to this situation by decreasing the 

firm’s investment in the risky asset thus additionally altering the distribution of the 

firm’s wealth.  Thus, in our setting, the wealth distribution that is being assessed by 

outside stakeholders is itself affected by the information that is being provided to 

facilitate this assessment.  We find that the net result of these actions and interactions is 

that fair value accounting makes the firm (i.e. its shareholders) unambiguously worse 

off.   The firm’s customers are better off only in a sequential sense, i.e. at the time they 

need to make their decisions they would exhibit a positive demand for fair value 

accounting and the more precise is the information provided by fair value accounting 

the more they would benefit.  But, we find that in equilibrium, taking into account the 

actions and reactions of both the manager and the outside stakeholders, these outside 

stakeholders could actually become worse off, especially if the information provided by 

fair value accounting is too precise.   

 Our results cast doubt on the desirability of fair value accounting.   Plantin, 

Sapra and Shin (2008) and Allen and Carletti (2007) have also raised concerns about 
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fair value accounting and have identified some of its negative consequences.  However, 

in this previous research the concerns originate from a lack of liquidity in the market for 

the firm’s assets, thus creating measurement problems.  Our analysis is free from 

measurement and liquidity issues and questions the very principle on which fair value 

accounting is based.    

 

2. The Economic Setting 

 We assume customers are atomistic, so no single customer’s action, by itself, has 

any measurable effect on the firm’s wealth.  In order to capture this we model a 

continuum of customers, uniformly distributed over the unit interval.  Let: 

 iq  = order placed by customer i. 

 
1

0
iQ q di= ∫  = the aggregate of customer orders. 

 

There are 3 dates, 0, 1 and 2, with date 2 being the terminal date.  The firm begins at 

date 0 with an endowment of m units of a riskless asset.  One unit of the riskless asset 

held until the terminal date produces one unit of wealth at the terminal date.  However, 

the firm has the opportunity to convert some or all of its endowment into a risky illiquid 

asset whose expected return at date 2 is greater than that of the riskless asset.  Let z be 

the amount that the firm chooses to invest in the risky asset at date 0 and let zθ be the 

return at date 2.   Ex post, at date 2, the wealth of the firm is: 

 

   w m z z Qθ= − + +       (1) 
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Thus, the firm’s wealth depends partly upon a decision made by the firm’s inside 

manager and partly upon the aggregate of decisions made by a continuum of outside 

stakeholders (customers).  

 We assume that except for informational differences, all customers are identical.  

These identical customers place their orders with the firm at date 1.  The payoff to a 

customer for ordering from our incumbent firm depends partly upon a parameter η  

that describes how well the characteristics of the good produced by the firm match the 

needs of its customers, and partly upon the financial strength of the firm.  The ex post 

payoff to a customer who places an order of size iq is: 

   21
2i i iu Aq q= −        (2) 

where  21
2 iq is the known cost of using the good in whatever manner the customer uses 

it3.   The marginal benefit to a customer from purchasing its needs from the incumbent 

firm is (1 )A wτη τ≡ + − , where 0 (1 ) 1τ< − <  describes the relative extent to which 

customers are affected by the financial strength of the firm that supplies them4.   

 Before the customers place their orders at date 1, the accounting system 

provides a fair value estimate of the value of the risky asset in which the firm has 

invested, and this estimate is incrementally informative about the terminal wealth of 

the firm.  The fair value estimate is public information.  We assume that this public 

information would not exist under historical cost accounting.  Customers use the fair 

3 The model of customers used here is a variation on the model of individual investment decisions with 
strategic complementarities in Angeletos and Pavan (2004). 
 
4 That customers are less willing to place orders with suppliers who are perceived to be 
financially weak, is a well known empirical phenomenon.  General Motors was faced with this 
predicament during the recent financial crisis.  A possible reason for this phenomenon is that the 
benefit from today’s purchase may depend on continued supplies of goods or services from the 
incumbent supplier in the future.    
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value estimate along with any other information, public or private, that is available to 

them to assess the firm’s wealth before choosing their orders.  

 

3. Customers’ Ordering Decisions  

 Let ( )iE A be customer 'i s expectation of A conditional on the information she 

receives at date 1.  Then, the order placed by customer i is the unique solution to: 

  21( )
2iq i i iMax E A q q−           (3) 

The first order condition to (3) yields: 

 ( ) (1 )( ) (1 ) ( ) (1 ) ( )i i i iq E A m z zE E Qτη τ τ θ τ= = + − − + − + −     (4) 

 

 Since the random variable θ is a state of Nature, expectations of  θ are defined 

by Bayes’ Theorem, but expectations about the aggregate order Q is a much more 

complex object.  These latter expectations depend upon what customer i expects other 

customers to do, and therefore on customer i’s beliefs of the beliefs of other customers 

and i’s beliefs of other customers’ beliefs of other customers beliefs, and so on.  We 

show below that  and ( )iQ E Q  can be calculated iteratively, and are described by an 

infinite hierarchy of higher order beliefs of θ . 

 Since 
1

0
iQ q di= ∫ , it follows from the first order condition (4) that: 

 
1 1

0 0

(1 )( ) (1 ) ( ) (1 ) ( )i iQ m z z E di E Q diτη τ τ θ τ= + − − + − + −∫ ∫    (5) 
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We refer to ( )iE θ as the first order belief of customer ,i and  
1

0

( )iE diθ∫  as the average 

first order belief about θ in the population of customers.  No customer knows what this 

average belief is, but each customer can form a belief of this average belief which I 

denote by  
1

0

( )i jE E djθ∫ .   From (5), 

 
1 1

0 0

( ) (1 )( ) (1 ) ( ) (1 ) ( )i i j i jE Q m z zE E dj E E Q djτη τ τ θ τ= + − − + − + −∫ ∫  (6) 

In (6) the expression 
1

0

( )i jE E Q dj∫  is conceptually well defined since it is customer 'i s

belief of the average belief of Q in the customer population, but we don’t yet know how 

to calculate it.  Inserting (6) into the customer’s first order condition yields: 

 

2

1 1
2 2

0 0

(1 )( ) (1 ) ( ) (1 ) (1 ) ( )

(1 ) ( ) (1 ) ( )

i i

i j i j

q m z zE m z

zE E dj E E Q dj

τη τ τ θ τ τη τ

τ θ τ

= + − − + − + − + − − +

− + −∫ ∫
   (7) 

  

Integrating the expression in (7) over the customer population yields:  

 

1
2

0
1 1 1 1

2 2

0 0 0 0

(1 )( ) (1 ) ( ) (1 ) (1 ) ( )

(1 ) ( ) (1 ) ( )

i

i j i j

Q m z z E di m z

z E E djdi E E Q djdi

τη τ τ θ τ τη τ

τ θ τ

= + − − + − + − + − − +

− + −

∫

∫ ∫ ∫ ∫
  (8) 

In (8) the expression ( )i jE E djdiθ∫ ∫  is the average expectation of the average 

expectation of θ  in the customer population.  We refer to it as the average second order 



10 
 

expectation of .θ   Now, (8) can be used to obtain an updated calculation of  ( )iE Q  and 

this updated expression for ( )iE Q can be inserted into the customer’s first order 

condition (4) to yield an updated expression for .iq  Integrating this updated expression 

for iq yields the following updated expression for the aggregate order quantity .Q  

 

2 2 3

1 1 1
2

0 0 0
1 1 1 1 1 1

3 3

0 0 0 0 0 0

(1 ) (1 ) (1 )( ) (1 ) ( ) (1 ) ( )

(1 ) ( ) (1 ) ( )

(1 ) ( ) (1 ) ( )

i i j

i k j i k j

Q m z m z m z

z E di z E E djdi

z E E E djdkdi E E E Q djdkdi

τη τ τη τ τη τ τ τ

τ θ τ θ

τ θ τ

= + − + − + − − + − − + − − +

− + − +

− + −

∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

 (9) 

 

Comparing (5), (8), and (9) it is clear that repeated iteration yields: 

 

2

2

(1) (2) 2 (3)

[1 (1 ) (1 ) ........]
(1 )( )[1 (1 ) (1 ) ........]
(1 ) [ (1 ) (1 ) ...........]

Q
m z

z

τη τ τ

τ τ τ

τ θ τ θ τ θ

= + − + − + +

− − + − + − + +

− + − + − +

    (10) 

 

where,  ( ) , t 1, 2,3,.....tθ =  denotes the average  t th. order expectation of  θ .  Since 

0 (1 ) 1τ< − < , each of  the infinite series contained in (10) is convergent and well 

defined.  Carrying out the summation yields the final expression: 

 

( 1)(1 )( ) (1 ) (1 )t t

t o

m zQ zτη τ τ τ θ
τ

∞
+

=

+ − −
= + − −∑     (11) 
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Notice from (11) that the undefined expectations of Q have vanished and have been 

replaced by well defined higher order expectations of .θ  

 We assume that the information structure in the economy is as follows.  The 

commonly known prior distribution of θ is Normal with mean 
1 and variance .µ
α

 

Equivalently, 
1, (0, ).Nθ µ ξ ξ
α

= +  

   We assume 1µ >  so that investment in the 

risky asset is a priori desirable.   Both historical cost accounting and fair value 

accounting reveal the amount z of investment in the risky asset but, at date 1, fair value 

accounting provides an additional signal that is not provided by historical cost 

accounting.  Fair value accounting provides an estimate of the date 1 value of the risky 

asset.  Conceptually, such an estimate is equivalent to providing a noisy signal of the 

final return θ on the risky asset.  Therefore, we model fair value accounting as 

providing the unbiased public signal: 

  
1, (0, )y Nθ ε ε
β

= +  
  

Higher values of β represent more precise measurement of fair values, and the lowest 

value of β , i.e. 0β =  is equivalent to historical cost accounting.   Additionally, 

customers may have private sources of information about the return to the risky asset.  

We model this as private unbiased signals, ix ,  with some common precision γ  :   

 
1, (0, )i i ix Nθ ω ω
γ

= +  
  

A setting where the only source of information is the publicly provided fair value 

accounting signal is captured by specifying 0γ = , so the inclusion of private signals is 

without loss of generality.   The existence of private signals captures the realistic idea 
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that in the absence of a public source of information, individual customers will have 

entirely idiosyncratic beliefs of the return to the risky asset.  We assume that all of the 

noise terms, , ,  and iξ ε ω

  are independent of each other and independent of .θ  

 We now proceed to derive the aggregate order quantity Q  for the specific 

information structure described above.   The first order belief of customer i  is: 

 

   ( ) i
i

y xE αµ β γθ
α β γ
+ +

=
+ +

       (12) 

 

It is convenient to rewrite the above expression in a different way.  Let 

  
γδ

α β γ
≡

+ +
,  and 

   
yP αµ β

α β
+

≡
+

 

Then (12) is equivalent to: 

   ( ) (1 )i iE x Pθ δ δ= + − ,    (13) 

 

where P can be thought of as the public information in the economy and ix  as the 

private information of customer .i  Then, the average first order belief of θ is: 

 

  ( )(1) ( ) (1 ) (1 )i iE di x P di Pθ θ δ δ δθ δ≡ = + − = + −∫ ∫ , 

 

from which it follows that 'i s belief of the average first order belief is: 
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  ( ) ( ) (1 )i j iE E dj E Pθ δ θ δ= + −∫  

    =  [ (1 ) ] (1 )ix P Pδ δ δ δ+ − + −  

    =   2 2(1 )ix Pδ δ+ −  

 

Therefore the average second order belief of θ  is: 

 

  (2) 2 2( ) (1 )i jE E djdi Pθ θ δ θ δ= = + −∫ ∫  

 

Iterating in this way gives the average .t th order expectation of θ : 

 

  ( ) (1 )t t t Pθ δ θ δ= + −       (14) 

 

Notice that the weight on the fundamental θ  decreases and the weight on the public 

signal P  increases in successively higher order beliefs.  This implies that the aggregate 

order received by the firm is overly sensitive to the public signal and insufficiently 

sensitive to the unknown fundamental θ , relative to what would be prescribed by 

Bayes theorem.     This phenomenon is common to settings with higher order beliefs 

(see Morris and Shin (2002), and Angeletos and Pavan (2004)).  In the specific context 

of fair value accounting, what this implies is that the error contained in the accounting 

estimate of the fair value of the risky asset, will have a disproportionate influence on 

how outsiders respond to the firm’s asset allocation decision .z  

 Inserting (14) into the general expression for Q that was derived in (11), 

determines the value of the aggregate order Q  that is specific to the information 
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structure under consideration.  Also, from this expression for Q  the individual values of 

( ) and i iE Q q can be calculated.  These calculations yield: 

 

Proposition 1: 

In a fair value accounting regime, the equilibrium response of the firm’s customers to the 

firm’s asset allocation decision z is: 

( ){ }1 (1 )( ) (1 ) (1 )i iq m z z x Pτη τ τ λ λ
τ

= + − − + − + −   (15)     

and, 

 

( ){ }1 (1 )( ) (1 ) (1 )Q m z z Pτη τ τ λθ λ
τ

= + − − + − + −   (16) 

where, 

  
1 (1 )

τδλ
τ δ

≡
− −

  

 

Proof:  See the Appendix. 

 

 Because 1, 0 and 1
1 (1 )

τ δ τ
τ δ

 
< ∀ > < − − 

 , the equilibrium weight on 

 in (15) and on  in (16)ix θ is strictly less than δ , which is the weight that would be 

used in Bayesian updating.  This implies that, because of the need to assess the beliefs of 

others, each individual customer under-weights his private information about θ  and 

over-weights the public information in deciding how much to order from the firm.  In 

turn, this results in the equilibrium aggregate order quantity Q  becoming less sensitive 
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to fluctuations in the fundamentals θ and overly sensitive to the public information 

provided by fair value accounting.  The effect of this distortion on social welfare will be 

developed in a later section. 

 

4. The Firm’s Asset Allocation Decision: 

 We now turn to the firm’s asset portfolio decision that is made at date 0.  As 

specified earlier, the firm’s terminal wealth is  w m z z Qθ= − + + .  We assume the firm 

is risk averse with constant absolute risk aversion  0ρ > .  If w is distributed Normal, as 

will be the case, the firm’s objective function is: 

 

   
1( ) ( )
2zMax E w Var wρ − 

 
      (17) 

 

Because the firm’s wealth is affected by the aggregate customer order, and because this 

aggregate is sensitive to average assessments of the firm’s wealth, the firm must be 

mindful of how its investment z in the risky asset, together with the fair value signal, 

affects outsiders’ assessments of its wealth.   From the firm’s perspective at date 0, Q , 

as determined in (16),  is a Normally distributed random variable since it depends 

linearly on the Normally distributed return θ as well as on the Normally distributed fair 

value report y that is released later at date 1.   

 Using the facts that ( ) ( ) ,E E Pθ µ= =  we obtain from (16): 

  
(1 )[ ( 1)]( ) m zE Q τη τ µ

τ
+ − + −

=     (18) 

and, 
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( 1)( ) ( 1) ( ) m zE w m z E Q τη µµ

τ
+ + −

= + − + =

    (19) 

 

 The effect of the firm’s risky asset investment on its expected wealth is twofold.  

There is a direct effect and an indirect effect.   Since 1µ > , the direct effect is that the 

expected return on the firm’s investment is larger resulting in larger expected wealth.  

The indirect effect operates through the firm’s customers.  When customers perceive 

the firm as being more financially sound, (higher expected wealth), they are more 

willing to buy from the firm, so the aggregate order quantity Q  is strictly increasing in 

z .   This additionally augments the expected wealth of the firm. 

 We turn now to the uncertainty in the firm’s wealth caused by investment in the 

risky asset. 

  2( ) ( ) var( ) 2 cov( , )var w z var Q z Qθ θ= + +   

    (20) 

 

The first term in (20) captures the direct effect that greater investment in the risky asset 

increases the volatility of the firm’s wealth.  The second and third terms encompass customer 

assessments of the firm’s wealth and the decisions that are contingent on such assessments.  

We assess the variance of the firm’s wealth term by term.      

  
1var( ) var( )θ ξ
α

= =   

From (16): 

 
2

21var( ) var[ (1 ) ]Q z Pτ λθ λ
τ
− = + − 

 
    

  =  
2

2 2 21 [ var( ) (1 ) var( ) 2 (1 )cov( , )]z P Pτ λ θ λ λ λ θ
τ
−  + − + − 

 
          (21) 

where,  
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2

2

var( ) var( )

1 1 1

P yβ
α β

β β
α β α β α β α

 
=  + 

     
= + =     + +     





 

and, 

  

cov( , ) cov ,

1var( )

P yβθ θ
α β

β βθ
α β α β α

  
=   +  
   

= =   + +   

 





   

 

Inserting these last two calculations into (21) gives: 

2
2 2 21 1var( ) (1 ) 2 (1 )Q zτ β βλ λ λ λ

τ α α β α β
    − = + − + −      + +      

   

which simplifies to: 

 

 
2

2 2 21 1var( ) (1 )Q zτ βλ λ
τ α α β

  − = + −    +    
    (22) 

 

The above calculations show that the firm’s investment in the risky asset not only has a direct 

effect on the riskiness of its wealth, but also an indirect effect by increasing the risk arising 

from the uncertain aggregate order quantity.  This additional risk is caused by the fair value 

signal, as shown in Lemma 1 below: 
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Lemma 1: 

Increases in the precision of information provided by fair value accounting increases: 

(i) The uncertainty in the size of the aggregate order received by the firm and  

(ii) The marginal effect of the firm’s investment in the risky asset on the uncertainty 

in the aggregate order. 

 

Proof: See the Appendix. 

 

 The result in Lemma1 is a special case of a quite general phenomenon.  Information 

provided to a decision maker allows her to vary her decision to better fit the circumstances 

that exist at the time.  From an ex ante perspective, such variability in the decision makes the 

world look more uncertain.  The more precise is the information provided to the decision 

maker the more sensitive will be the decision to the information signal causing the decision to 

become more uncertain from an ex ante perspective.   Ex ante a decision maker’s action is 

most predictable if no new information can possibly arrive prior to making that decision.  In 

the context of our model, no information arrival (public or private) prior to the decisions 

made by customers, is equivalent to 0β γ= = .  But in this case, 

0, implying that 0
1 (1 )

γ τδδ λ
α β γ τ δ

≡ = ≡ =
+ + − −

.  Then, it is immediate from (22) 

that var( ) 0 as ( , ) 0.Q β γ→ →   

 The remaining term in the calculation of var( )w  as specified in (20), is: 

  
1cov( , ) cov , ( (1 ) )Q z Pτθ θ λθ λ
τ

 − = + −  
  

     

    =  
1 [ var( ) (1 )cov( , )]z Pτ λ θ λ θ
τ
−  + − 

 
    
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    =  
1 1 (1 )zτ βλ λ
τ α α β

  −  + −    +    
  (23) 

 

which is also strictly increasing in .β  

 Inserting (22) and (23) into (20) gives: 

 

2
2 2 2 2

2

1 1 1var( ) (1 )

1 12 (1 )

w z z

z

τ βλ λ
α α τ α β

τ βλ λ
α τ α β

 − = + + − +   +   
 −  + −   +   



     (24) 

 

 

Proposition 2: 
 

Keeping fixed the firm’s investment in the risky asset, the more precise is the fair value 

information provided to outside stakeholders to assist in assessing the firm’s wealth the more 

uncertain the wealth of the firm becomes from an ex ante perspective.  

 

Proof:  See the Appendix. 

  

Proposition 2 is shocking, since one would normally think that the effect of 

information is to decrease uncertainty.  But, it is important to ask from whose perspective are 

we assessing the uncertainty in the environment.  It is certainly true that information provided 

at date 1 decreases the uncertainty faced by economic agents who make decisions at date1.  

But, what happens to the uncertainty faced by economic agents who must move earlier, 

before the information is provided?  If the decision made by later economic agents is 
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sensitive to the information provided to them, the earlier economic agents must perceive the 

decisions made by the later economic agents as random variables and therefore the 

information actually increases the uncertainty they face.  Proposition 2 is also a stark 

example of how misleading accounting disclosure studies could be when the variable of 

interest is assigned an exogenously specified distribution.  In such studies information always 

reduces uncertainty, since statistically a conditional variance is smaller than an unconditional 

variance.  In our study too, if the wealth of the firm is an exogenously given random variable 

then information about wealth can only decrease the uncertainty in wealth.  But such a 

scenario is an over-simplification of the real world.  Realistically, a firm’s wealth depends not 

just upon the state of Nature, but also upon decisions made by both insiders and outsiders.  If 

the disclosure of information alters the decisions of outsiders and if these decisions affect the 

distribution of the firm’s wealth then it is not necessarily true that information is uncertainty 

reducing even on an ex post basis.   

 We can now characterize the firm’s date 0 investment in the risky asset.  Inserting 

(19) and (24) into the firm’s objective function, as described in (17), and differentiating with 

respect to z gives the first order condition: 

 

2
2 2

1

1 1 11 (1 ) 2 (1 )
z µ

τ β τ βτρ λ λ λ λ
α τ α β τ α β

−
=

    − −   + + − + + −       + +        

      (25)  

 

 Equation (25) indicates that the firm is not passive to the provision of fair value 

information.  Anticipating that its asset portfolio will be revalued at interim dates the firm 

shifts its investments away from risky assets to riskless assets.  This can be seen by 

examining how variations in the precision β  of the fair value information affects z as 

described in (25).  From (25) it is clear that the effect of  on zβ is through the two factors  
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2 2(1 ) βλ λ
α β
 

+ −  + 
 and (1 ) βλ λ

α β
 

+ −  + 
contained in the denominator of (25).  In 

the proofs of Lemma 1 and Proposition 2, we established that both factors are strictly 

increasing in .β   Therefore, the denominator in (25) is strictly increasing in 

, implying that 0zβ
β
∂

<
∂

.  We have established: 

 

Proposition 3 

Increases in the precision of the fair value signal provided to outside stake holders causes the 

firm’s investment in the risky asset to decline. 

 

 The result described in Proposition 3 is due to the fact that the precision of the fair 

value information increases not only the prior uncertainty in the aggregate order Q  but also 

increases the marginal effect of z on this uncertainty.  The firm decreases its holdings of risky 

assets in order to decrease the uncertainty in customer orders.  

 Proposition 3 is a testable result.  It predicts that fair value reporting of a firm’s assets 

will significantly change the firm’s portfolio of asset holdings.  Such a prediction is 

inconsistent with studies of fair value accounting in exchange economies where it is 

implicitly assumed that the accountant measures and reports on an objective reality, a reality 

that is invariant to accounting measurements.       

 

 

5. Welfare Analysis 
   
 Having characterized the equilibrium decisions of both insiders and outsiders, we 

now turn to the main question of interest:  In equilibrium, who benefits from fair value 

accounting?  This question can be answered by examining variations in the precision of the 
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fair value information.  If the welfare of both parties (the firm and its customers) is uniformly 

declining in β , then fair value accounting unambiguously decreases social welfare.  If the 

equilibrium payoff to the firm is declining in β , but the welfare of the firm’s customers is 

increasing in β  then there is a conflict of interest, and so on. 

 

Welfare from the Firm’s Perspective:   

 The firm’s welfare is simply the maximized value of its objective function at the 

equilibrium value of .Q   Therefore, the effect of fair value accounting on the firm’s welfare 

is described by:   

 

  
1( ) var(w)
2zMax E w ρ

β
∂   −  ∂   

    

where ( )E w is as described in (19) and var( )w is as described in (24).  Using the envelope 

theorem, this derivative is: 

 

2
2 2 2 21 1 1 1 1(1 ) 2 (1 )

2
z zτ β τ βρ λ λ λ λ
α τ β α β α τ β α β

    − ∂ − ∂   − + − + + −       ∂ + ∂ +        
  

 

We have previously established in the proofs of Lemma 1 and Proposition 2 that both 

2 2(1 ) βλ λ
α β
 

+ −  + 
 and (1 ) βλ λ

α β
 

+ −  + 
are strictly increasing in .β  Therefore 

the firm’s welfare is strictly decreasing in β , which establishes the result: 
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Proposition 4 

In equilibrium, the firm’s welfare is strictly decreasing in the precision of the fair value 

signal. 

 

Proposition 4 implies that, given a choice, firms would strictly prefer historical cost 

to fair value accounting.  This result is consistent with the actual lobbying behavior of firms 

who opposed the fair value accounting standard, protesting that mark-to-market would 

significantly increase the volatility of their reported income.  However, FASB dismissed this 

line of argument arguing that mark-to-market does not create volatility; it only makes the 

volatility that is already present more transparent to outside stake holders.  Our analysis 

indicates that FASB’s argument has merit only when the actions taken by a firm’s 

stakeholders in response to accounting information has no impact at all on the wealth of the 

firm.  We feel that such a setting is unrealistic.  When the actions taken by outsiders in the 

light of fair value information affects the wealth of the firm (i.e., when accounting 

information has real effects), fair value accounting does create additional volatility in the 

firm’s true income, and this increased volatility does have negative economic consequences. 

   

Welfare from Custotomers’ Perspective: 

 We now examine the effect of fair value accounting on the social welfare of the 

firm’s customers.  We define the ex post social welfare Ω of the customer population as the 

aggregate of the ex post payoffs of individual customers, i.e., 

 21
2i i iu di A q di q diΩ ≡ = −∫ ∫ ∫  

   2 21 ( )
2 iAQ q Q di Q = − − + ∫   

Inserting the expression for A  gives: 
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 [ ] 2 21 1(1 )( ) (1 ) ( )
2 2 im z z Q Q Q q Q diτη τ θ τΩ = + − − + + − − − −∫  , 

or, equivalently, 

 

 [ ] 2 21 1(1 )( ) (2 1) ( )
2 2 im z z Q Q q Q diτη τ θ τΩ = + − − + − − − −∫  (26) 

The expression 2( )iq Q di−∫  in (26) indicates that social welfare is enhanced if individual 

customer purchases are coordinated so that each customer orders exactly the same amount, 

i.e. if ,iq Q i= ∀ .  This social benefit to coordination is due to the convexity in the cost 

function of individual customers.  If the only source of information to individual customers 

was the publicly provided fair value information, then this perfect coordination would 

naturally occur.  However, the presence of private information prevents such perfect 

coordination. 

 In order to facilitate interpretation, it is useful to first calculate customer welfare if 

the information that customers receive perfectly reveals the value of θ  to all of them.  This 

corresponds to the case where β →∞ .   In this case: 

 (1 )( ) (1 ) ,iq A m z z Q iτη τ θ τ= = + − − + + − ∀   

implying: 

 [ ]1 (1 )( ) ,iq Q m z z iτη τ θ
τ

= = + − − + ∀     

Therefore, from (26): 

[ ] [ ]

[ ]

2 2
2

2
2

1 1 1( | perfect information) = (1 )( ) (2 1) (1 )( )
2

1 (1 )( )
2

z m z z m z z

m z z

τη τ θ τ τη τ θ
τ τ

τη τ θ
τ

Ω + − − + − − + − − +

= + − − +
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Since welfare must be assessed ex ante, the welfare of the customer group given perfect 

information is the expectation of the above expression with respect to θ : 

 

{ }

( )

2
2

2

1( | ,  perfect information)  =  [ (1 )( )]
2
1 var (1 )( )

2

E z E m z z

m z z

τη τ θ
τ

τη τ θ
τ

Ω + − − + +

+ − − +
  

 

 2 2 2
2 2

1 1 1[ (1 )( )] (1 )
2 2

m z z zτη τ µ τ
τ τ α

= + − − + + −       (27) 

 

The first term in (27) is the expected welfare of customers in a regime where no fair value 

information is provided (i.e. in a historical cost regime), and the second term is the gain in 

expected welfare due to perfect information.  This gain is not due to a decrease in risk, as is 

the case in pure exchange economies with risk aversion.  Here, the gain is due to the fact that 

information allows customers to better fit their real decisions to the true wealth of the firm.  

Because of the quadratic nature of aggregate payoffs to customers, the amount of the gain is 

described by the extent of uncertainty reduction caused by the information.   

 Now, consider the case of noisy public and private information.  Then, working with 

 and iq Q  as described in (15) and (16) and Ω  as described in (26), we obtain: 

 

Proposition 5: 

[ ]2
2

2 2
2 2

1( | ,  noisy public and private information) (1 )( )
2

1 1 1 (1 )(1 )
2 ( ) ( )

E z m z z

z

τη τ µ
τ

τγ ττ
τ α α β τγ α β τγ

Ω = + − − +

 −
+ − − − + + + + 

      

(28) 
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Proof:  See the Appendix 

 

As before, the first term in (28) is expected customer welfare in a historical cost regime, 

while the second term is the change in customer welfare brought about by the provision of 

noisy fair value information.  Not surprisingly, the change in customer welfare caused by fair 

value information is positive even though the information is noisy and even though private 

information results in coordination losses.  The change is positive because:  

 

2

1 1 (1 ) 1 1 (1 )
( ) ( )
τγ τ τγ τ

α α β τγ α β τγ α α β τγ α α β τγ
− −

− − > − −
+ + + + + + + +

  

   
2 2 1 0

( )
α β τγ α τγ τ γ β τ γ

α α β τγ α β τγ α
 + + − − + +

= = > + + + + > 
  

 

The overweighting of public information caused by higher order beliefs makes the gain from 

fair value accounting smaller than it would otherwise be. To see this, compare (28) to (27).  

When the public information is infinitely precise, as in (27), private information becomes 

redundant so there is no overweighting of public information.  In this case the gain from fair 

value accounting is proportional to 
1var( )θ
α

=  since this is the amount of uncertainty 

eliminated by the information that is being provided.  With noisy public and private 

information the residual uncertainty after providing information is  

1var( | , )ix yθ
α β γ

=
+ +

 , so that the uncertainty eliminated by the information provided 

is 
1 1
α α β γ
−

+ +
 .  But, the benefit from fair value information is proportional to: 

2

1 1 (1 )
( )
τγ τ

α α β τγ α β τγ
<

 −
− + + + + + 

1 1
α α β γ
−

+ +
 because,  
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2

2

2

1 1 (1 )
( )

( ) ( )( ) (1 )( ) 0
( )( )

τγ τ
α β γ α β τγ α β τγ

α β τγ α β τγ α β γ τγ τ α β γ
α β γ α β τγ

−
− − =

+ + + + + +

+ + − + + + + − − + +
<

+ + + +
  

The full benefit from uncertainty reduction is not obtained precisely because public 

information is over-weighted and private information is under-weighted. 

 The following result is obvious by visual inspection of (28): 

 

Proposition 6: 

 Customer welfare is strictly increasing in the precision of fair value information, if the firm’s 

asset portfolio is viewed as fixed and sunk .   

 

 Proposition 6 succinctly captures the usual argument given in support of fair value 

accounting: fair value information is relevant to stakeholders and facilitates better decisions.  

It is also consistent with the common intuition, based on Blackwell’s theorem, that more 

information is preferred to less.  But Blackwell’s theorem is concerned with information 

about states of Nature that are invariant to the provision of information.  Similarly, at the time 

that our customers (outside stakeholders) make their decisions, the firm’s asset portfolio is 

sunk and the size of the aggregate order Q  is beyond the control of any individual customer.  

Therefore, from the perspective of an individual customer, at date 1, the wealth of the firm is 

an exogenous random variable just like the state of Nature.  So, at the time that customers 

need to make their decisions (at date 1), each individual customer would demand the 

information provided by fair value accounting and would want the information to be as 

precise as possible.      

 But, from the perspective of a regulator who mandates corporate disclosure policy, it 

is fallacious to view the firm’s asset portfolio as fixed and given.  A mandate to fair value a 
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firm’s assets could very well result in the firm choosing a different asset portfolio.  This 

endogeneity to the firm’s choice of assets has been largely overlooked in the literature and is 

missing from debates about the merits of fair value accounting.  In Proposition 3 we 

established that the amount z that the firm chooses to invest in the risky asset declines with 

the precision of the fair value information that is later provided to outside stakeholders.   So 

the welfare result described in Proposition 6, while true in a partial equilibrium sense, may no 

longer be true when the decline in z is taken into account.  Given that 1µ > , customer 

welfare is strictly increasing in z as can be seen from visual inspection of (28).  Therefore, an 

increase in the precision of the fair value signal generates two opposing effects: better 

decisions which increases customer welfare, but lower investment in the risky asset which 

decreases customer welfare.  Whether or not customers are better off, in an overall sense, 

depends on which of these two effects dominate.  Below, we investigate the net effect on 

customer welfare. 

 The aggregate ex ante welfare of customers, as derived in (28) consists of two terms.  

The first term in (28) depends on β  only through z  and since  is declining in   z β the first 

term in (28) is unambiguously declining in β .  The second term in (28) captures the two 

opposing effects described earlier.  The direct dependence on β  captures the decision 

facilitating benefit of fair value information, and the indirect dependence through z  captures 

the expected wealth decreasing effect of fair value information.  To gauge the net effect, 

insert the equilibrium value of z , as derived in (25) into the second term of (28).  After 

considerable algebraic simplification, and using the facts that 

(1 ) β β τγλ λ
α β α β τγ
  +

+ − = + + + 
 as shown in the proof of Proposition 2, and 
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2 2
2

( )( )(1 )
( )

β β τγ α β τγ ατγλ λ
α β α β τγ
  + + + −

+ − = + + + 
 as shown in the proof of Lemma 1, 

this substitution for z into the second term of (28) yields: 

 

2 2
2 2

1 1 1 (1 )(1 )
2 ( ) ( )

z τγ ττ
τ α α β τγ α β τγ

 −
− − − + + + + 

  =   

2 2

22 2 2 22
2

2 2

(1 ) ( 1) ( )( ) (1 )
2 1 1 1( ) 1

( )

τ µ α β τγ β τγ ατγ τ
τ τ ρ τ β τγ τ ατγα β τγ

α τ α β τγ τ α β τγ

 
 
   − − + + + − −
   

       − + − + + + −     + + + +      
       

(29) 

     

We wish to study the behavior of (29) with respect to variations in β .  Unfortunately the 

effect of β  on (29) is ambiguous, so the overall effect of the precision of fair value 

information on the aggregate welfare of customers is parameter specific when there is both 

public and private fair value information.  However, considerable insights are obtained by 

examining some simpler settings. 

 Consider the case where there are no private sources of information and the only 

source of information is the public fair value signal.  Algebraically, this is equivalent to 

letting the precision of private information 0γ → .  Inserting 0γ =  in (25) and (29) yields: 

 

2

2

1
1 11

z µ
τ βτρ

α τ α β

−
=

   −
+   +   

 ,  and 
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2 2
2 2

2 2 2

1 1 1 (1 ) (1 ) 1(1 )
2 ( ) ( ) 2

zz τγ τ τ βτ
τ α α β τγ α β τγ τ α β α

   − −
− − − =   + + + + +  

      

    =
2 2

2 2 2

22

2

(1 ) ( 1)
2

1 11

τ µ β
α βτ τ ρ
τ β

α τ α β

 
 
 
 − −
 + 
    − +   +     

  

 

Let: 

 

  

22

2
1 11

( )L

τ β
α τ α β

β
β

α β

   −
+   +   ≡

 
 + 

 

 

If ( )L β is increasing in β then both the first and second terms of aggregate customer welfare 

are strictly decreasing in the precision of the fair value signal, so customers would be worse 

off from receiving fair value information.  But, if ( )L β is decreasing in β then the effect of 

the precision of information on customer welfare is ambiguous since the first term of 

aggregate customer welfare is decreasing in β  while the second term is increasing in β .  

Simplifying the expression for ( )L β gives: 

 

 
22 2

2 2
1 1 1( ) 2L α β τ τ ββ
α β τ τ α β

       + − − = + +      +        
 

Differentiating gives: 
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22

2 2 2
1 1 1

( )
L τ
β β τ α β

 ∂ −
= − +  ∂ + 

 

 

Therefore, 

  
2

2
10  if and only if L τ α β

β τ β
∂ − +

> >
∂

 

or, equivalently  0  if and only ifL
β
∂

>
∂

: 

  2
1 2α

β τ
< −       (30) 

 

The quantity 2
1 2
τ

− must be positive for (30) to be satisfied, i.e. 0.707τ < is necessary 

for  0L
β
∂

>
∂

.  Recall that (1 )τ− is the weight that customers put on the firm’s wealth in 

assessing the marginal value of placing their orders with the incumbent firm.  So (30) 

indicates that if the weight that customers put on the firm’s wealth is at least 30% then there 

is an upper bound to the precision of fair value information beyond which customer welfare 

is guaranteed to decrease.  Additionally, (30) yields the following very non-intuitive result: 

 

 

Proposition 7: 
The greater is the relevance of firm wealth to customer decisions (i.e. the greater is the value 

of (1 )τ− ) the less precise should be the information provided by fair value accounting.  

  

 Proposition 7 would make no sense at all if the wealth maximizing decisions of 

corporate managers were independent of the actions of the firm’s outside stakeholders.  It 
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begins to make sense only if we take into account the real effects of accounting disclosure.  

In our setting this real effect occurs in the following way.  Greater precision in the 

information provided by fair value accounting induces greater variability in the actions of 

outside stakeholders, which causes the firm’s wealth to become more uncertain, which 

induces the firm to become more cautious in its investment strategy which, in turn, damages 

the welfare of the firm’s outside stakeholders.  

 

6. Concluding Remarks 

 The results that we have obtained contradict popular wisdom to such an extent that it 

behoves us to ask why outside stakeholders did not lobby against the move to fair value 

accounting, and why they seem to demand even more precision in fair value estimates.  These 

empirical facts look less mysterious if one takes into account the sequential nature of 

decisions made by corporate management and outside stakeholders.  At the time that outside 

stakeholders need to make their choices, the actions of corporate managers are sunk, so to 

these outside stakeholders the firm’s wealth  feels very much like an exogenous random 

variable.  Sequential rationality dictates that they will demand the most accurate information 

possible about the firm’s wealth so that they can minimize the probability of their own 

decision errors.  This fact is reflected in Proposition 6.   

 It is tempting for regulators to adopt the sequential perspective of firms’ outside 

stakeholders.  If these users of fair value information demand it, regulators are likely to 

require that the information be supplied.  Yet the higher wisdom requires an understanding of 

how the entire equilibrium changes in response to the disclosure mandate of regulators.  In 

the equilibrium that we have described, and also (we think) in the real world, many of the 

actions taken by corporate managers are significantly influenced by the anticipation of future 

actions by outside stakeholders and, in turn, these outside stakeholders are affected by the 
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earlier decisions made by corporate managers.  In such an interactive world, our results cast 

doubt on the wisdom of mandating fair value accounting.         
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Appendix 
 

 
Proof of Proposition 1: 

First, we calculate the value of Q from (11).  From (14) it follows that: 

  ( 1) 1 1

0 0
(1 ) (1 ) [ (1 ) ]t t t t t

t t
Pτ θ τ δ θ δ

∞ ∞
+ + +

= =

− = − + −∑ ∑  

        

 
0 0 0

[ (1 ) ] (1 ) [ (1 ) ]t t t t t

t t t
P Pδθ τ δ τ δ τ δ

∞ ∞ ∞

= = =

= − + − − −∑ ∑ ∑  

  
1 (1 ) 1 (1 )

P Pδθ δ
τ δ τ τ δ

= + −
− − − −

 

   =   
1 1

1 (1 ) 1 (1 )
Pτδ τδθ

τ τ δ τ δ
    

+ −    − − − −    
 

Inserting this expression into (11) yields the expression described in (16).   
 
Now, from (16) it follows that: 

1( ) (1 )( ) (1 ) ( ) 1 ( 1)
1 (1 ) 1 (1 )i iE Q m z z E P Aτδ τδτη τ τ θ

τ τ δ τ δ
      = + − − + − + −     − − − −      

 

 
Substituting (A1) into (4) and using ( ) (1 )i iE x Pθ δ δ= + −  gives: 

1[ (1 )( )] 1 (1 ) [ (1 ) ]

1(1 ) { (1 ) } 1
1 (1 ) 1 (1 )

i i

i

q m z z x P

z x P P

ττη τ τ δ δ
τ

τ τδ τδτ δ δ
τ τ δ τ δ

 − = + − − + + − + − +    
    − − + − + −      − − − −      

 (A2) 

 
Collect the terms in (A2) that depend on ix and the terms that depend on .P   The term 

that depends on ix  is: 
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1(1 ) 1

1 (1 )iz x τ τδτ δ
τ τ δ

  − − +    − −    
     =    

(1 )
1 (1 )

iz xτ δ
τ δ

−
− −

 

which is convenient to write as: 

  =   
1

1 (1 ) izxτ τδ
τ τ δ

 − 
   − −  

     (A3) 

Also in (A2) the terms that depend on P  are:  

 

1 1(1 ) (1 ) 1 1
1 (1 ) 1 (1 )

zP τ τδ τ τδτ δ
τ τ δ τ τ δ

     − −   − − + + −        − − − −         
  

 

=   
1 1 1(1 )

1 (1 ) 1 (1 )
zP δ τ δτ

τ δ τ τ δ
    − − − − +     − − − −     

 

 

=   
1 1

1 (1 )
zPτ δ

τ τ δ
 − − 
   − −  

   

 

=       
1 1

1 (1 )
zPτ τδ

τ τ δ
 −  −   − −  

      (A4) 

 

Inserting (A3) and (A4) into (A2) and simplifying gives: 

 

1 (1 )( ) (1 ) 1
1 (1 ) 1 (1 )i iq m z z x Pτδ τδτη τ τ

τ τ δ τ δ
      = + − − + − + −     − − − −      

 

 

as claimed in Proposition 1.   



36 
 

 

 

Proof of Lemma 1: 

Both parts of the Lemma are true if the factor 2 2(1 ) βλ λ
α β
 

+ −  + 
 is strictly 

increasing in .β  Using and    gives
1 (1 )

τδ γλ δ
τ δ α β γ

≡ ≡
− − + +

τγλ
α β τγ

=
+ +

.  

Therefore the factor: 

 2 2(1 ) βλ λ
α β
 

+ −  + 
  =   

2 2 2

21
( )

τγ τ γ β
α β τγ α β τγ α β

    
+ −    + + + + +    

 

   

 2 2 2 2 2
2

1 [( ) ]
( )

βτ γ α β τγ τ γ
α β τγ α β

  
= + + + −  + + +  

 

 

    =   
2 2

2
( ) 2

( )
τ γ β α β βτγ

α β τγ
+ + +

+ +
 

Therefore, 

2 2(1 )sign βλ λ
β α β
  ∂

+ − =  ∂ +  
 

 { }2 2 2( ) ( 2 2 ) 2( )( ( ) 2 )sign α β τγ α β τγ α β τγ τ γ β α β βτγ+ + + + − + + + + +   = 

{ }2 2( )[( )( 2 2 ) 2( ( ) 2 )]sign α β τγ α β τγ α β τγ τ γ β α β βτγ+ + + + + + − + + +  = 

 2 2 2 2

( ) [ ( ) 2 ( ) 2
2 ( ) 2 2 2 ( ) 4

sign
α β τγ α α β τγ β α β βτγ

τγ α β τ γ τ γ β α β βτγ

+ + + + + + + + 
 

+ + − − + − 
  = 

 { }( )[ ( ) 2 ] 0sign α β τγ α α β τγ ατγ+ + + + + >  

         Q.E.D. 
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Proof of Proposition 2: 

We have previously argued that from the perspective of date 0,  

2( ) ( ) var( ) 2 cov( , )var w z var Q z Qθ θ= + +   

 .  In Proposition 2 we are holding z fixed 

and var( )θ  is a prior variance that is unaffected by the precision of accounting 

disclosure.  We have shown in Lemma 1 that var( )Q is strictly increasing in the 

precision of public disclosure.  Therefore, it suffices to establish that cov( , )Qθ  is also 

strictly increasing in the precision of public disclosure.  But, from (20), cov( , )Qθ  is 

strictly increasing in β if the factor (1 ) βλ λ
α β
 

+ −  + 
 is strictly increasing in .β   

Inserting 
τγλ

α β τγ
=

+ +
 gives, 

  (1 ) βλ λ
α β
 

+ −  + 
  =   1τγ τγ β

α β τγ α β τγ α β
  

+ −  + + + + +  
 

     =  
β τγ

α β τγ
+

+ +
 

which is strictly increasing in .β   

          Q.E.D. 

 

 
Proof of Proposition 5: 
 
As derived in (16): 

( ){ }1 (1 )( ) (1 ) (1 )Q m z z Pτη τ τ λθ λ
τ

= + − − + − + −  

The term (1 )Pλθ λ+ −  can be written as: 
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( ) ( )(1 ) α θ θ µ β θ ελθ λ

α β
 − + + +

+ −  + 
  

   =  (1 ) ( ) (1 )α βθ λ θ µ λ ε
α β α β
   

− − − + −   + +   
  

   =   ( )α βθ θ µ ε
α β τγ α β τγ
   

− − +   + + + +   
  

where we have used (1 ) α βλ
α β τγ

+
− =

+ +
 as derived in the proof of Lemma1.  Therefore, 

 

1 (1 )( ) (1 ) ( )Q m z z z α βτη τ θ τ θ µ ε
τ α β τγ α β τγ
     

= + − − + + − − − +     + + + +      
   

Therefore, 

[ ] [ ]

[ ]

21(1 )( ) (1 )(m )

1 (1 )(m ) (1 ) ( )

m z z Q z z

z z z

τη τ θ τη τ θ
τ

α βτη τ θ τ θ µ ε
τ α β τγ α β τγ

+ − − + = + − − + +

  
+ − − + − − − +  + + + +  

  

and, 

[ ]

[ ]

22
2

2

22
2

1 (1 )(m )

2 (1 )(m ) (1 ) ( )

1 ( )

Q z z

z z z

z

τη τ θ
τ

α βτη τ θ τ θ µ ε
τ α β τγ α β τγ

τ α βθ µ ε
τ α β τγ α β τγ

= + − − +

  
+ + − − + − − − +  + + + +  

 − + − − +   + + + +   
 

Also, from (15) and (16), 

2
2 2 2 2

2

1( ) (1 ) ( )i iq Q di z x diτγτ θ
τ α β τγ

 
− = − − + + 

∫ ∫   
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Therefore, from (26): 

[ ] 2 21 1(1 )( ) (2 1) ( )
2 2 im z z Q Q q Q diτη τ θ τΩ = + − − + − − − −∫  

[ ]2
2

1 (1 )( )
2

m z zτη τ θ
τ

= + − − + +   

[ ]2

1 (1 )( ) (1 ) ( )m z z zτ α βτη τ θ τ θ µ ε
τ α β τγ α β τγ

  −  + − − + − − − +    + + + +    
 

  

2
2 2

2

2
2 2 2

2

1 (2 1)(1 ) ( )
2

1 (1 ) ( )
2 i

z

z x di

α βτ τ θ µ ε
τ α β τγ α β τγ

τγτ θ
τ α β τγ

 
− − − − − + + + + + 

 
− − − + + 

∫
  

 

Taking an expectation over the random variables  and θ ε  and using 

2 1[( ) ] var( )E θ µ θ
α

− = =  and   2 1[( ) ] var( ) ,i iE x xθ
γ

− = =  gives: 

 

[ ]2 2 2
2 2

1 1 1( | ) (1 )( ) (1 )
2 2

E z m z z zτη τ µ τ
τ τ α

Ω = + − − + + −   

 2 2
2

1 (1 ) [( )( )]z Eτ ατ θ θ µ
τ α β τγ
− − − −  + + 

 

2 2
2 2

2

2 1 1 1(1 )
2

zτ α βτ
τ α β τγ α α β τγ β

    − − − +      + + + +       
  

2
2 2

2 2

1 (1 )
2 ( )

z τ γτ
τ α β τγ

− −
+ +
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Collecting terms and using [( )( )]E θ θ µ− = 2 2 1( ) var( )E θ µ θ
α

− = =  gives, 

[ ]2
2

2
2 2

2 2 2

1( | ) (1 )( )
2

1 1 2(1 )(1 ) (2 1)
2 ( ) ( ) ( )

E z m z z

z

τη τ µ
τ

τ α β τ γτ τ
τ α α β τγ α β τγ α β τγ

Ω = + − − +

 − +
+ − − − − − + + + + + + 

    

 

[ ]2
2

2 2 2
2 2

1 (1 )( )
2

1 1 1(1 ) (2 2 )( ) (2 1)( )
2 ( )

m z z

z

τη τ µ
τ

τ τ α β τγ τ α β τ γ
τ α α β τγ

= + − − +

 
+ − − − + + + − + + + + 

 

 

[ ]2
2

2 2
2 2

1 (1 )( )
2

1 1 1 (1 )(1 )
2 ( ) ( )

m z z

z

τη τ µ
τ

τγ ττ
τ α α β τγ α β τγ

= + − − +

 −
+ − − − + + + + 

 

 

Q.E.D. 
 
 
 
Proof of Proposition 6 
  

Substituting  ( )( )yαµ β αµ β µ ξ ε βµ ξ ε
α β α β α β

 + + + +
= = + + + + + 

in (26), gives: 

 ( )1 1[ (1 )( ) (1 ) ] [(1 )Q m z z z βτη τ τ µ τ ξ ε
τ τ α β

 
= + − − + − + − + + 

 

 

Substituting this expression for Q into (32) and using θ µ ξ= +  gives: 
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( )

( )

2

2 2 2

1( , , ) [ (1 )( ) (1 ) ]

1 [ (1 )( ) (1 ) ] (1 ) (1 )

1 1(1 ) (2 1)
2

z m z z

m z z z z

z Q

ξ ε τη τ τ µ
τ

βτη τ τ µ τ ξ ε τ ξ
τ α β

βτ ξ ξ ε τ
τ α β

Ω = + − − + − +

  
+ − − + − − + + − +  +  

 
− + − − + 

 

Therefore, 

 

{ } { }

( )

, ,

2

2 2 2
,

( , ; ) ( , ; )

1 (1 )( ) (1 )

1 1 1(1 ) (2 1) ( )
2

yE y z E z

m z z

z E Q

θ ξ ε

ξ ε

θ ξ ε

τη τ τ µ
τ

βτ τ
τ α β α

Ω = Ω =

+ − − + − +

 
− − − + 

  (A5) 

But, 

( )22
, 2

2
2 2

2

1( ) (1 )( ) (1 )

1 1 1(1 )

E Q m z z

z

ξ ε τη τ τ µ
τ

βτ
τ α β α β

= + − − + − +

   
− +   +   

 

 

Substituting this expression into (A5) gives, 

{ } ( )2
, 2

2 2 2 2
2

1 2 1( , ; ) (1 )( ) (1 )
2

1 1 2 1 1(1 ) (1 )
2

yE y z m z z

z z

θ
τθ τη τ τ µ

τ τ

β τ βτ τ
τ α β α τ α β α

− Ω = + − − + − − 
 

   − + − − −    + +    

 

 

which implies: 
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{ } ( )2
, 2

2 2
2

1( , ; ) (1 )( ) (1 )
2

1 1(1 )
2

yE y z m z z

z

θ θ τη τ τ µ
τ

βτ
τ α β α

Ω = + − − + −

 
+ −  + 

 

 

which is strictly increasing in .β  

        Q.E.D. 
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